Kontaktpersonen:

Studiendekan/in:
Univ.-Prof. Rainer Helmig
Institut für Wasser- und Umweltsystemmodellierung
E-Mail: rainer.helmig@iws.uni-stuttgart.de

Studiengangsmanager/in:
Dr.-Ing. Maren Paul
Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
Tel.: 685-69169
E-Mail: maren.paul@simtech.uni-stuttgart.de

Prüfungsausschussvorsitzende/r:
Univ.-Prof. Christian Rohde
Institut für Angewandte Analysis und numerische Simulation
E-Mail: christian.rohde@mathematik.uni-stuttgart.de

Fachstudienberater/in:
Dr.-Ing. Maren Paul
Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
Tel.: 685-69169
E-Mail: maren.paul@simtech.uni-stuttgart.de

Stundenplanverantwortliche/r:
Dr.-Ing. Maren Paul
Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
Tel.: 685-69169
E-Mail: maren.paul@simtech.uni-stuttgart.de
Inhaltsverzeichnis

Qualifikationsziele .. 8

100 Pflichtmodule .. 9

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>24880</td>
<td>Simulationstechnik für Master-Studierende A</td>
</tr>
<tr>
<td>24890</td>
<td>Simulationstechnik für Master-Studierende B</td>
</tr>
<tr>
<td>24910</td>
<td>Forschungsmodul 1</td>
</tr>
<tr>
<td>24920</td>
<td>Forschungsmodul 2</td>
</tr>
<tr>
<td>42460</td>
<td>Numerische Simulation</td>
</tr>
<tr>
<td>46870</td>
<td>SimTech-Seminar (MSc)</td>
</tr>
</tbody>
</table>

200 Wahlmodule .. 19

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10030</td>
<td>Architektur von Anwendungssystemen</td>
</tr>
<tr>
<td>10040</td>
<td>Bildsynthese</td>
</tr>
<tr>
<td>10080</td>
<td>Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>10110</td>
<td>Grundlagen der Künstlichen Intelligenz</td>
</tr>
<tr>
<td>10120</td>
<td>Modellbildung und Simulation</td>
</tr>
<tr>
<td>10250</td>
<td>Parallele Systeme</td>
</tr>
<tr>
<td>10660</td>
<td>Fluidmechanik I</td>
</tr>
<tr>
<td>10800</td>
<td>Finite Elemente für Tragwerksberechnungen</td>
</tr>
<tr>
<td>10870</td>
<td>Hydrologie</td>
</tr>
<tr>
<td>10910</td>
<td>Biologie und Chemie für Bauingenieure</td>
</tr>
<tr>
<td>10970</td>
<td>Grundlagen der Betriebswirtschaftslehre für Ingenieure</td>
</tr>
<tr>
<td>11220</td>
<td>Technische Thermodynamik I + II</td>
</tr>
<tr>
<td>11320</td>
<td>Thermodynamik der Gemische I</td>
</tr>
<tr>
<td>11820</td>
<td>Numerische Mathematik 1</td>
</tr>
<tr>
<td>11830</td>
<td>Wahrscheinlichkeitslehre</td>
</tr>
<tr>
<td>11980</td>
<td>Biophysikalische Chemie I</td>
</tr>
<tr>
<td>12010</td>
<td>Bioinformatik und Biostatistik I</td>
</tr>
<tr>
<td>12030</td>
<td>Systemdynamik</td>
</tr>
<tr>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td>12130</td>
<td>Strömungslehre I</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>12260</td>
<td>Mehrgrößenregelung</td>
</tr>
<tr>
<td>12320</td>
<td>Technische Thermodynamik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>14150</td>
<td>Leichtbau</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14710</td>
<td>Funktionalanalyse</td>
</tr>
<tr>
<td>14740</td>
<td>Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)</td>
</tr>
<tr>
<td>14750</td>
<td>Einführung in die Optimierung</td>
</tr>
<tr>
<td>14760</td>
<td>Finite Elemente</td>
</tr>
<tr>
<td>14780</td>
<td>Stochastische Prozesse</td>
</tr>
<tr>
<td>14800</td>
<td>Finanzmathematik 1</td>
</tr>
<tr>
<td>14980</td>
<td>Ausbreitungs- und Transportprozesse in Strömungen</td>
</tr>
<tr>
<td>15020</td>
<td>Numerische Methoden in der Fluidmechanik</td>
</tr>
<tr>
<td>15040</td>
<td>Mehrphasenmodellierung in porösen Medien</td>
</tr>
<tr>
<td>15670</td>
<td>Verkehrstechnik und Verkehrswirtschaft</td>
</tr>
<tr>
<td>15830</td>
<td>Höhere Mechanik I: Einführung in die Kontinuumsmechanik und in die Materialtheorie</td>
</tr>
<tr>
<td>15840</td>
<td>Höhere Mechanik II: Numerische Methoden der Mechanik</td>
</tr>
</tbody>
</table>
16100 Selected Topics in the Theories of Plasticity and Viscoelasticity ... 96
16110 Elemente der nichtlinearen Kontinuumsthermodynamik .. 98
16120 Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien ... 100
16140 Continuum Biomechanics .. 103
16150 Geometrische Methoden der Nichtlinearen Kontinuumsmechanik und Kontinuumsthermodynamik 105
16180 Theoretische und Computerorientierte Materialtheorie .. 107
16260 Maschinendynamik ... 109
16500 Software Engineering .. 111
16720 Dynamik biologischer Systeme ... 112
16750 Business Dynamics .. 113
18610 Konzepte der Regelungstechnik ... 114
18620 Optimal Control ... 116
18630 Robust Control ... 117
18640 Nonlinear Control .. 118
210 Wahlmodule aus BSc Simulation Technology .. 119
10840 Fluidmechanik II .. 120
38240 Simulation Methods in Physics for SimTech II ... 122
21340 Strömungslehre II ... 124
21360 Wärmeübertragung / Wärmestrahlung .. 126
21820 Statistical and Adaptive Signal Processing ... 128
22190 Detection and Pattern Recognition .. 130
24930 Computerorientierte Methoden für Kontinua und Flächentragwerke .. 132
24940 Statistik und Optimierung .. 135
25170 Schalen ... 137
25530 Wahrscheinlichkeit und Statistik .. 138
26410 Molekularsimulation .. 139
28440 Astrophysik .. 141
28620 Stochastic Dynamics I + II .. 143
28650 Relativitätstheorie ... 145
29410 Diskrete Optimierung .. 147
29430 Computer Vision .. 148
29440 Geometric Modeling and Computer Animation .. 150
29450 Graphentheorie .. 152
29460 Algorithmen für die Kryptographie ... 154
29470 Machine Learning ... 155
29580 Data Compression ... 157
29660 Programmanalysen und Compilerbau .. 158
29680 Real-Time Programming .. 160
29760 Algorithmische Gruppentheorie ... 162
29900 Dynamik verteiltparametrischer Systeme ... 164
29940 Convex Optimization ... 166
29990 Grundlagen der Laserstrahlquellen ... 167
30010 Modellierung und Simulation in der Mechatronik ... 168
30020 Biomechanik .. 170
30030 Fahrzeugdynamik ... 171
30040 Flexible Mehrkörpersysteme .. 172
30060 Optimization of Mechanical Systems .. 174
30080 Introduction to Systems Biology .. 176
30110 Nichtlineare Dynamik ... 177
31650 Beugungsuntersuchungen in der Materialwissenschaft .. 178
31690 Experimentelle Modalanalyse ... 180
31720 Model Predictive Control ... 181
32170 Numerik für Höchstleistungsrechner ... 182
32350 Anwendung der Methode der Finiten Elemente im Maschinenbau .. 183
33100 Modellierung und Identifikation dynamischer Systeme .. 184
33180 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport .. 185
33190 Numerische Methoden der Optimierung und Optimalen Steuerung .. 189
33340 Methode der finiten Elemente in Statik und Dynamik .. 191
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>44380</td>
<td>Experimentelle Simulation des Wiedereintritts</td>
</tr>
<tr>
<td>44510</td>
<td>Grundlagen der Turbulenzmodelierung</td>
</tr>
<tr>
<td>44580</td>
<td>Instationäre Gasdynamik und Stoßrohrprobleme</td>
</tr>
<tr>
<td>44640</td>
<td>Kompressible Strömungen I + II</td>
</tr>
<tr>
<td>44730</td>
<td>Leichtbau I</td>
</tr>
<tr>
<td>44750</td>
<td>Leichtbau II</td>
</tr>
<tr>
<td>44820</td>
<td>Mathematische Methoden in der Strömungsmechanik</td>
</tr>
<tr>
<td>44840</td>
<td>Mehrphasenströmungen, Anwendungen und Simulation</td>
</tr>
<tr>
<td>44860</td>
<td>Modellierung von Wiedereintrittsströmungen</td>
</tr>
<tr>
<td>44910</td>
<td>Numerische Modellierung von Mehrphasenströmungen</td>
</tr>
<tr>
<td>44940</td>
<td>Numerische Verbrennungssimulation</td>
</tr>
<tr>
<td>44980</td>
<td>Plasmatechnik</td>
</tr>
<tr>
<td>45000</td>
<td>Programmierung von Discontinuous-Galerkin-Verfahren</td>
</tr>
<tr>
<td>45210</td>
<td>Strömungsmechanik</td>
</tr>
<tr>
<td>45280</td>
<td>Thermodynamik der Gemische</td>
</tr>
<tr>
<td>45320</td>
<td>Turbulenz</td>
</tr>
<tr>
<td>45900</td>
<td>Lineare Kontrolltheorie</td>
</tr>
<tr>
<td>46310</td>
<td>Materialien für Implantate</td>
</tr>
<tr>
<td>46510</td>
<td>Industrielle Aerodynamik</td>
</tr>
<tr>
<td>46550</td>
<td>Poröse Medien: Modellierung, Analysis und Numerik</td>
</tr>
<tr>
<td>46760</td>
<td>Theoretical and Methodological Foundations of Visual Computing</td>
</tr>
<tr>
<td>47130</td>
<td>Modellierung und Simulation in der Biomechanik</td>
</tr>
<tr>
<td>47160</td>
<td>Biomaterialien - Biokompatible Materialien</td>
</tr>
<tr>
<td>47180</td>
<td>Biomaterialien - Herstellung, Struktur und Eigenschaften</td>
</tr>
<tr>
<td>47290</td>
<td>Neurale Systeme</td>
</tr>
<tr>
<td>47300</td>
<td>Biorobotik</td>
</tr>
<tr>
<td>47320</td>
<td>Biomechanik der Zelle</td>
</tr>
<tr>
<td>48460</td>
<td>Advanced Seminar Computer Science</td>
</tr>
<tr>
<td>48600</td>
<td>Robotics I</td>
</tr>
<tr>
<td>48640</td>
<td>Theoretical and Methodological Foundations of Autonomous Systems</td>
</tr>
<tr>
<td>48660</td>
<td>Funktionalanalyse 2</td>
</tr>
<tr>
<td>48840</td>
<td>Stochastic and Statistical Topics in Modeling and Simulation</td>
</tr>
<tr>
<td>49010</td>
<td>Einführung in die Biomechanik biologischer Bewegung</td>
</tr>
<tr>
<td>49640</td>
<td>Finite Elemente II (Diskretisierung II)</td>
</tr>
<tr>
<td>50090</td>
<td>Environmental Fluid Mechanics I</td>
</tr>
<tr>
<td>50110</td>
<td>Modeling of Hydrosystems</td>
</tr>
<tr>
<td>50150</td>
<td>Stochastical Modeling and Geostatistics</td>
</tr>
<tr>
<td>50170</td>
<td>Environmental Fluid Mechanics II</td>
</tr>
<tr>
<td>50270</td>
<td>Modellreduktion in der Mechanik</td>
</tr>
<tr>
<td>50280</td>
<td>Multiphase Modeling in Porous Media</td>
</tr>
<tr>
<td>50400</td>
<td>Robust Control</td>
</tr>
<tr>
<td>51540</td>
<td>Implementierung Finiter Element</td>
</tr>
<tr>
<td>51630</td>
<td>Umweltaerodynamik</td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
</tr>
<tr>
<td>51940</td>
<td>Systems Theory in Systems Biology</td>
</tr>
<tr>
<td>55600</td>
<td>Advanced Information Management</td>
</tr>
<tr>
<td>55630</td>
<td>Information Visualization and Visual Analytics</td>
</tr>
<tr>
<td>55640</td>
<td>Correspondence Problems in Computer Vision</td>
</tr>
<tr>
<td>55650</td>
<td>Multimodal Interaction for Ubiquitous Computers</td>
</tr>
<tr>
<td>55730</td>
<td>Statistik und Optimierung für Simulationswissenschaften</td>
</tr>
<tr>
<td>55870</td>
<td>Dynamische Systeme</td>
</tr>
<tr>
<td>55880</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>55900</td>
<td>Computational Mechanics of Materials</td>
</tr>
<tr>
<td>55910</td>
<td>Introduction to Scientific Programming</td>
</tr>
<tr>
<td>55920</td>
<td>Computational Mechanics of Structures</td>
</tr>
<tr>
<td>55930</td>
<td>Seminar on Mathematical Modelling</td>
</tr>
<tr>
<td>55940</td>
<td>Seminar on Mathematical Modelling</td>
</tr>
<tr>
<td>56070</td>
<td>Simulation Methods in Physics for SimTech III</td>
</tr>
</tbody>
</table>
56160 Advanced Simulation Methods ... 376
56390 Computer Science Selection VI: Concepts of Programming Languages, Operating Systems 378
56670 Discretization Methods ... 380
56790 Parallele Numerik .. 382
56960 Stochastische Prozesse II ... 384
57050 Compilerbau ... 385
57240 Seminar zur Stochastischen Analyse ... 387
57250 Stochastische Modellierung ... 388
57680 Einführung in die Chaostheorie ... 389
57950 Spezielle Probleme der Wärmeübertragung ... 391
58190 Entwurf und Implementierung eines Compilers 392
58270 Dynamik mechanischer Systeme .. 393
59740 Ausgewählte Kapitel der Strömungsmechanik 395
59900 Euler- und Navier-Stokes-Gleichungen .. 397
59940 Dynamik Nichtglatter Systeme .. 398
59950 Mechanik nichtlinearer Kontinua ... 399
59990 Nichtglatte Dynamik ... 400
60090 Diskretisierung der inkompressiblen Navier-Stokes-Gleichungen 401
60110 Wissenschaftliches Rechnen ... 403
60210 Implementation and Algorithms for Finite Elements 405
60230 Matrix Computations in Signal Processing and Machine Learning 406
60860 3D Scanner - Algorithms and Systems .. 408
61280 Partielle Differentialgleichungen I (klassische Theorie) 409
61740 Statistische Lernverfahren und stochastische Regelungen 411
61750 Einführung in die Modellreduktion mechanischer Systeme 413
62500 Numerische Verfahren für Mehrskalenprobleme 416
68050 Stochastik und Monte-Carlo-Methoden .. 417
68320 Modulationsgleichungen .. 419
68420 Deep learning for NLP ... 420
68720 Human-Computer Interaction ... 421
68740 Non-linear Computational Mechanics of Structures 423
69160 Einführung in die Materialwissenschaft und Werkstofftechnik 425
69460 Computational contact mechanics ... 427
70050 Numerische Strömungsmechanik ... 428
70060 Simulation verdünnter Gase und Plasmen ... 430
70090 Battery modelling and Energy Management 431
70400 Modellierung, Analyse und Entwurf neuer Roboterkinematiken 433
71910 Seminar zu Mehrphasenströmungen ... 434
71940 Additive Fertigungsverfahren ... 435
72790 Risiko, Robustheit und Resilienz für Bau- und Umwelttechnik 436
72940 Introduction to Neuromechanics ... 437
72970 Systembiologie .. 438
73390 Computational Methods for Quantitative Finance 440
74370 Methoden der Simulationstechnik ... 442
74980 Computational Dynamics for Robotics .. 443
75870 Metals and Computational Materials Science 445
77920 Deep Learning .. 446
78900 Introduction to Modern Cryptography .. 448
79100 Deep Learning for Speech and Language Processing 450
79250 Variational Methods in Structural Dynamics 451
79370 Spectral Methods for Differential Equations in Computational Mechanics .. 453

80070 Masterarbeit Simulation Technology .. 455
Qualifikationsziele

100 Pflichtmodule

Zugeordnete Module:
- 24880 Simulationstechnik für Master-Studierende A
- 24890 Simulationstechnik für Master-Studierende B
- 24910 Forschungsmodul 1
- 24920 Forschungsmodul 2
- 42460 Numerische Simulation
- 46870 SimTech-Seminar (MSc)
Modul: 24880 Simulationstechnik für Master-Studierende A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Syn Schmitt
9. Dozenten: Syn Schmitt, Oliver Röhrle, Rainer Helmig

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
→ Zusatzmodule
M.Sc. Simulation Technology, PO 972Ei2016, 3. Semester
→ Pflichtmodule
M.Sc. Simulation Technology, PO 972Ei2013, 3. Semester
→ Pflichtmodule
M.Sc. Simulation Technology, PO 972-2013, 3. Semester
→ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, 3. Semester
→ Pflichtmodule
M.Sc. Simulation Technology, PO 972-2016, 3. Semester
→ Pflichtmodule
M.Sc. Simulation Technology, PO 972EiO2013, 1. Semester
→ Pflichtmodule
M.Sc. Simulation Technology, PO 972EiO2016, 1. Semester
→ Pflichtmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden haben einen Überblick über verschiedene Methoden der Modellbildung und Lösungsmethoden und können diese nennen. Sie können die jeweils geeigneten Methoden für eine Fragestellung auswählen und anwenden.

13. Inhalt:
Entsprechend den Research Areas (RA) des SRC SimTech werden unterschiedliche Modelle und Methoden vorgestellt. Es werden Ziele und Einsatzzwecke anwendungsorientiert erläutert und die Verknüpfung der Research Areas untereinander dargestellt.

Neue Methoden zur Modellbildung molekular-dynamischer und kontinuums-mechanischer Systeme, mathematische und numerische Methoden, Modellreduktion und die Umsetzung in leistungsfähige Algorithmen werden an ausgewählten Beispielen vermittelt.

Weiterhin werden verschiedene Lösungsmethoden übergreifend vorgestellt.

Pro Semester wird eine RA speziell herausgegriffen und anhand eines Beispiels aus der aktuellen Forschung die genannten Inhalte und Verknüpfungen erläutert.

RA A "Molecular and Particle Simulations"
RA B "Advanced Mechanics of Multi-scale and Multi-field Problems"
RA C "Analysis, Design and Optimisation of Systems"
RA D "Numerical and Computational Mathematics"
RA E "Integrated Data Management and Interactive Visualisation"
RA F "Hybrid High-Performance Computing Systems and Simulation Software Engineering"
RA G "Integrative Platform of Reflection and Contextualisation"

15. Lehrveranstaltungen und -formen:
- 248801 Vorlesung mit Übung Simulationstechnik für Master-Studierende A

16. Abschätzung Arbeitsaufwand:
Insgesamt 180 h:
Präsenzzeit: 56 h
Nachbearbeitungszeit: 124 h

17. Prüfungsnummer/n und -name:
24881 Simulationstechnik für Master-Studierende A (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Modellierung und Simulation im Sport
Modul: 24890 Simulationstechnik für Master-Studierende B

2. Modulkürzel: 021420022
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Rainer Helmig
9. Dozenten: Dozenten des SRC Simtech

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester
 ➞ Pflichtmodule
M.Sc. Simulation Technology, PO 972-2013, 2. Semester
 ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, 2. Semester
 ➞ Pflichtmodule
M.Sc. Simulation Technology, PO 972-2016, 2. Semester
 ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972EiO2016, 2. Semester
 ➞ Pflichtmodule
M.Sc. Simulation Technology, PO 972-2013, 2. Semester
 ➞ Pflichtmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden haben einen Überblick über verschiedene Methoden der Modellbildung und Lösungsmethoden und können diese nennen. Sie können die jeweils geeigneten Methoden für eine Fragestellung auswählen und anwenden.

13. Inhalt:
Entsprechend den Research Areas (RA) des SRC SimTech werden unterschiedliche Modelle und Methoden vorgestellt. Es werden Ziele und Einsatzzwecke anwendungsorientiert erläutert und die Verknüpfung der Research Areas untereinander dargestellt.

Neue Methoden zur Modellbildung molekular-dynamischer und kontinuums-mechanischer Systeme, mathematische und numerische Methoden, Modelldarstellung und die Umsetzung in leistungsfähige Algorithmen werden an ausgewählten Beispielen vermittelt.

Weiterhin werden verschiedene Lösungsmethoden übergreifend vorgestellt.

Pro Semester wird eine RA speziell herausgegriffen und anhand eines Beispiels aus der aktuellen Forschung die genannten Inhalte und Verknüpfungen erläutert.

RA A *Molecular and Particle Simulations
RA B *Advanced Mechanics of Multi-scale and Multi-field Problems
RA C *Analysis, Design and Optimisation of Systems
RA D *Numerical and Computational Mathematics
RA E *Integrated Data Management and Interactive Visualisation
RA F Hybrid High-Performance Computing Systems and Simulation Software Engineering
RA G Integrative Platform of Reflection and Contextualisation

14. Literatur:
Wird jeweils in den einzelnen Teilen der Lehrveranstaltungen bekannt gegeben, entsprechend der Ausrichtung der Research Area.
15. Lehrveranstaltungen und -formen:
 - 248901 Vorlesung mit Übung Simulationstechnik für Master-Studierende B

16. Abschätzung Arbeitsaufwand:
 Insgesamt 180 h:
 Präsenzzeit: 56 h
 Nachbearbeitungszeit: 124 h

17. Prüfungsnummer/n und -name:
 24891 Simulationstechnik für Master-Studierende B (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Parallele und Verteilte Systeme
Modul: 24910 Forschungsmodul 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080300012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
</tr>
<tr>
<td>5. Moduldaus:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Christian Rohde</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten des SRC Simtech</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, 2. Semester: Pflichtmodule
M.Sc. Simulation Technology, PO 972-2013, 2. Semester: Zusatzmodule
M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester: Pflichtmodule
M.Sc. Simulation Technology, PO 972-2013, 2. Semester: Pflichtmodule |
| 14. Literatur: | Insgesamt 180 h, die sich wie folgt ergeben:
Präsenzzeit: 0 h
Selbststudium: 180 h |
| 15. Lehrveranstaltungen und -formen: | • 249101 Selbststudium |
| 16. Abschätzung Arbeitsaufwand: | Prüfungsnummer/n und -name: 24911 Forschungsmodul 1 (USL), Schriftlich, Gewichtung: 1 schriftlicher Bericht über die Resultate |
| 18. Grundlage für ... : | Angewandte Mathematik |
Modul: **24920 Forschungsmodul 2**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Christian Rohde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten des SRC Simtech</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Pflichtmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 249201 Selbststudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Insgesamt 270 h, die sich wie folgt ergeben: Präsenzzzeit: 0 h Selbststudium: 270 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>24921 Forschungsmodul 2 (LBP), Schriftlich, Gewichtung: 1</td>
<td>schriftlicher Bericht über die Resultate</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Angewandte Mathematik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 42460 Numerische Simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051240060</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Dirk Pflüger</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Pflichtmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EI02016, 1. Semester → Pflichtmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EI02013, 1. Semester → Pflichtmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EI2016, 3. Semester → Pflichtmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EI12013, 3. Semester → Pflichtmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, 3. Semester → Pflichtmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Modul 10190 Mathematik für Informatiker und Softwaretechniker und</td>
</tr>
<tr>
<td></td>
<td>• Modul 10240 Numerische und Stochastische Grundlagen der Informatik bzw.</td>
</tr>
<tr>
<td></td>
<td>• Modul 41590 Einführung in die Numerik und Stochastik für Softwaretechniker</td>
</tr>
<tr>
<td></td>
<td>• Modul 42410 Grundlagen des wissenschaftlichen Rechnens</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Fähigkeit zur Implementierung numerischer Methoden und Entwicklung und Umsetzung geeigneter Datenstrukturen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Strukturmechanik, Strömungsmechanik, Finite Elemente, Finite Differenzen sowie praktische Aspekte der effizienten und parallelen Umsetzung auf Rechnern</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 424601 Vorlesung Numerische Simulation</td>
</tr>
<tr>
<td></td>
<td>• 424602 Übung Numerische Simulation</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>42461 Numerische Simulation (LBP), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Simulation Software Engineering</td>
</tr>
</tbody>
</table>
Modul: 46870 SimTech-Seminar (MSc)

| 3. Leistungspunkte: | 3 LP | 6. Turnus: | Wintersemester |
| 4. SWS: | 2 | 7. Sprache: | Englisch |

8. Modulverantwortlicher: Univ.-Prof. Dr. Christian Rohde

9. Dozenten: Dozenten des SRC Simtech

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Simulation Technology, PO 972-2016, ➔ Pflichtmodule
M.Sc. Simulation Technology, PO 972EiO2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Pflichtmodule
M.Sc. Simulation Technology, PO 972EiO2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

15. Lehrveranstaltungen und -formen:

- 468701 Seminar SimTech Seminar (MSc)

16. Abschätzung Arbeitsaufwand:

Insgesamt 90 h, die sich wie folgt ergeben:
- Präsenzzeit: 28 h
- Selbststudium: 62 h

17. Prüfungsnummer/n und -name: 46871 SimTech-Seminar (MSc) (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Angewandte Mathematik
200 Wahlmodule

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10030</td>
<td>Architektur von Anwendungssystemen</td>
</tr>
<tr>
<td>10040</td>
<td>Bildsynthese</td>
</tr>
<tr>
<td>10080</td>
<td>Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>10110</td>
<td>Grundlagen der Künstlichen Intelligenz</td>
</tr>
<tr>
<td>10120</td>
<td>Modellbildung und Simulation</td>
</tr>
<tr>
<td>10250</td>
<td>Parallele Systeme</td>
</tr>
<tr>
<td>10660</td>
<td>Fluidmechanik I</td>
</tr>
<tr>
<td>10800</td>
<td>Finite Elemente für Tragwerksberechnungen</td>
</tr>
<tr>
<td>10870</td>
<td>Hydrologie</td>
</tr>
<tr>
<td>10910</td>
<td>Biologie und Chemie für Bauingenieure</td>
</tr>
<tr>
<td>10970</td>
<td>Grundlagen der Betriebswirtschaftslehre für Ingenieure</td>
</tr>
<tr>
<td>11220</td>
<td>Technische Thermodynamik I + II</td>
</tr>
<tr>
<td>11320</td>
<td>Thermodynamik der Gemische I</td>
</tr>
<tr>
<td>11820</td>
<td>Numerische Mathematik 1</td>
</tr>
<tr>
<td>11830</td>
<td>Wahrscheinlichkeitstheorie</td>
</tr>
<tr>
<td>11980</td>
<td>Biophysikalische Chemie I</td>
</tr>
<tr>
<td>12010</td>
<td>Bioinformatik und Biostatistik I</td>
</tr>
<tr>
<td>12030</td>
<td>Systemdynamik</td>
</tr>
<tr>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td>12130</td>
<td>Strömungslehre I</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>12260</td>
<td>Mehrgrößenregelung</td>
</tr>
<tr>
<td>12320</td>
<td>Technische Thermodynamik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>14150</td>
<td>Leichtbau</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14710</td>
<td>Funktionalanalysis</td>
</tr>
<tr>
<td>14740</td>
<td>Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)</td>
</tr>
<tr>
<td>14750</td>
<td>Einführung in die Optimierung</td>
</tr>
<tr>
<td>14760</td>
<td>Finite Elemente</td>
</tr>
<tr>
<td>14780</td>
<td>Stochastische Prozesse</td>
</tr>
<tr>
<td>14800</td>
<td>Finanzmathematik 1</td>
</tr>
<tr>
<td>14980</td>
<td>Ausbreitungs- und Transportprozesse in Strömungen</td>
</tr>
<tr>
<td>15020</td>
<td>Numerische Methoden in der Fluidmechanik</td>
</tr>
<tr>
<td>15040</td>
<td>Mehrphasenmodellierung in porösen Medien</td>
</tr>
<tr>
<td>15670</td>
<td>Verkehrstechnik und Verkehrsleittechnik</td>
</tr>
<tr>
<td>15830</td>
<td>Höhere Mechanik I: Einführung in die Kontinuumsmechanik und in die Materialtheorie</td>
</tr>
<tr>
<td>15840</td>
<td>Höhere Mechanik II: Numerische Methoden der Mechanik</td>
</tr>
<tr>
<td>16100</td>
<td>Selected Topics in the Theories of Plasticity and Viscoelasticity</td>
</tr>
<tr>
<td>16110</td>
<td>Elemente der nichtlinearen Kontinuumsthermodynamik</td>
</tr>
<tr>
<td>16120</td>
<td>Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien</td>
</tr>
<tr>
<td>16140</td>
<td>Continuum Biomechanics</td>
</tr>
<tr>
<td>16150</td>
<td>Geometrische Methoden der Nichtlinearen Kontinuumsmechanik und Kontinuumsthermodynamik</td>
</tr>
<tr>
<td>16180</td>
<td>Theoretische und Computerorientierte Materialtheorie</td>
</tr>
<tr>
<td>16260</td>
<td>Maschinendynamik</td>
</tr>
<tr>
<td>16500</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>16720</td>
<td>Dynamik biologischer Systeme</td>
</tr>
<tr>
<td>16750</td>
<td>Business Dynamics</td>
</tr>
</tbody>
</table>
18610 Konzepte der Regelungstechnik
18620 Optimal Control
18630 Robust Control
18640 Nonlinear Control
210 Wahlmodule aus BSc Simulation Technology
21340 Strömungstheorie II
21360 Wärmeübertragung / Wärmestrahlung
21820 Statistical and Adaptive Signal Processing
22190 Detection and Pattern Recognition
24930 Computerorientierte Methoden für Kontinua und Flächentragwerke
24940 Statistik und Optimierung
25170 Schalen
25530 Wahrscheinlichkeit und Statistik
26410 Molekularsimulation
28440 Astrophysik
28620 Stochastic Dynamics I + II
28650 Relativitätstheorie
29410 Diskrete Optimierung
29430 Computer Vision
29440 Geometric Modeling and Computer Animation
29450 Graphentheorie
29460 Algorithmen für die Kryptographie
29470 Machine Learning
29580 Data Compression
29660 Programmierens und Compilerbau
29680 Real-Time Programming
29760 Algorithmische Gruppentheorie
29900 Dynamik verteiltparametrischer Systeme
29940 Convex Optimization
29990 Grundlagen der Laserstrahlquellen
30010 Modellierung und Simulation in der Mechatronik
30020 Biomechanik
30030 Fahrzeugdynamik
30040 Flexible Mehrkörpersysteme
30060 Optimization of Mechanical Systems
30080 Introduction to Systems Biology
30100 Nichtlineare Dynamik
31650 Beugungsuntersuchungen in der Materialwissenschaft
31690 Experimentelle Modalanalyse
31720 Model Predictive Control
32170 Numerik für Höchstleistungsrechner
32350 Anwendung der Methode der Finiten Elemente im Maschinenbau
33100 Modellierung und Identifikation dynamischer Systeme
33180 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport
33190 Numerische Methoden der Optimierung und Optimalen Steuerung
33340 Methode der finiten Elemente in Statik und Dynamik
33360 Fuzzy Methoden
33680 Service Engineering - Systematische Entwicklung von Dienstleistungen
33820 Flat Systems
33840 Dynamische Filterverfahren
34120 Virtuelles Engineering
34810 Nichtlineare partielle Differentialgleichungen
34910 Einführung in die Numerik partieller Differentialgleichungen
34940 Weiterführende Numerik partieller Differentialgleichungen
34950 Spezielle Aspekte der Numerik
34960 Stochastische Analysis
34980 Zeitreihenanalyse
35000 Linear Matrix Inequalities in Control
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>35100</td>
<td>Seminar zur Numerischen Mathematik</td>
</tr>
<tr>
<td>35260</td>
<td>Computational Linguistics Seminar A</td>
</tr>
<tr>
<td>35810</td>
<td>Computational Biochemistry</td>
</tr>
<tr>
<td>35820</td>
<td>Advanced Methods of Quantum Chemistry</td>
</tr>
<tr>
<td>35850</td>
<td>Group Theory and Molecular Spectroscopy</td>
</tr>
<tr>
<td>35860</td>
<td>Molecular Quantum Mechanics</td>
</tr>
<tr>
<td>36010</td>
<td>Simulation Methods in Physics</td>
</tr>
<tr>
<td>36100</td>
<td>Programmierparadigmen</td>
</tr>
<tr>
<td>36360</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>36900</td>
<td>Molekulare Thermodynamik</td>
</tr>
<tr>
<td>37270</td>
<td>Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation</td>
</tr>
<tr>
<td>37670</td>
<td>Nichtlineare Optimierung</td>
</tr>
<tr>
<td>38240</td>
<td>Simulation Methods in Physics for SimTech II</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
</tr>
<tr>
<td>38780</td>
<td>Systemdynamik</td>
</tr>
<tr>
<td>39370</td>
<td>Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik</td>
</tr>
<tr>
<td>39390</td>
<td>Theoretische Physik II: Quantenmechanik</td>
</tr>
<tr>
<td>39400</td>
<td>Theoretische Physik III: Elektrodynamik</td>
</tr>
<tr>
<td>39410</td>
<td>Theoretische Physik IV: Statistische Mechanik</td>
</tr>
<tr>
<td>40010</td>
<td>Analytische und Numerische Methoden in der LRT</td>
</tr>
<tr>
<td>40520</td>
<td>Simulation Methods in Physics for SimTech I</td>
</tr>
<tr>
<td>40680</td>
<td>Optimization</td>
</tr>
<tr>
<td>41500</td>
<td>Fortgeschrittene Vielteilchentheorie</td>
</tr>
<tr>
<td>41630</td>
<td>Mathematisches Seminar</td>
</tr>
<tr>
<td>41880</td>
<td>Grundlagen der Bionik</td>
</tr>
<tr>
<td>42410</td>
<td>Grundlagen des Wissenschaftlichen Rechnens</td>
</tr>
<tr>
<td>42420</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>42480</td>
<td>Ausgewählte Kapitel des Wissenschaftlichen Rechnens</td>
</tr>
<tr>
<td>42900</td>
<td>Business Process Management</td>
</tr>
<tr>
<td>43590</td>
<td>Antikörper Engineering</td>
</tr>
<tr>
<td>43770</td>
<td>Systemtheorie in der Systembiologie (mit Rechnerpraktikum)</td>
</tr>
<tr>
<td>43910</td>
<td>Stochastische Prozesse und Modellierung</td>
</tr>
<tr>
<td>43970</td>
<td>Aerodynamik und Flugzeugentwurf I</td>
</tr>
<tr>
<td>43980</td>
<td>Luftfahrtriebwerke und Verbrennung</td>
</tr>
<tr>
<td>43990</td>
<td>Raumfahrttechnik I</td>
</tr>
<tr>
<td>44010</td>
<td>Aeroakustik der Luft- und Raumfahrt</td>
</tr>
<tr>
<td>44040</td>
<td>Analyse tiefen dynamischer Prozesse</td>
</tr>
<tr>
<td>44070</td>
<td>Analytische Methoden</td>
</tr>
<tr>
<td>44110</td>
<td>Angewandte/ausgewählte Turbulenzmodelle</td>
</tr>
<tr>
<td>44150</td>
<td>Bahnmechanik für Raumfahrzeuge</td>
</tr>
<tr>
<td>44220</td>
<td>Differenzenverfahren hoher Genauigkeit</td>
</tr>
<tr>
<td>44240</td>
<td>Digitale Strömungsvisualisierung</td>
</tr>
<tr>
<td>44260</td>
<td>Dimensionsanalyse</td>
</tr>
<tr>
<td>44270</td>
<td>Discontinuous-Galerkin-Verfahren</td>
</tr>
<tr>
<td>44280</td>
<td>Effizient programmieren</td>
</tr>
<tr>
<td>44320</td>
<td>Ein- und Mehrphasenströmungen und deren Anwendungen in der Industrie</td>
</tr>
<tr>
<td>44380</td>
<td>Experimentelle Simulation des Wiedereintritts</td>
</tr>
<tr>
<td>44510</td>
<td>Grundlagen der Turbulenzmodellierung</td>
</tr>
<tr>
<td>44580</td>
<td>Instationäre Gasdynamik und Stoßrohrprobleme</td>
</tr>
<tr>
<td>44640</td>
<td>Kompressible Strömungen I + II</td>
</tr>
<tr>
<td>44730</td>
<td>Leichtbau I</td>
</tr>
<tr>
<td>44750</td>
<td>Leichtbau II</td>
</tr>
<tr>
<td>44810</td>
<td>Mathematische Methoden in der Strömungsmechanik</td>
</tr>
<tr>
<td>44840</td>
<td>Mehrphasenströmungen, Anwendungen und Simulation</td>
</tr>
<tr>
<td>44860</td>
<td>Modellierung von Wiedereintrittsströmungen</td>
</tr>
<tr>
<td>44910</td>
<td>Numerische Modellierung von Mehrphasenströmungen</td>
</tr>
<tr>
<td>44940</td>
<td>Numerische Verbrennungssimulation</td>
</tr>
<tr>
<td>Modulcode</td>
<td>Modulname</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>44980</td>
<td>Plasmatechnik</td>
</tr>
<tr>
<td>45000</td>
<td>Programmierung von Discontinuous-Galerkin-Verfahren</td>
</tr>
<tr>
<td>45210</td>
<td>Strömungsmesstechnik</td>
</tr>
<tr>
<td>45280</td>
<td>Thermodynamik der Gemische</td>
</tr>
<tr>
<td>45320</td>
<td>Turbulenz</td>
</tr>
<tr>
<td>45900</td>
<td>Lineare Kontrolltheorie</td>
</tr>
<tr>
<td>46310</td>
<td>Materialien für Implantate</td>
</tr>
<tr>
<td>46510</td>
<td>Industrielle Aerodynamik</td>
</tr>
<tr>
<td>46550</td>
<td>Poröse Medien: Modellierung, Analysis und Numerik</td>
</tr>
<tr>
<td>46760</td>
<td>Theoretical and Methodological Foundations of Visual Computing</td>
</tr>
<tr>
<td>47130</td>
<td>Modellierung und Simulation in der Biomechanik</td>
</tr>
<tr>
<td>47150</td>
<td>Biomaterialien - Biokompatible Materialien</td>
</tr>
<tr>
<td>47180</td>
<td>Biomaterialien - Herstellung, Struktur und Eigenschaften</td>
</tr>
<tr>
<td>47290</td>
<td>Neurale Systeme</td>
</tr>
<tr>
<td>47320</td>
<td>Biomechanik der Zelle</td>
</tr>
<tr>
<td>48460</td>
<td>Advanced Seminar Computer Science</td>
</tr>
<tr>
<td>48600</td>
<td>Robotics I</td>
</tr>
<tr>
<td>48640</td>
<td>Theoretical and Methodological Foundations of Autonomous Systems</td>
</tr>
<tr>
<td>48660</td>
<td>Funktionalanalysis 2</td>
</tr>
<tr>
<td>48840</td>
<td>Stochastic and Statistical Topics in Modeling and Simulation</td>
</tr>
<tr>
<td>49010</td>
<td>Einführung in die Biomechanik biologischer Bewegung</td>
</tr>
<tr>
<td>49640</td>
<td>Finite Elemente II (Diskretisierung II)</td>
</tr>
<tr>
<td>50090</td>
<td>Environmental Fluid Mechanics I</td>
</tr>
<tr>
<td>50140</td>
<td>Modeling of Hydrosystems</td>
</tr>
<tr>
<td>50150</td>
<td>Stochastical Modeling and Geostatistics</td>
</tr>
<tr>
<td>50170</td>
<td>Environmental Fluid Mechanics II</td>
</tr>
<tr>
<td>50270</td>
<td>Modellreduktion in der Mechanik</td>
</tr>
<tr>
<td>50280</td>
<td>Multiphase Modeling in Porous Media</td>
</tr>
<tr>
<td>50400</td>
<td>Robust Control</td>
</tr>
<tr>
<td>51540</td>
<td>Implementierung Finiter Elemente</td>
</tr>
<tr>
<td>51630</td>
<td>Umweltaerodynamik</td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
</tr>
<tr>
<td>51940</td>
<td>Systems Theory in Systems Biology</td>
</tr>
<tr>
<td>55600</td>
<td>Advanced Information Management</td>
</tr>
<tr>
<td>55630</td>
<td>Information Visualization and Visual Analytics</td>
</tr>
<tr>
<td>55640</td>
<td>Correspondence Problems in Computer Vision</td>
</tr>
<tr>
<td>55650</td>
<td>Multimodal Interaction for Ubiquitous Computers</td>
</tr>
<tr>
<td>55730</td>
<td>Statistik und Optimierung für Simulationswissenschaften</td>
</tr>
<tr>
<td>55870</td>
<td>Dynamische Systeme</td>
</tr>
<tr>
<td>55880</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>55900</td>
<td>Computational Mechanics of Materials</td>
</tr>
<tr>
<td>55910</td>
<td>Introduction to Scientific Programming</td>
</tr>
<tr>
<td>55920</td>
<td>Computational Mechanics of Structures</td>
</tr>
<tr>
<td>55930</td>
<td>Seminar on Mathematical Modelling</td>
</tr>
<tr>
<td>55940</td>
<td>Seminar on Mathematical Modelling</td>
</tr>
<tr>
<td>56070</td>
<td>Simulation Methods in Physics for SimTech III</td>
</tr>
<tr>
<td>56160</td>
<td>Advanced Simulation Methods</td>
</tr>
<tr>
<td>56390</td>
<td>Computer Science Selection VI: Concepts of Programming Languages, Operating Systems</td>
</tr>
<tr>
<td>56670</td>
<td>Discretization Methods</td>
</tr>
<tr>
<td>56790</td>
<td>Parallele Numerik</td>
</tr>
<tr>
<td>56960</td>
<td>Stochastische Prozesse II</td>
</tr>
<tr>
<td>57050</td>
<td>Compilerbau</td>
</tr>
<tr>
<td>57240</td>
<td>Seminar zur Stochastischen Analysis</td>
</tr>
<tr>
<td>57250</td>
<td>Stochastische Modellierung</td>
</tr>
<tr>
<td>57680</td>
<td>Einführung in die Chaostheorie</td>
</tr>
<tr>
<td>57950</td>
<td>Spezielle Probleme der Wärmeübertragung</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
58190 Entwurf und Implementierung eines Compilers
58270 Dynamik mechanischer Systeme
59740 Ausgewählte Kapitel der Strömungsmechanik
59900 Euler- und Navier-Stokes-Gleichungen
59940 Dynamik Nichtglatter Systeme
59950 Mechanik nichtlinearer Kontinua
59990 Nichtglatte Dynamik
60090 Diskretisierung der inkompressiblen Navier-Stokes-Gleichungen
60110 Wissenschaftliches Rechnen
60210 Implementation and Algorithms for Finite Elements
60230 Matrix Computations in Signal Processing and Machine Learning
60860 3D Scanner - Algorithms and Systems
61280 Partielle Differentialgleichungen I (klassische Theorie)
67140 Statistische Lernverfahren und stochastische Regelungen
67150 Einführung in die Modellreduktion mechanischer Systeme
67250 Numerische Verfahren für Mehrskalenprobleme
68050 Probabilistik und Monte-Carlo-Methoden
68320 Modulationsgleichungen
68420 Deep learning for NLP
68720 Human-Computer Interaction
69160 Einführung in die Materialwissenschaft und Werkstofftechnik
69460 Computational contact mechanics
70050 Numerische Strömungsmechanik
70060 Simulation verdünnter Gase und Plasmen
70090 Battery modelling and Energy Management
70400 Modellierung, Analyse und Entwurf neuer Roboterkinematiken
71910 Seminar zu Mehrphasenströmungen
71940 Additive Fertigungsverfahren
72790 Risiko, Robustheit und Resilienz für Bau- und Umweltingenieure
72940 Introduction to Neuromechanics
72970 Systembiologie
73390 Computational Methods for Quantitative Finance
74370 Methoden der Simulationstechnik
74980 Computational Dynamics for Robotics
75870 Metals and Computational Materials Science
77920 Deep Learning
78900 Introduction to Modern Cryptography
79100 Deep Learning for Speech and Language Processing
79250 Variational Methods in Structural Dynamics
79370 Spectral Methods for Differential Equations in Computational Mechanics
Modul: 10030 Architektur von Anwendungssystemen

2. Modulkürzel: 052010002
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Leymann

9. Dozenten: Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 100301 Vorlesung Grundlagen der Architektur von Anwendungssystemen
- 100302 Übung Grundlagen der Architektur von Anwendungssystemen

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>10031 Architektur von Anwendungssystemen (PL), Schriftlich, 60 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[10031] Architektur von Anwendungssystemen (PL), schriftliche Prüfung, 60 Min., Gewicht: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

Vorlesungen mit begleitenden Übungen

20. Angeboten von:

Architektur von Anwendungssystemen
Modul: 10040 Bildsynthese

2. Modulkürzel: 051900012

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Moduldauer: Einsemestrig

6. Turnus: Sommersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Thomas Ertl

9. Dozenten: Thomas Ertl
 Daniel Weiskopf

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
 - Modul 10060 Computergraphik

12. Lernziele:

13. Inhalt:
 In dieser Vorlesung werden die folgenden Themen behandelt:
 - Grafik Hardware und APIs, OpenGL
 - Texturen, prozedurale Modelle
 - Schattenberechnungen
 - Szenengraphen, Culling, Level-of-Detail Verfahren
 - Physikalisch-basierte Beleuchtungsberechnung, Fotorealistische Bildsynthese
 - Lokale Beleuchtungsmodelle
 - Raytracing, Monte-Carlo Methoden
 - Radiosity
 - Bild-basiertes Rendering

14. Literatur:
 - Literatur, siehe Webseite zur Veranstaltung
 - Tomas Akenine-Möller, Eric Haines: Real-Time Rendering, 2002
15. Lehrveranstaltungen und -formen:

- 100402 Übung Bildsynthese
- 100401 Vorlesung Bildsynthese

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- 10041 Bildsynthese (PL), Mündlich, 30 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Praktische Informatik (Dialogsysteme)
Modul: 10080 Datenbanken und Informationssysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bernhard Mitschang

9. Dozenten: Bernhard Mitschang, Holger Schwarz, Peter Reimann

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

- Anwendungsprogrammierschnittstelle
- Externspeicherverwaltung
- DBS-Pufferverwaltung
- Speicherungsstrukturen und Zugriffspfadstrukturen
- Anfrageverarbeitung und Anfrageoptimierung
- Transaktionsverarbeitung, Synchronisation
- Logging und Recovery.

14. Literatur:

Weitere Literatur wird in der Vorlesung bekanntgegeben.

15. Lehrveranstaltungen und -formen:
• 100802 Übung Datenbanken und Informationssysteme
• 100801 Vorlesung Datenbanken und Informationssysteme

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 10081 Datenbanken und Informationssysteme (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
• Prüfungsvorleistung: Modalitäten werden in der ersten Vorlesung angegeben

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Datenbanken und Informationssysteme
Modul: 10110 Grundlagen der Künstlichen Intelligenz

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint
9. Dozenten: Daniel Hennes
 Marc Toussaint
 Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972EiO2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972EiO2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
 - Modul 10190 Mathematik für Informatiker und Softwaretechniker

12. Lernziele:
 Der Student / die Studentin beherrscht die Grundlagen der Künstlichen Intelligenz, kann Probleme der KI selbständig einordnen und mit den erlernten Methoden und Algorithmen bearbeiten.

13. Inhalt:
 • Intelligenz
 • Agentenbegriff
 • Problemlösen durch Suchen, Suchverfahren
 • Probleme mit Rand- und Nebenbedingungen
 • Spiele
 • Aussagen- und Prädikatenlogik
 • Logikbasierte Agenten, Wissensrepräsentation
 • Inferenz
 • Planen
 • Unsicherheit, probabilistisches Schließen
 • Probabilistisches Schließen über die Zeit
 • Entscheidungstheorie

14. Literatur:
 • S. Russell, P. Norvig, Künstliche Intelligenz: Ein Moderner Ansatz, 3. Aufl., 2012

15. Lehrveranstaltungen und -formen:
 • 101101 Vorlesung Grundlagen der Künstlichen Intelligenz
 • 101102 Übung Grundlagen der Künstlichen Intelligenz

16. Abschätzung Arbeitsaufwand:
 • 10111 Grundlagen der Künstlichen Intelligenz (PL), Schriftlich, 90 Min., Gewichtung: 1
 • Vorleistung (USL-V), Schriftlich oder Mündlich
 • 10111 Grundlagen der Künstlichen Intelligenz (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0 Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben
 • Prüfungsvorleistung Vorlesung (USL-V), schriftlich, eventuell mündlich
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td>Maschinelles Lernen und Robotik</td>
</tr>
</tbody>
</table>
Modul: Modellbildung und Simulation

2. Modulkürzel: 051240010
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dirk Pflüger

9. Dozenten: Miriam Mehl
Stefan Zimmer
Dirk Pflüger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
• Modul 10190 Mathematik für Informatiker und Softwaretechniker
• Modul 10240 Numerische und Stochastische Grundlagen der Informatik

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 101201 Vorlesung Modellbildung und Simulation
• 101202 Übung Modellbildung und Simulation

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
10121 Modellbildung und Simulation (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
18. Grundlage für ...

19. Medienform:

20. Angeboten von: Simulation Software Engineering
Modul: 10250 Parallele Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Sven Simon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Sven Simon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Erfahrungen aus dem Bereich Technische Informatik

12. Lernziele: Grundlegende Kenntnisse im Bereich paralleler Systeme, z.B. Multi-Core CPUs und deren Programmierung.

13. Inhalt:
- Die Entwicklung vom klassischen Mikroprozessor zur Multi-Core CPU-Programmierung paralleler Rechnersysteme
- Systolische Arrays, massiv parallele Systeme
- Parallele Systeme aus verschiedenen Anwendungsbereichen: ausgewählte Fallbeispiele

15. Lehrveranstaltungen und -formen:
- 683301 Vorlesung Auflagenmodul 1: Linguistik- und CL-Grundlagen für ComputerlinguistInnen
- 102501 Vorlesung Parallele Systeme
- 102502 Übung Parallele Systeme

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 68331 Auflagenmodul 1: Linguistik- und CL-Grundlagen für ComputerlinguistInnen (USL), Mündlich, 20 Min., Gewichtung: 1
- 10251 Parallele Systeme (LBP), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Parallele Systeme
Modul: 10660 Fluidmechanik I

2. Modulkürzel: 021420001
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Holger Class

9. Dozenten: Holger Class

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Simulation Technology, PO 972-2013, ➔ Auflagen
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Auflagen

11. Empfohlene Voraussetzungen:

 Technische Mechanik
 • Einführung in die Statik starrer Körper
 • Einführung in die Elastostatik und Festigkeitslehre
 • Einführung in die Mechanik inkompressibler Fluide

 Höhere Mathematik
 • Partielle Differentialgleichungen
 • Vektoranalysis
 • Numerische Integration

12. Lernziele:

 Die Studierenden besitzen grundlegende Kenntnisse über die Gesetzmäßigkeiten realer und idealer Fluidströmungen sowie der Hydrostatik und der Kinematik. Sie können Erhaltungssätze formulieren und diese auf praxisnahe Fragestellungen anwenden. Darüber hinaus erarbeiten sie sich detaillierte Kenntnisse in der Rohrströmung und der Strömung in Gerinnen und lernen, diese Kenntnisse für die genannten Anwendungen einzusetzen.

13. Inhalt:

 Einführung in die Fluidmechanik
 • Ruhende und gleichförmig bewegte Fluide (Hydrostatik)
 • Erhaltungssätze am Kontrollvolumen formuliert
 • Erhaltungssätze für infinitesimale Fluidelemente / Strömungsdifferentialgleichungen
- Grenzschichttheorie
- Rohrströmungen
- Reibungsfreie und reibungsbehaftete Rohrströmungen
- Stationäre und instationäre Rohrströmungen
 - Gerinneströmungen
- Abflussdiagramme
- Schießender und strömender Abfluss
- Abflusskontrolle
- Normalabfluss und ungleichförmiger Abfluss
- Überströmung von Bauwerken
- Flachwassergleichungen
- Charakteristiken

14. Literatur:
- Helmig, R., Class, H.: Grundlagen der Hydromechanik, Shaker Verlag, Aachen, 2005
- Truckenbrodt, E.: Fluidmechanik, Springer Verlag, 1996

15. Lehrveranstaltungen und -formen:
- 106601 Vorlesung Fluidmechanik I
- 106602 Übung Fluidmechanik I
- 106603 Laborübung Fluidmechanik I

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: (6 SWS) 84 h
 - Selbststudium (1,2h pro Präsenzstunden): 100 h
 - Gesamt: 184 h (ca. 6 LP)

17. Prüfungsnummer/n und -name:
- 10661 Fluidmechanik I (PL), Schriftlich, 120 Min., Gewichtung: 1
 - Schriftliche Prüfungsvorleistung/ Scheinklausur

18. Grundlage für ...:
- Fluidmechanik II

19. Medienform:
- Entwicklung der Grundlagen als Tafelanschrieb, Lehrfilme zur Verdeutlichung fluidmechanischer Zusammenhänge; zur Vorlesung und Übung stehen web-basierte Unterlagen zum vertiefenden Selbststudium zur Verfügung.

20. Angeboten von:
- Hydromechanik und Hydrosystemmodellierung
Modul: 10800 Finite Elemente für Tragwerksberechnungen

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Bischoff
9. Dozenten: Malte von Scheven
M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule
11. Empfohlene Voraussetzungen: HM I-III , Werkstoffe, Technische Mechanik I, Baustatik
12. Lernziele:

13. Inhalt:
• Direkte Steifigkeitsmethode
• isoparametrisches Konzept
• variationelle Formulierung von finiten Elementen
• Anforderungen an die Ansätze, Konvergenzbedingungen
• finite Elemente für Fachwerke, Balken, Scheiben und Platten
• Locking und alternative FE-Formulierungen
• Grundlagen der Modellbildung, mathematisches und numerisches Modell
• Idealisierung von Tragwerken
• Beurteilung und Interpretation von Rechenergebnissen
• Singularitäten
• diskrete Modelle, Freiheitsgrade, Kopplungsbedingungen bei komplexen Systemen
• Einfluss von Approximationsfehlern, Wechselwirkungen zwischen mathematischem und numerischem Modell

14. Literatur:
Vorlesungsmanuskript "Finite Elemente für Tragwerksberechnungen", Institut für Baustatik und Baudynamik

15. Lehrveranstaltungen und -formen:
• 108001 Vorlesung Finite Elemente für Tragwerksberechnungen
• 108002 Übung Finite Elemente für Tragwerksberechnungen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 10801 Finite Elemente für Tragwerksberechnungen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich
Vorleistung: 3 bestandene Hausübungen (unbenotet)

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 10870 Hydrologie

2. Modulkürzel: 021430001
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Jochen Seidel
9. Dozenten: Jochen Seidel
Andras Bardossy

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden verstehen die Grundlagen hydrologischer Prozessabläufe (z.B. Ablussbildung, -konzentration), deren Beschreibung sowie die unterschiedlichen Konzeptionen und Anwendungsgebiete hydrologischer Modelle. Damit können sie einfache Modelle erstellen, deren Parameter bestimmen und schließlich die Möglichkeiten und Grenzen der Modelle bzw. Modellkonzeptionen einschätzen.

13. Inhalt:
Grundlagen:
• Wasserkreislauf, Wasseraushalt, Einzugsgebiet
• Niederschlag
• Verdunstung
• Versickerung, Infiltration
• Grundwasser
• Abfluss, Wasserstands-Durchfluss-Beziehung,
• Ganglinienanalyse
• Grundlagen der Speicherwirtschaft
• Kontinuitätsgleichung der Speicherung
• Hochwasserrückhalt, Seeretention
• Bemessung von Hochwasserrückhaltebecken
• Vorratsspeicherung
• Grundlagen zur Modellierung von Flussgebieten
• Aufbau von Einzugsgebietsmodellen, Ablussbildung und Abflusskonzentration, Basisabfluss, effektiver Niederschlag
• Grundlagen und Methoden der Systemhydrologie,
• Einheitsganglinie
• Grundkonzeptionen hydrologischer Modelle
• Translation und Retention
• Flutplan-Verfahren, Zeitflächen-Diagramm,
• Retentionsmodelle
• Verknüpfung verschiedener Modellkonzeptionen in Einzugsgebiets-Modellen
• Wasserlaufmodelle, Ablauf von Hochwasserwellen in Gerinnen, Muskingum-Modell
• Physikalisch basierte hydrologische Modelle
14. Literatur:
- Skript zur Vorlesung
- Fohrer, Nicola (Hrsg.): "Hydrologie", UTB 2016

15. Lehrveranstaltungen und -formen:
- 108702 Übung Hydrologie
- 108701 Vorlesung Hydrologie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium / Nacharbeitszeit: 112 h
Gesamt: 168 h

17. Prüfungsnummer/n und -name:
10871 Hydrologie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Hydrologie und Geohydrologie
Modul: 10910 Biologie und Chemie für Bauingenieure

2. Modulkürzel: 021221301
3. Leistungspunkte: 6 LP
4. SWS: 6
5. Modul dauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Karl Heinrich Engesser
9. Dozenten: Michael Koch
Karl Heinrich Engesser
Franz Brümmer
11. Empfohlene Voraussetzungen: KEINE,
Bemerkungen:- zur inhaltlichen und terminlichen Durchführung siehe die Veranstaltungen des Modules 41180 Umweltbiologie I. im Bachelor UMW (Umweltschutztechnik)
12. Lernziele:
Einführung in der Biologie: Die Studierenden haben verstanden:
Was sind Mikroorganismen? Wie sind Bakterien aufgebaut?
Tutorium Mikrobiologie für Ingenieure Die Studierenden sind zur Rekapitulierung des Vorlesungsstoffs anhand des Fragenkatalogs befähigt und sind auf die Prüfung vorbereitet
Vorlesung Chemie für Bauingenieure Die Studierenden haben Kenntnis über die Grundlagen der allgemeinen, anorganischen und organischen Chemie, im Besonderen über: die Struktur von Atomen und Molekülen, den Aufbau des Periodensystems der Elemente, die chemische Bindung und chemische Reaktionen, die Eigenschaften von Wasser und dessen Inhaltsstoffs, die Zusammensetzung von Luft, die Chemie und die Umweltgesetze wichtiger Baustoffe
Vorlesungen Mikrobiologie für Ingenieure und Chemie für Bauingenieure II: Die Studierenden erkennen wo bauingenieurliche Aktivitäten auf umweltchemische Probleme treffen. Sie erkennen Zusammenhänge zwischen dem Einsatz verschiedener Stoffe und Eingriffen in die Umwelt mit den daraus resultierenden Folgen für Wasser, Luft und Boden
13. Inhalt:
14. Literatur:
• Vorlesungsunterlagen
• Folien der Vorlesungspräsentation als Download im pdf Format
• Klausuraufgabensammlung, Übungen zur Kontrolle des Selbststudiums
• Fuchs/Schlegel, Allgemeine Mikrobiologie
• Benedix, Roland, Bauchemie - Einführung in die Chemie für Bauingenieure, 2. Aufl., Teubner, Stuttgart, Leipzig, Wiesbaden
15. Lehrveranstaltungen und -formen:
- 109101 Vorlesung Einführung in die Biologie
- 109102 Vorlesung Mikrobiologie für Ingenieure I
- 109103 Vorlesung Chemie für Bauingenieure I
- 109104 Vorlesung Chemie für Bauingenieure II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Selbststudium / Nacharbeitszeit: 117 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
10911 Biologie und Chemie für Bauingenieure (PL), Schriftlich, 120 Min., Gewichtung: 1
- Anteil *Einführung in die Biologie*: 0,17
- Anteil *Mikrobiologie für Ingenieure I*: 0,33
- Anteil *Chemie für Bauingenieure I*: 0,33
- Anteil *Chemie für Bauingenieure II*: 0,17

18. Grundlage für ...

19. Medienform:
Vorlesung mit Leinwandpräsentation Skripte und Klausursammlung ist als Download verfügbar

20. Angeboten von:
Biologische Abluftreinigung
Modul: 10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure

3. Leistungspunkte:	3 LP	6. Turnus:	Sommersemester
4. SWS:	2	7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof. Dr.-Ing. Fritz Berner		
9. Dozenten:	Cornelius Väth		
11. Empfohlene Voraussetzungen:	Keine		
13. Inhalt:	• Unternehmen und Unternehmenszusammenschlüsse		
 • Rechtsformen
 • Handelsregister
 • Organisationsformen von Unternehmen
 • Produktion und Leistungserstellungsprozess
 • Fertigung
 • Produktpolitik
 • Personal
 • Finanzwirtschaftlicher Prozess
 • Zahlungsmittel
 • Investitionsrechnung
 • Rechnungswesen
 • Buchführung
 • Jahresabschluss (Bilanz und GuV)
 • Ausgewählte Kennzahlen |
| 14. Literatur: | • Olfert/Rahn, Einführung in die Betriebswirtschaftslehre |
| 15. Lehrveranstaltungen und -formen: | • 109702 Übung Grundlagen der Betriebswirtschaftslehre
 • 109701 Vorlesung Grundlagen der Betriebswirtschaftslehre |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
 Selbststudium / Nacharbeitszeit: 44 h
 Gesamt: 65 h |
17. Prüfungsnummer/n und -name:	10971 Grundlagen der Betriebswirtschaftslehre für Ingenieure (PL), Schriftlich, 60 Min., Gewichtung: 1
18. Grundlage für ...:	BWL I: Produktion, Organisation, Personal BWL II: Rechnungswesen und Finanzierung BWL III: Marketing und Einführung in die Wirtschaftsinformatik
19. Medienform:	
20. Angeboten von:	Baubetriebslehre
Modul: 11220 Technische Thermodynamik I + II

3. Leistungspunkte: 12 LP 6. Turnus: Wintersemester
4. SWS: 8 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972EiO2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
Mathematische Grundkenntnisse in Differential- und Integralrechnung

12. Lernziele:
Die Studierenden
• beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.
• sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraktion durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.
• sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.
• können Berechnungen zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichten durchführen und verstehen die Bedeutung energetischer und entropischer Einflüsse auf diese Gleichgewichtslagen.
• Die Studierenden sind durch das erworbene Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:
Thermodynamik ist die allgemeine Theorie energie- und stoffumwandelnder Prozesse. Diese Veranstaltung vermittelt die Inhalte der systemanalytischen Wissenschaft Thermodynamik im Hinblick auf technische Anwendungsfelder. Im Einzelnen:
• Grundgesetze der Energie- und Stoffumwandlung
• Prinzip der thermodynamischen Modellbildung
• Prozesse und Zustandsänderungen
• Thermische und kalorische Zustandsgrößen
• Zustandsgleichungen und Stoffmodelle
• Bilanzierung der Materie, Energie und Entropie von offenen, geschlossenen, stationären und instationären Systemen
• Energiequalität, Dissipation und Exergiekonzept
• Ausgewählte Modellprozesse: Kreisprozesse, Reversible Prozesse, Dampfkraftwerk, Gasturbine, Kombi-Kraftwerke, Verbrennungsmotoren etc.
• Gemische und Stoffmodelle für Gemische: Verdampfung und Kondensation, Verdunstung und Absorption
• Phasengleichgewichte und chemisches Potenzial
• Bilanzierung bei chemischen Zustandsänderungen

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 112202 Vortragungsübung Technische Thermodynamik I
• 112204 Vorlesung Technische Thermodynamik II
• 112205 Vortragungsübung Technische Thermodynamik II
• 112201 Vorlesung Technische Thermodynamik I
• 112206 Gruppenübungen Technische Thermodynamik II
• 112203 Gruppenübungen Technische Thermodynamik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 112 Stunden
Selbststudium: 248 Stunden
Summe: 360 Stunden

17. Prüfungsnummer/n und -name:
• 11221 Technische Thermodynamik I + II (ITT) (PL), Schriftlich, 180 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: Zwei bestandene Zulassungsklausuren

18. Grundlage für ... :

19. Medienform:
Der Veranstaltungssinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.

20. Angeboten von:
Thermodynamik und Thermische Verfahrenstechnik
Modul: 11320 Thermodynamik der Gemische I

2. Modulkürzel: 042100001
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

M.Sc. Simulation Technology, PO 972EiO2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Inhaltlich: Thermodynamik I / II
Formal: keine

12. Lernziele: Die Studierenden
• besitzen ein eingehendes Verständnis der Phänomenologie der Phasengleichgewichte von Mischungen und verstehen, wie diese mit Zustandsgleichungen und GE-Modellen modelliert werden.
• sind in der Lage die Grundlagen von nichtidealem Verhalten realer, fluider Gemische zu erkennen und deren Einflüsse auf thermodynamische Größen zu identifizieren und zu interpretieren.
• kennen und verstehen die Besonderheiten der thermodynamischen Betrachtung von Gemischen mehrerer Komponenten und können damit verbundene Konsequenzen für technische Auslegung von thermischen Trenneinrichtungen identifizieren.
• können eine geeignete Berechnungsmethode zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichten auswählen und diese Berechnungen durchführen.
• sind durch das erworbbene Verständnis der grundlegenden Modellierung thermodynamischer Nichtidealitäten zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:
• Grundlagen: Einstufige thermische Trennprozesse, Gleichgewicht, partielle molare Zustandsgrößen
• Thermische und kalorische Eigenschaften von Mischungen: Exzessvolumen, Exzessenthapie, Thermische Zustandsgleichungen
• Phasengleichgewichte (Phänomenologie): Phasendiagramme, Zweiphasen- und Mehrphasengleichgewichte, Azeotropie, Heteroazeotropie, Hochdruckphasengleichgewichte
• Phasengleichgewichte (Berechnung): Fundamentalgleichung, Legendre-Transformation, Gibbssche Energie, Fugazität,
Fugazitätskoeffizient, Aktivität, Aktivitätskoeffizient, GE-Modelle, Dampf-Flüssigkeits Gleichgewicht (Raoultsches Gesetz), Gaslöslichkeit (Henrysches Gesetz), Flüssig-Flüssig-, Fest-Flüssig-, Hochdruckgleichgewichte, Stabilität von Mischungen
- Reaktionsgleichgewichte für unterschiedliche Referenzzustände, Standardbildungsenergien und Temperaturverhalten

14. Literatur:
- J. Gmehling, B. Kolbe, Thermodynamik, VCH Verlagsgesellschaft mbH, Weinheim
- J.W. Tester, M. Modell, Thermodynamics and its applications, Prentice-Hall, Englewoods Cliffs-S.M. Walas, Phase Equilibria in Chemical Engineering, Butterworth
- A. Pfennig, Thermodynamik der Gemische, Springer-Verlag, Berlin

15. Lehrveranstaltungen und -formen:
- 113201 Vorlesung Thermodynamik der Gemische
- 113202 Übung Thermodynamik der Gemische

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11321 Thermodynamik der Gemische (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
- Thermische Verfahrenstechnik II Nichtgleichgewichts-Thermodynamik: Diffusion und Stofftransport

19. Medienform:
- Entwicklung des Vorlesungsinhalts als Tafelanschrieb, ergänzend werden Beiblätter ausgegeben.

20. Angeboten von:
- Thermodynamik und Thermische Verfahrenstechnik
Modul: 11820 Numerische Mathematik 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Christian Rohde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Mathematik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Auflagen |
| 11. Empfohlene Voraussetzungen: | Zulassungsvoraussetzung: Analysis 1, Analysis 2
Inhaltliche Voraussetzung: LAAG 1, LAAG2, Computermathematik |
• Potenzial und Grenzen numerischer Simulationstechniken.
• Korrektes Formulieren und selbständiges Lösen mathematischer Probleme.
• Abstraktion und mathematische Argumentation. |
| 13. Inhalt: | Numerische Behandlung der Grundprobleme aus der Analysis:
• Approximation: Polynominterpolation, Splineapproximation, diskrete Fouriertransformation.
• Integration: Quadraturverfahren (Newton-Cotes, Gauß-Quadratur, adaptive Verfahren).
• Nichtlineare Gleichungen: Fixpunkt- und Newtonverfahren.
• Optimierung: Optimierung unter Nebenbedingungen, Ausgleichsprobleme, Abstiegsverfahren. |
| 15. Lehrveranstaltungen und -formen: | • 118201 Vorlesung Numerische Mathematik I
• 118202 Übungen zur Vorlesung Numerische Mathematik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63h
Selbststudium/Nacharbeitzeit: 187h
Prüfungsvorbereitung: 20h
Gesamt: 270h |
| 17. Prüfungsnr/n und -name: | • 11821 Numerische Mathematik 1 (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
• V Vorleistung (USL-V), Schriftlich oder Mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Angewandte Mathematik |
Modul: 11830 Wahrscheinlichkeitstheorie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Zulassungsvoraussetzung: Analysis 1, Analysis 2 Inhaltliche Voraussetzung: LAAG 1, LAAG 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Kenntnis grundlegender wahrscheinlichkeitstheoretischer Konzepte und Fähigkeit, diese in den Anwendungen einzusetzen. • Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen. • Abstraktion und mathematische Argumentation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 118301 Vorlesung Wahrscheinlichkeitstheorie • 118302 Übungen zur Vorlesung Wahrscheinlichkeitstheorie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 11831 Wahrscheinlichkeitstheorie (PL), Schriftlich, 120 Min., Gewichtung: 1 • V Vorleistung (USL-V), Schriftlich oder Mündlich Übungsschein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Mathematische Stochastik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11980 Biophysikalische Chemie I

4. SWS: 3 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Robin Ghosh
9. Dozenten: Robin Ghosh
11. Empfohlene Voraussetzungen: Vorkurs Mathematik
12. Lernziele: • Die Studierenden sollen die Grundlagen der Thermodynamik für einfache und komplexe Systeme kennen lernen. Eine Besonderheit der Vorlesung ist die Fokussierung auf Themen und Beispiele, die von biochemischer und molekularbiologischer als auch biotechnologischer Relevanz sind.
• Die Studierenden müssen detaillierte Konzentrations- und thermodynamische Berechnungen durchführen
15. Lehrveranstaltungen und -formen: • 119801 Vorlesung Biophysikalische Chemie I
• 119802 Übung Biophysikalische Chemie I
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56h
Selbststudium/Nacharbeitszeit:118h
Gesamt: 174h
17. Prüfungsnummer/n und -name: 11981 Biophysikalische Chemie I (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Bioenergetik
Modul: 12010 Bioinformatik und Biostatistik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Jürgen Pleiss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Pleiss</td>
<td>Jürgen Dippon</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Voraussetzungen für Teilmodul Bioinformatik 1: Module Biochemie und Molekularbiologie</td>
<td>Voraussetzungen für Teilmodul Biostatistik 1: Module Mathematik</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Bioinformatik 1: • Sequenz- und Strukturdatenbanken • Sequenzvergleich und phylogenetische Analyse • Patterns, Profile und Domänen • Visualisierung und Analyse von Proteinstrukturen</td>
<td>Biostatistik 1: • Zufallsvariablen und Verteilungen • Erwartungswert und Varianz • Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Wird in der Vorlesung bekannt gegeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 120101 Vorlesung Bioinformatik 1</td>
<td>• 120102 Übung Bioinformatik 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 120104 Übung Biostatistik 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 120103 Vorlesung Biostatistik 1</td>
<td></td>
</tr>
</tbody>
</table>

| | Selbststudium: 112 Stunden |
| | Summe: 180 Stunden |

Stand: 13. Dezember 2018
| 17. Prüfungsnummer/n und -name: | • 12011 Bioinformatik und Biostatistik I (PL), Schriftlich, 120 Min., Gewichtung: 1
• 12012 Bioinformatik und Biostatistik I - Übungen (USL), Schriftlich, Gewichtung: 1 |
18. Grundlage für ... :	Bioinformatik und Biostatistik II
19. Medienform:	
20. Angeboten von:	Technische Biochemie
Modul: 12030 Systemdynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Pflichtmodule Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Einführung mathematischer Modelle, vertiefte Darstellung zur Analyse im Zeitbereich, vertiefte Darstellung zur Analyse im Frequenzbereich/Bildbereich, Integraltransformationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsumdrucke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>120301 Vorlesung Systemdynamik 120302 Übung Systemdynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12031 Systemdynamik (PL), Schriftlich, 90 Min., Gewichtung: 1 Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht-elektronischen Hilfsmittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td>Simulationstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemdynamik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12040 Einführung in die Regelungstechnik

4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer Matthias Müller
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016,
 ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➔ Zusatzmodule
11. Empfohlene Voraussetzungen: HM I-III, Grundlagen der Systemdynamik
12. Lernziele: Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese
einschleifiger linearer Regelkreise im Zeit- und Frequenzbereich
 • können auf Grund theoretischer Überlegungen Regler und
 Beobachter für dynamische Systeme entwerfen und validieren
 • können entworfene Regler und Beobachter an praktischen
 Laborversuchen implementieren
13. Inhalt:
 Vorlesung:
 Systemtheoretische Konzepte der Regelungstechnik,
 Stabilität, Beobachtbarkeit, Steuerbarkeit, Robustheit,
 Reglerentwurfsverfahren im Zeit- und Frequenzbereich,
 Beobachterentwurf
 Praktikum:
 Implementierung der in der Vorlesung Einführung in die
 Regelungstechnik erlernten
 Reglerentwurfsverfahren an praktischen Laborversuchen
 Projektwettbewerb:
 Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen
 Zeit in Gruppen
14. Literatur:
 • Lunze, J.: Regelungstechnik 1. Springer Verlag, 2004
 • Horn, M. und Dourdoumas, N. Regelungstechnik., Pearson
15. Lehrveranstaltungen und -formen:
 • 120401 Vorlesung Einführung in die Regelungstechnik
 • 120402 Gruppenübung Einführung in die Regelungstechnik
 • 120403 Praktikum Einführung in die Regelungstechnik
 • 120404 Projektwettbewerb Einführung in die Regelungstechnik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 63h

Stand: 13. Dezember 2018
Selbststudiumszeit / Nacharbeitszeit: 117h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
• 12041 Einführung in die Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1
• 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), Sonstige, Gewichtung: 1
• 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), Sonstige, Gewichtung: 1

18. Grundlage für ...:
Mehrgrößenregelung

19. Medienform:

20. Angeboten von:
Systemtheorie und Regelungstechnik
Modul: 12130 Strömungslehre I

2. Modulkürzel: 060100009
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 5
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ewald Krämer
9. Dozenten: Ewald Krämer
11. Empfohlene Voraussetzungen: HM I-III, Physik und Grundlagen der Elektrotechnik, Technische Mechanik I-II
12. Lernziele:
Die Studierenden
• kennen die relevanten physikalischen Größen, die die Eigenschaften, Strömungszustände und Zustandsänderungen von Fluiden beschreiben
• können die fundamentalen Zusammenhänge und Abhängigkeiten dieser phys. Größen für einfache Strömungsvorgänge, sowie strömungsphänomenologische Besonderheiten inkompressibler Strömungen erkennen und beschreiben
• kennen die drei fundamentalen Erhaltungsgleichungen der Strömungsmechanik und deren Gültigkeitsbereiche sowie die zugrunde liegenden physikalischen Prinzipien
• kennen die aus den allg. Gleichungen für Massen- und Impulserhaltung abgeleiteten Näherungsbeziehungen und die Annahmen, die zur den jeweiligen Vereinfachungen geführt haben
• sind in der Lage, einfache inkompressible Strömungsprobleme zu berechnen, indem sie abschätzen, welche Näherungen/Annahmen getroffen werden können, die passenden Gleichungen auswählen und diese auf das Strömungsproblem anwenden.
• sind in der Lage, dank des erworbenen physikalischen Verständnisses, Ergebnisse kritisch zu hinterfragen und auf Plausibilität zu überprüfen.

13. Inhalt:
• Einführung in die Strömungslehre: Grundbegriffe, Definitionen, Eigenschaften von Fluiden, Zustandsgrößen und Zustandsänderungen, math. Grundlagen
• Hydrostatik und Aerostatik
• Grundlagen der Fluidynamik: Eulersche und Lagrangesche Betrachtungsweise, substantielle Ableitung, Darstellungsformen
• Herleitung der Erhaltungssätze für Masse und Impuls: Integrale und differentielle Form, Stromfaden und Stromröhre, Reynoldssches Transporttheorem
• Anwendung der Erhaltungssätze für inkompressible Fluide an konkreten Beispielen
• Impulssatz für reibungsfreie Strömung: Herleitung der Eulergleichungen, Herleitung und Anwendung der Bernoulligleichung
• Impulssatz für reibungsbehaftete Strömungen: Herleitung der Navier-Stokes-Gleichungen, Lösungen für lineare Fälle, Ähnlichkeitstheorie, Grenzschichtgleichungen, laminare Plattengrenzschicht
• Turbulente Strömungen: Umschlag laminar / turbulent, Herleitung der Reynoldsgleichungen, mittlere Geschwindigkeitsverteilung in Wandnähe, turbulente Plattengrenzschicht
• Rohrströmung mit Verlusten
• Strömungsablösung
• Technische Anwendungen: Diffusor, Düse, Krümmer

14. Literatur:
• Schlichting, H.: Grenzschichttheorie, 8. Aufl., Braun, 1982
• Skript, Foliensatz

15. Lehrveranstaltungen und -formen:
• 121301 Vorlesung Strömungslehre I
• 121302 Vortragsübungen Strömungslehre I
• 121303 Tutorium Strömungslehre I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 55h
Selbststudium/Nacharbeitszeit: 125h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
12131 Strömungslehre I (PL), Schriftlich, 120 Min., Gewichtung: 1 (40 min Kurzfragen ohne Hilfsmittel, 80 min Aufgaben mit Hilfsmitteln)

18. Grundlage für ... :

19. Medienform:
PowerPoint, Overhead-Projektor, Visualizer, Kurzvideos, praktische Versuche.

20. Angeboten von:
Aerodynamik von Luft- und Raumfahrzeugen
Modul: 12250 Numerische Methoden der Dynamik

2. Modulkürzel: 072810005
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard

9. Dozenten: Peter Eberhard

11. Empfohlene Voraussetzungen: Grundlagen in Mathematik und Mechanik

13. Inhalt:
 • Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme
 • Grundlagen der numerischen Mathematik: Numerische Prinzipien, Maschinenzahlen, Fehleranalyse
 • Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem
 • Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
 • Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren)
 • Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich
 • 2 Versuche aus dem Angebot des Instituts (u.a. Virtual Reality, Hardware-in-the-loop, Schwingungsmessung), Pflicht falls als Kompetenzfeld gewählt, ansonsten freiwillige Teilnahme

14. Literatur:
 • Vorlesungsmitschrieb
 • Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
 • 122501 Vorlesung Numerische Methoden der Dynamik
 • 122502 Übung Numerische Methoden der Dynamik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit bzw. Versuche: 138 h

Stand: 13. Dezember 2018
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>12251 Numerische Methoden der Dynamik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tablet-PC, Computervorführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Technische Mechanik</td>
</tr>
</tbody>
</table>
Modul: 12260 Mehrgrößenregelung

2. Modulkürzel: 074810020
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik (oder äquivalente Vorlesung)
12. Lernziele:
 - können die Konzepte, die in der Vorlesung Einführung in die Regelungstechnik vermittelt werden, auf Mehrgrößensysteme anwenden,
 - haben umfassende Kenntnisse zur Analyse und Synthese linearer Regelkreise mit mehreren Ein- und Ausgängen im Zeit- und Frequenzbereich,
 - können aufgrund theoretischer Überlegungen Regler für dynamische Mehrgrößensysteme entwerfen und validieren.

13. Inhalt:
 Modellierung von Mehrgrößensystemen:
 - Zustandsraumdarstellung,
 - Übertragungsmatrizen.

 Analyse von Mehrgrößensystemen:
 - Ausgewählte mathematische Grundlagen aus der Funktionalanalysis und linearen Algebra,
 - Stabilität, invariante Unterräume,
 - Singulärwerte-Diagramme,
 - Relative Gain Array (RGA).

 Synthese von Mehrgrößensystemen:
 - Reglerentwurf im Frequenzbereich: Verallgemeinertes Nyquist Kriterium, Direct Nyquist Array (DNA) Verfahren,
 - Reglerentwurf im Zeitbereich: Steuerungsinvarianz, Störentkopplung.

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 122601 Vorlesung Mehrgrößenregelung mit Übung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28h
 Selbststudiumsszeit / Nacharbeitszeit: 62h
 Gesamt: 90h

17. Prüfungsnummer/n und -name:
 12261 Mehrgrößenregelung (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...:
19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 12320 Technische Thermodynamik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Mathematische Grundkenntnisse in Differential- und Integralrechnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraktion durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden sind durch das erorbene Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 123201 Vorlesung Technische Thermodynamik I
- 123202 Vortragsübung Technische Thermodynamik I
- 123203 Gruppenübung Technische Thermodynamik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 12321 Technische Thermodynamik I (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
- Prüfungsvoraussetzung: USL-V (Details hierunten, Punkt V, Vorleistung).

18. Grundlage für ...

19. Medienform:
Der Veranstaltungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.

20. Angeboten von:
Thermodynamik und Thermische Verfahrenstechnik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsunterlagen im IILIAS, alte Prüfungsaufgaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzeit: 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13571 Werkzeugmaschinen und Produktionssysteme (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Medienmix: Präsentation, Tafelanschrieb, Videoclips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Werkzeugmaschinen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulsdauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | Prof. Jochen Wiedemann
Nils Widdecke |
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule |
| 11. Empfohlene Voraussetzungen: | Kenntnisse aus den Fachsemestern 1 bis 4 |
Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren. |
| 14. Literatur: | • Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
• Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005
| 15. Lehrveranstaltungen und -formen: | • 135901 Vorlesung Kraftfahrzeuge I + II
• 135902 Übung Kraftfahrzeuge I + II |
| 16. Abschätzung Arbeitsaufwand: | Vorlesung, Selbststudium |
| 17. Prüfungsnr/n und -name: | 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PPT-Präsentation |
| 20. Angeboten von: | Kraftfahrwesen |
Modul: 13780 Regelungs- und Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810070</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaier:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Frank Allgöwer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Frank Allgöwer, Christian Ebenbauer, Oliver Sawodny, Armin Lechler, Matthias Müller</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule

11. Empfohlene Voraussetzungen:
- HM I-III

12. Lernziele:
- können lineare dynamische Systeme analysieren,
- können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
- können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen.

13. Inhalt:

Vorlesung "Systemdynamische Grundlagen der Regelungstechnik":
- Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung

Vorlesung "Einführung in die Regelungstechnik":
- Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe, Vorfiter,...), Beobachterentwurf

Vorlesung "Steuerungstechnik mit Antriebstechnik":
- Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotersteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung, Darstellung und Lösung steuerungstechnischer Problemstellungen. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme

Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:
- Block 1: Systemdynamische Grundlagen der Regelungstechnik und Einführung in die Regelungstechnik
- Block 2: Systemdynamische Grundlagen der Regelungstechnik und Steuerungstechnik mit Antriebstechnik

Bemerkung 2 (Prüfungsanmeldung):
- Studierende der Erneuerbaren Energien müssen die Prüfung Systemdynamische Grundlagen der Regelungstechnik bei Univ.-Prof. Oliver Sawodny ablegen.
• Studierende anderer Studiengänge müssen die Prüfung Systemdynamische Grundlagen der Regelungstechnik bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:
Vorlesung "Systemdynamische Grundlagen der Regelungstechnik"
• Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999
• Unbehauen, R.: Systemtheorie 1. Oldenbourg 2002
• Lunze, J.: Regelungstechnik 1, Springer Verlag 2006

Vorlesung "Einführung in die Regelungstechnik"
• Lunze, J. Regelungstechnik 1. Springer Verlag, 2004

Vorlesung "Steuerungstechnik mit Antriebstechnik"
• Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
• 137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik
• 137803 Vorlesung Einführung in die Regelungstechnik
• 137804 Vorlesung Steuerungstechnik mit Antriebstechnik
• 137802 Vorlesung Systemdynamische Grundlagen der Regelungstechnik (Erneuerbare Energien, Verfahrenstechnik)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
• 13781 Systemdynamische Grundlagen der Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1
• 13782 Einführung in die Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1
• 13783 Steuerungstechnik mit Antriebstechnik (PL), Schriftlich, 60 Min., Gewichtung: 1

Ermittlung der Modulnote:
Block 1:
Systemdynamische Grundlagen der Regelungstechnik 50%
Einführung in die Regelungstechnik 50%
Block 2:
Systemdynamische Grundlagen der Regelungstechnik 50%
Steuerungstechnik mit Antriebstechnik 50%

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Systemtheorie und Regelungstechnik
Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

2. Modulkürzel: 041710001

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Modulsdauer: Einsemestrig

6. Turnus: Wintersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten

9. Dozenten: Prof. Dr.-Ing. Christian Bonten

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen, chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstarrung und Kraftübertragung der Kunststoffe
- Rheologie und Rheometrie der Polymerschmelze
- Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe, thermische, elektrische und weitere Eigenschaften, Methoden zur Beeinflussung der Polymereigenschaften, Alterung der Kunststoffe
- Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
- Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
- Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
- Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten, Fügetechnik
- Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
- Präsentation in pdf-Format
- C. Bonten: Kunststofftechnik - Einführung und Grundlagen, 2. Auflage, Hanser
- W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser
- W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>• 140101 Vorlesung Kunststofftechnik - Grundlagen und Einführung</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h |}
| 17. Prüfungsnummer/n und -name: | 14011 Kunststofftechnik - Grundlagen und Einführung (PL),
Schriftlich, 120 Min., Gewichtung: 1 |}
| 18. Grundlage für ... : | Charakterisierung von Polymeren und
KunststoffenFaserkunststoffverbundeFließeigenschaften von
Kunststoffschmelzen - Rheologie der KunststoffeKonstruieren mit
KunststoffenKunststoff-WerkstofftechnikKunststoffaufbereitung
und KunststoffrecyclingKunststoffe in der
MedizintechnikKunststoffverarbeitungstechnik (1 und 2)Simulation
in der KunststoffverarbeitungTechnologiemanagement für
Kunststoffprodukte |}
| 19. Medienform: | • Beamer-Präsentation
• Tafelanschriebe |}
| 20. Angeboten von: | Kunststofftechnik |
Modul: 14130 Kraftfahrzeugmechatronik I + II

4. SWS: 4 7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:
VL Kfz-Mech I:
• kraftfahrzeugspezifische Anforderungen an die Elektronik
• Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
• Motorelektronik (Zündung, Einspritzung)
• Getriebenelektronik
• Lenkung
• ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
• Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
• Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
• Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
• Systemarchitektur und Fahrzeugentwicklungsprozesse
• Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
• Rapid Prototyping (Simulink)
• Modellbasierte Funktionsentwicklung mit TargetLink
• Elektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 141302 Vorlesung Kraftfahrzeugmechatronik II
• 141301 Vorlesung Kraftfahrzeugmechatronik I
• 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
</tbody>
</table>
Modul: 14150 Leichtbau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Weihe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Weihe, Michael Seidenfuß</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11. Empfohlene Voraussetzungen: | • Einführung in die Festigkeitslehre
• Werkstoffkunde I und II |
| 13. Inhalt: | • Werkstoffe im Leichtbau
• Festigkeitsberechnung
• Konstruktionsprinzipien
• Stabilitätsprobleme: Knicken und Beulen
• Verbindungstechnik
• Zuverlässigkeit
• Recycling |
| 14. Literatur: | - Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft |
| 15. Lehrveranstaltungen und -formen: | • 141502 Leichtbau Übung
• 141501 Vorlesung Leichtbau |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium / Nachbearbeitung: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 14151 Leichtbau (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PPT auf Tablet PC, Animationen u. Simulationen |
| 20. Angeboten von: | Materialprüfung, Werkstoffkunde und Festigkeitslehre |
Modul: 14180 Numerische Strömungssimulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Eckart Laurien</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eckart Laurien</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch/physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 141801 Vorlesung und Übung Numerische Strömungssimulation • 141802 Praktikum Numerische Strömungssimulation</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzzeit: 45h + Nacharbeitszeit: 135h = 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14181 Numerische Strömungssimulation (PL), Schriftlich, 120 Min., Gewichtung: 1 Prüfung ohne Unterlagen, Verständnisfragen</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>practical work, modeling of two-phase flows, methods of computational fluid mechanics,</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>ppt-Folien (75 %), Tafel und Kreide (20 %), Computerdemonstration (5%), Manuskripte online</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Thermofluiddynamik</td>
</tr>
</tbody>
</table>
Modul: 14710 Funktionalanalysis

2. Modulkürzel: 080200005
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Moduldaeuer: Einsemestrig
6. Turnus: Unregelmäßig
7. Sprache: Deutsch/Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr. Timo Weidl
9. Dozenten: Guido Schneider
 Jürgen Pöschel
 Peter Lesky
 Timo Weidl
 Marcel Griesemer
 Jens Wirth
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972EiO2013,
 ➞ Wahlmodule
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Zusatzmodule
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule
 ➞ Zusatzmodule
 ➞ Wahlmodule
 ➞ Wahlmodule
 ➞ Wahlmodule
11. Empfohlene Voraussetzungen:
 Zulassungsvoraussetzung: Orientierungsprüfung
 Inhaltliche Voraussetzung: Analysis3, Höhere Analysis, Topologie
12. Lernziele:
 • Kenntnis und Umgang mit den Strukturen
 unendlichdimensionaler Räume.
 • Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet
 der Analysis, die als Grundlage des Verständnisses aktueller
 Forschungsthemen dienen.
13. Inhalt:
 Topologische und metrische Räume, Konvergenz, Kompaktheit,
 Separabilität, Vollständigkeit, stetige Funktionen, Lemma von
 Arzela-Ascoli, Satz von Baire und das Prinzip der gleichmäßigen
 Beschränktheit, normierte Räume, Hilberträume, Satz von Hahn
 und Banach, Fortsetzungs- und Trennungssätze, duale Räume,
 Reflexivität, Prinzip der offenen Abbildung und Satz vom abge-
 schlossenen Graphen, schwache Topologien, Eigenschaften
 der Lebesgue-Räume, verschiedene Arten der Konvergenz von
 Funktionenfolgen, Dualräume von Funktionenräumen, Spektrum
 linearer Operatoren, Spektrum und Resolvente, kompakte
 Operatoren.
14. Literatur:
 Wird in der Vorlesung bekannt gegeben
15. Lehrveranstaltungen und -formen:
 • 147101 Vorlesung Funktionalanalysis
 • 147102 Übung Funktionalanalysis
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63h
 Selbststudium/Nacharbeitszeit: 187h
 Prüfungsvorbereitung: 20h
 Gesamt: 270h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14711 Funktionalanalysis (PL), Mündlich, 30 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsvorleistung: Übungsschein</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Analysis und Mathematische Physik</td>
</tr>
</tbody>
</table>
Modul: 14740 Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)

2. Modulkürzel: 080300006
5. Modulduer: Einsemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Unregelmäßig

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Christian Rohde

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013,
 ➔ Auflagen
M.Sc. Simulation Technology, PO 972-2016,
 ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972EO2013,
 ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972EO2016,
 ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
 ➔ Auflagen

11. Empfohlene Voraussetzungen:
Zulassungsvoraussetzung: Orientierungsprüfung
Inhaltliche Voraussetzung: Höhere Analysis, Numerische Mathematik 2

12. Lernziele:
• Grundlagen zur Behandlung von partiellen Differentialgleichungen.
• Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet der Analysis bzw. Numerik, die als Grundlage des Verständnisses aktueller Forschungsthemen dienen.

13. Inhalt:
Modellierung:
• Herleitung elementarer Typen aus Anwendungen.

Analysis:
• Klassifizierung linearer partieller Differentialgleichungen, elementare Lösungstechniken (Fundamentallösungen, Wellen,...), klassische Existenztheorie in Hölderräumen, schwache Existenztheorie in Sobolevräumen, Asymptotik und qualitatives Verhalten.

Numerik:
• Finite-Differenzen Verfahren, Finite-Elemente Verfahren, effizierte Gleichungslöser. Datenstrukturen, Gittererzeugung.

14. Literatur:
Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 147401 Vorlesung Partielle Differentialgleichungen
• 147402 Übungen zur Vorlesung Partielle Differentialgleichungen

16. Abschätzung Arbeitsaufwand:
Präsenzza: 63h
Selbststudium/Nacharbeitszeit: 187h
Prüfungsvorbereitung: 20h
Gesamt: 270h
| 17. Prüfungsnummer/n und -name: | 14741 Partielle Differentialgleichungen (Modellierung, Analysis, Simulation) (PL), Mündlich, 30 Min., Gewichtung: 1
Prüfungsvorleistung: Übungsschein |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Angewandte Mathematik</td>
</tr>
</tbody>
</table>
Modul: 14750 Einführung in die Optimierung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Carsten Scherer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Carsten Scherer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule | |
| 11. Empfohlene Voraussetzungen: | Empfohlen: Numerische Mathematik 1 | |
| 13. Inhalt: | - Modellierung praktischer Fragestellungen als Optimierungsprobleme
- Behandlung unrestringierter nichtlinearer Optimierungsprobleme (z. B. Optimalitätsbedingungen, Abstiegsverfahren, Newton-Verfahren, Newton-artige und Quasi-Newton-Verfahren, Globalisierung lokaler konvergenter Verfahren, Ausgleichsprobleme)
- Ausblick auf die restringierte Optimierung (z. B. Lineare Optimierung, Optimalitätsbedingungen und ausgewählte numerische Verfahren für nichtlineare restringierte Probleme) und globale Optimierung | |
| 15. Lehrveranstaltungen und -formen: | • 147502 Übungen zur Vorlesung Einführung in die Optimierung
• 147501 Vorlesung Einführung in die Optimierung | |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 63 h
Selbststudium 207 h
Gesamt: 270 h | |
| 17. Prüfungsnummer/n und -name: | 14751 Einführung in die Optimierung (PL), Schriftlich oder Mündlich, Gewichtung: 1
schriftlich 120 min oder mündlich 30 min | |
| 18. Grundlage für ...: | | |
| 19. Medienform: | |
| 20. Angeboten von: | Mathematische Systemtheorie | |
Modul: 14760 Finite Elemente

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Klaus Höllig</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Klaus Höllig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Numerischer Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet der Numerik, die als Grundlage des Verständnisses aktueller Forschungsfragen dienen.</td>
</tr>
</tbody>
</table>

| 13. Inhalt: | Theoretische Grundlagen:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Sobolev-Räume, elliptische Probleme, Ritz-Galerkin-Verfahren, Satz von Lax-Milgram, Fehlerabschätzungen.</td>
</tr>
</tbody>
</table>

| Basis-Funktionen: | • Netzgenerierung, Typen Finiter Elemente, Approximationseigenschaften, Datenstrukturen. |

| Anwendungen: | • Poisson-Problem mit verschiedenen Randbedingungen, lineare Elastizität, Platten und Schalen. |

| Mehrgitterverfahren: | • hierarchische Basen, Implementierung, Konvergenz. |

| 15. Lehrveranstaltungen und -formen: | • 147601 Vorlesung Finite Elemente
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 147602 Übung Finite Elemente</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 63h
	Selbststudium/Nacharbeitszeit: 187h
	Prüfungsvorbereitung: 20h

| Gesamt: | 270h |

| 17. Prüfungsnummer/n und -name: | 14761 Finite Elemente (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsvorleistung: Übungsschein</td>
</tr>
</tbody>
</table>

| 18. Grundlage für ... : |

| 19. Medienform: |

| 20. Angeboten von: | Numerik und geometrische Modellierung |
Modul: 14780 Stochastische Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080600004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ph.D. Christian Hesse</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 147801 Vorlesung Stochastische Prozesse • 147802 Übung Stochastische Prozesse</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14781 Stochastische Prozesse (PL), Mündlich, 120 Min., Gewichtung: 1 Prüfungsvorleistung: Übungsschein</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mathematische Stochastik</td>
</tr>
</tbody>
</table>
Modul: 14800 Finanzmathematik 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Jürgen Dippon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Dippon, Christian Hesse, Uta Renata Freiberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 148001 Vorlesung Finanzmathematik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 148002 Übung Finanzmathematik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 63h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Nacharbeitszeit: 187h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 20h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 270h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 14801 Finanzmathematik 1 (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Mündlich, 30 Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorleistung: Übungsschein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Stochastik
Modul: 14980 Ausbreitungs- und Transportprozesse in Strömungen

12. Lernziele: Die Studierenden besitzen das notwendige hydrodynamische, physikalische und chemische Prozess- und Systemverständnis, um umweltrelevante Fragen der Wasser- und Luftqualität in natürlichen und technischen Systemen beantworten zu können.

Massen- und Wärmeflüsse
- Advektion
- Diffusion
- Dispersion
- Konduktion
- Massenflüsse aufgrund externer Kräfte

Stoff- und Wärmeübergangsprozesse
- Sorption
- Gasausstausch
- Komponenten des Strahlungshaushaltes
- Transformationsprozesse
• Gleichgewichtsreaktionen
• mikrobieller Abbau

Bilanzgleichungen für durchmischte Systeme
• Stoff- und Wärmehaushalt eines Sees
• Stoffbilanz eines Bioreaktors

Eindimensionaler Transport in Flüssen und Grundwasserleitern
• Transport konservativer Stoffe
• Räumliche Momente
• Analytische Lösungen
• Transport sorbierender Stoffe
• Eindimensionaler Transport mit mikrobiellen Reaktionen

Mehrdimensionler Transport
• Fließzeitanalyse
• Analytische Lösungen für Transport bei Parallelströmung
• Rückwirkung des Transports auf das Strömungsverhalten

Ein- und Mehrphasenströmungen in porösen Medien
• Gegenübersstellung Ein- und Mehrphasenprozesse
• Systemeigenschaften und Stoffgrössen der Mehrphasen
• Eindimensionale Mehrphasenströmungs- und Transportprozesse

In den begleitenden Übungen werden beispielhafte Probleme behandelt, die Anwendungen aufzeigen, den Vorlesungsstoff vertiefen und auf die Prüfung vorbereiten. Computerübungen, in denen Ein- und Mehrphasenströmung verglichen werden oder Anwendungen wie das Buckley-Leverett- oder das McWhorter-Problem betrachtet werden, sollen das Verständnis für die Problematik schärfen und einen Einblick in die praktische Umsetzung des Erlernten geben.

15. Lehrveranstaltungen und -formen:
• 149801 Vorlesung Ausbreitungs- und Transportprozesse in Strömungen
• 149802 Übung Ausbreitungs- und Transportprozesse in Strömungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 55 h
Selbststudium: 125 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14981 Ausbreitungs- und Transportprozesse in Strömungen (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Mehrphasenmodellierung in porösen Medien

19. Medienform:

20. Angeboten von:
Hydromechanik und Hydrosystemmodellierung
Modul: 15020 Numerische Methoden in der Fluidmechanik

2. Modulkürzel: 021420003
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. Bernd Flemisch
9. Dozenten: Bernd Flemisch
Rainer Helmig

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
 Höhere Mathematik:
 • Partielle Differentialgleichungen
 • Numerische Integration

 Grundlagen der Fluidmechanik:
 • Erhaltungsgleichungen für Masse, Impuls, Energie
 • Mathematische Beschreibung von Strömungs- und Transportprozessen

12. Lernziele:
 Die Studierenden können geeignete numerische Methoden für die Lösung von Fragestellungen aus der Fluidmechanik auswählen und besitzen grundlegende Kenntnisse über die Implementierung eines numerischen Modells in C.

13. Inhalt:
 Diskretisierungsmethoden:
 • Kenntnis der gängigen Methoden (Finite Differenzen, Finite Elemente, Finite Volumen) und ihrer Unterschiede
 • Vor- und Nachteile und damit verbunden deren Einsetzbarkeit
 • Herleitung der verschiedenen Methoden
 • Verwendung und Wahl der richtigen Randbedingungen bei den unterschiedlichen Methoden

 Zeitdiskretisierung:
 • Kenntnis der verschiedenen Möglichkeiten
 • Beurteilung nach Stabilität, Rechenaufwand, Genauigkeit
 • Courantzahl, CFL-Kriterium

 Transportgleichung:
 • verschiedene Diskretisierungsmöglichkeiten
 • physikalischer Hintergrund
 • Stabilitätskriterien der Methoden (Pecletzahl)

 Einführung in Stabilitätsanalyse, Konvergenz
 Begriffsklärungen: Modell, Simulation
 Umsetzung der stationären Grundwassergleichung mit Hilfe der Finiten Elemente Methode
 Erarbeitung eines Simulationsprogramms zur Grundwassermodellierung:
• Anforderungen an das Programm
• Programmieren einzelner Routinen

Grundlagen des Programmierens in C
• Kontrollstrukturen
• Funktionen
• Felder
• Debugging

Visualisierung der Simulationsergebnisse

14. Literatur:
• Skript: Einführung in die Numerischen Methoden der Hydromechanik

15. Lehrveranstaltungen und -formen:
• 150201 Vorlesung Grundlagen zu Numerische Methoden der Fluidmechanik
• 150202 Übung Grundlagen zu Numerische Methoden der Fluidmechanik
• 150203 Vorlesung Anwendungen zu Numerische Methoden der Fluidmechanik
• 150204 Übung Anwendungen zu Numerische Methoden der Fluidmechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 55 h
Selbststudium: 125 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
15021 Numerische Methoden in der Fluidmechanik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Ausbreitungs- und Transportprozesse in Strömungen
Mehrphasenmodellierung in porösen Medien

19. Medienform:
Entwicklung der Grundlagen als Tafelanschrieb, Übungen in Gruppen zur Festigung der erarbeiteten theoretischen Grundlagen. Praxisnahe Umsetzung von Fragestellungen am Rechner. Unterstützung der Studierenden mittels Lehrer-Schüler-Steuerung im Multi Media Lab des IWS

20. Angeboten von:
Hydromechanik und Hydrosystemmodellierung
Modul: 15040 Mehrphasenmodellierung in porösen Medien

2. Modulkürzel: 021420005
3. Leistungspunkte: 6 LP
4. SWS: 5
5. Modulldauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Holger Class
9. Dozenten: Holger Class
 Rainer Helmig
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule
11. Empfohlene Voraussetzungen:
 Theorie der Mehrphasensystem in porösen Medien:
 • Phasen / Komponenten
 • Kapillardruck
 • Relative Permeabilität
12. Lernziele:
 Die Studierenden besitzen die theoretischen und numerischen Grundlagen zur Modellierung von Mehrphasensystemen in porösen Medien.
13. Inhalt:
 Die Verwendung komplexer Modelle in der Ingenieurspraxis verlangt ein fundiertes Wissen über die Eigenschaften von Diskretisierungsverfahren, die Möglichkeiten und Grenzen numerischer Modelle unter Berücksichtigung der jeweils implementierten Konzepte und zugrunde liegenden Modellanahmen. Inhalte sind:
 Theorie der Mehrphasenströmungen in porösen Medien
 • Herleitung der Differentialgleichungen
 • konstitutive Beziehungen
 Numerische Lösung der Mehrphasenströmungsgleichung
 • Box-Verfahren
 • Linearisierung
 • Zeit-Diskretisierung
 Mehrkomponenten-Systeme
 • Thermodynamische Grundlagen und nichtisotherme Prozesse
 Anwendungsbeispiele:
 • Thermische Sanierungsverfahren
 • CO₂-Speicherung in geologischen Formationen
 • Wasser-/ Sauerstofftransport in Gasdiffusionsschichten von Brennstoffzellen
 • Süßwasser / Salzwasser Interaktion
14. Literatur:
 Skript zur Vorlesung

Stand: 13. Dezember 2018
15. Lehrveranstaltungen und -formen:

- 150401 Vorlesung Mehrphasenmodellierung in Porösen Medien
- 150402 Übung Mehrphasenmodellierung in Porösen Medien

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>55 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium:</td>
<td>125 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

15041 Mehrphasenmodellierung in porösen Medien (PL), Schriftlich, 120 Min., Gewichtung: 1

19. Medienform:

20. Angeboten von:

Hydromechanik und Hydrosystemmodellierung
Modul: 15670 Verkehrstechnik und Verkehrsleittechnik

2. Modulkürzel: 021320003
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldaeu: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Markus Friedrich
9. Dozenten: Manfred Wacker, Markus Friedrich
 M.Sc. Simulation Technology, PO 972-2013, Wahlmodule
11. Empfohlene Voraussetzungen: Grundlagen der Verkehrsplanung und Verkehrstechnik
13. Inhalt: In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:
 • Einführung Verkehrstechnik und Verkehrsleittechnik
 • Lichtsignalanlagen (Theorie der Bemessung, Wartezeiten, Grüne Welle, Versatzzeitoptimierung, Verkehrsabhängige Steuerung)
 • Verkehrsdatenerfassung
 • Datenaufbereitung und Datenvervollständigung
 • Prognose des Verkehrsablaufs
 • Verkehrsbeeinflussungssysteme für Autobahnen
 • Parkleitsysteme
 • Rechnergestützte Betriebsleitsysteme im ÖV
 • Verkehrsmanagement innerorts und außerorts
 • Exkursion Kommunale Verkehrssteuerung im IV
 • Exkursion Betriebsleitzentrale ÖV

In der Projektstudie wird eine Lichtsignalsteuerung mit Hilfe des Programms LISA+ erstellt. Projektstudie umfasst:
 • Einführung Projektstudie / Ortsbesichtigung
 • Einführung in das Programm LISA+
 • Beispiel Grüne Welle
• Beispiel ÖV Priorisierung
• Bearbeitung einer Planungsaufgabe (verkehrsabhängige Koordinierung eines Straßenzugs)

14. Literatur:

- Friedrich, M., Ressel, W.: Skript Verkehrstechnik und Verkehrsleittechnik

15. Lehrveranstaltungen und -formen:

- 156701 Vorlesung Verkehrstechnik & -leittechnik
- 156702 Projektstudie Verkehrstechnik, Übung und Projekt

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 55 h |
| Selbststudiumszeit / Nacharbeitszeit: 125 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

- 15671 Verkehrstechnik und Verkehrsleittechnik (PL), Schriftlich, 90 Min., Gewichtung: 1
- V Vorleistung (USL-V),

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Verkehrsplanung und Verkehrsleittechnik
Modul: 15830 Höhere Mechanik I: Einführung in die Kontinuumsmechanik und in die Materialtheorie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Holger Steeb

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
- Bau: Technische Mechanik I-III sowie Technische Mechanik IV und Baustatik I
- UMW: Technische Mechanik I-III

12. Lernziele:
DIE STUDIERENDEN VERSTEHEN DIE GRUNDLAGEN DER KONTINUUMSMECHANIK UND DER MATERIALTHEORIE MIT ANWENDUNG AUF ELASTISCHE, VISOKOELASTISCHE UND ELASTO-PLEASTISCHE DEFORMIERBARE FESTKÖRPER. MIT DEN ERLEERTEN KENNTNISSEN KÖNNEN SIE NUMERISCHER VERFAHREN WIE DIE FINITE-ELEMENTE-METHODE ZUR LÖSUNG VON RANDWERTPROBLEMATIVEN VERWENDEN.

13. Inhalt:
KENNTNISSE DER KONTINUUMSMECHANIK UND DER MATERIALTHEORIE SIND FUNDAMENTALE VORAUSSETZUNG FÜR DIE BESCHREIBUNG VON DEFORMATIONSPROZESSEN UND VERSAGENSMECHANISMEN VON STRUKTUREN AUS METALLISCHEN UND POLYMERNEN WERKSTOFFEN SOWIE VON GEOMATERIALIEN. DIE VORLESEUNG Bietet EINE SYSTEMATISCHE DARSTELLUNG DER KONTINUUMSMECHANIKEN GRUNDLAGEN, DIEN IN DEN LEHRVERANSTALTUNGEN TM I - IV BEREITS IN VEREINFACHTER FORM GENUTZT WURDEN. DIE WESENTLICHEN STOFFGESETZE DER MATERIALTHEORIE WERDEN IM RAHMEN DER MODELIRHEOLOGIE MOTIVIERT UND AUF DEN ALLGEMEINEN 3-DIMENSIONALEN FALL VERALLGEMEINERT. UNTER VORAUSSETZUNG KLEINER VERZERRUNGEN WERDEN DIE STOFFGESETZE DER ELASTICITÄT, DER VISOKOELASTICITÄT UND DER ELASTOPLASTICITÄT BEHANDELT. IN ERGÄNZUNG ZU DER THEORETISCHEN DARSTELLUNG WERDEN EINIGE ALGORITHMISCHE ASPEKTE DER COMPUTERIMPLEMENTATION VON MATERIALMODELLEN DARGESTELLT.

Kinematik:
materieller Körper, Platzierung, Bewegung, Deformations- und Verzerrungsmaße

Spannungszustand:
Nah- und Fernwirkungskräfte, Theorem von Cauchy, Spannungstensoren

Bilanzsätze:
Fundamentalbilanz der Kontinuumsmechanik, Bilanzrelationen für Masse, Bewegungsgroße, Drall, und mechanische Leistung

Allgemeine Materialgleichungen:
das Schließproblem der Kontinuumsmechanik

Geometrisch lineare Elastizität:
Rheologisches Modell, Verallgemeinerung auf drei Raumdimensionen, Bestimmung der elastischen Konstanten
Geometrisch lineare Viskoelastizität:
Motivation und rheologisches Modell, Relaxation und Retardation, viskoelastischer Standardkörper, Clausius-Planck-Ungleichung und interne Dissipation

Geometrisch lineare Elastoplastizität:
Motivation und rheologisches Modell, Metallplastizität (Fließbedingung nach von Mises, Belastungsbedingung, Konsistenzbedingung, Fließregel, Tangententensoren), Verallgemeinerung für Geomaterialien

Numerische Aspekte elastisch-inelastischer Materialien:
Motivation, Prädiktor-Korrektor-Verfahren

14. Literatur:
Vollständiger Tafelanschrieb, in den Übungen wird Begleitmaterial ausgeteilte.
- P. Chadwick [1999], Continuum Mechanics, Dover Publications.
- J. Betten [2002], Kontinuumsmechanik (elastisches und inelastisches Verhalten isotroper und anisotroper Stoffe), 2. erweiterte Auflage, Springer.

15. Lehrveranstaltungen und -formen:
- 158301 Vorlesung Höhere Mechanik I
- 158302 Übung Höhere Mechanik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 53 h
Selbststudium / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 15831 Höhere Mechanik I: Einführung in die Kontinuumsmechanik und in die Materialtheorie (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfung evtl. mündlich, Dauer 40 Min.

18. Grundlage für ... :
Höhere Mechanik II: Numerische Methoden der Mechanik

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 15840 Höhere Mechanik II: Numerische Methoden der Mechanik

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Jun.-Prof. Dr.-Ing. Marc-André Keip
9. Dozenten: Wolfgang Ehlers
 Christian Miehe

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Höhere Mechanik I

- Motivation und Einführung in die Problematik
- Grundlegende Konzepte der Numerischen Mathematik: lineare Gleichungssysteme (direkte und iterative Verfahren), nichtlineare Gleichungssysteme (iterative Verfahren), Interpolation und Approximation, numerische Integration und Differentiation
- Die Finite-Elemente-Methode (FEM): Grundlegende Konzepte (Randwertproblem, schwache Formulierung der Feldgleichungen, Galerkin-Verfahren), Elementformulierungen, isoparametrisches Konzept, Dreiecks- und Vierecks-Elemente, gemischte Finite Elemente
- Anwendungen der FEM: lineare Randwertprobleme der Mechanik (Wärmeleitung, lineare Elastostatik), nichtlineare Randwertprobleme der Mechanik (nichtlineare Elastizität, konsistente Linearisierung, Iterationsverfahren)
- Lösungskonzepte für Anfangs- und Randwertprobleme: Wärmeleitung, Zeitintegration, Elastodynamik
- Fehlerindikatoren und Adaptive Verfahren in Raum und Zeit
14. Literatur:

Vollständiger Tafelanschrieb, in den Übungen wird Begleitmaterial ausgeteilt.

15. Lehrveranstaltungen und -formen:

- 158402 Übung Höhere Mechanik II
- 158401 Vorlesung Höhere Mechanik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 53 h
Selbststudium / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 15841 Höhere Mechanik II: Numerische Methoden der Mechanik (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfung evtl. mündlich, Dauer 40 Min.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mechanik I
Modul: 16100 Selected Topics in the Theories of Plasticity and Viscoelasticity

2. Modulkürzel: 021010012
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 5
7. Sprache: Englisch

8. Modulverantwortlicher: Jun.-Prof. Dr.-Ing. Marc-André Keip

11. Empfohlene Voraussetzungen: B.Sc. degree in Bauingenieurwesen (Civil Engineering), in Maschinenbau (Mechanical Engineering), in Umweltschutztechnik (Environmental Engineering) or in related subject, as well as knowledge of basic concepts in continuum mechanics (comparable to HMI) and numerical mechanics (comparable to HMII)

12. Lernziele: The students understand the concepts of plasticity and viscoelasticity as important classes of inelastic material response with a wide range of engineering applications. They have obtained a detailed understanding of selected aspects of the theories of plasticity and viscoelasticity, including specific algorithmic treatments.

13. Inhalt: It is the superior goal of the lecture to foster the understanding of general inelastic material behavior with regard to the theoretical modeling and the numerical treatment based on selected model problems. As an example, the selected material models under consideration may cover (i) micromechanically motivated approaches to inelastic material response such as crystal plasticity or (ii) purely phenomenological formulations of an inelastic material response such as viscoelasticity. Contents:
 • Introduction to inelastic material behavior
 • Micromechanical structure of solids
 • Kinematics of inelastic deformations at finite strains
 • Foundations of continuum-based material modeling for selected problems, e.g. finite crystal plasticity and viscoelasticity
 • Integration algorithms of evolution systems, stress-update algorithms and consistent linearization of updating schemes

14. Literatur: Complete notes on black board, exercise material will be handed out in the exercises.

15. Lehrveranstaltungen und -formen:
 • 161002 Übung Selected Topics in the Theories of Plasticity and Viscoelasticity
 • 161001 Vorlesung Selected Topics in the Theories of Plasticity and Viscoelasticity

16. Abschätzung Arbeitsaufwand:
 Time of Attendance: 52 h
 Self-study: 128 h
 Summary: 180 h

17. Prüfungsnummer/n und -name: 16101 Selected Topics in the Theories of Plasticity and Viscoelasticity (PL), Schriftlich, 120 Min., Gewichtung: 1
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von</td>
<td>Mechanik I</td>
</tr>
</tbody>
</table>

Prüfung evtl. mündlich, Dauer 40 Min.
Modul: 16110 Elemente der nichtlinearen Kontinuumsthermodynamik

4. SWS: 0 7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Holger Steeb
9. Dozenten: Wolfgang Ehlers

13. Inhalt:

Kenntnisse der nichtlinearen Kontinuumsthermodynamik sind fundamentale Voraussetzung für die Beschreibung großer Deformationen von beliebigen Materialien mit nichtlinearen Stoffgesetzen. Die Vorlesung bietet eine systematische Darstellung der nichtlinearen Kontinuumsmechanik und der Grundlagen der Thermodynamik (Energiebilanz, Entropieungleichung). Auf der Basis der Grundprinzipien der Konstitutivtheorie und des zweiten Hauptsatzes der Thermodynamik werden die Mechanismen diskutiert, mit denen für beliebige Materialien thermodynamisch konsistente und damit zulässige Stoffmodelle entwickelt werden können. Alle Verfahren werden am Beispiel des nichtlinear deformierbaren, thermoelastischen Festkörpers diskutiert. Zusätzlich werden Aspekte der numerischen Behandlung nichtlinearer Prozesse in Zeit und Raum diskutiert. Im einzelnen wird der folgende Inhalt präsentiert:

- Motivation und Einführung in die Problematik
- Nichtlineare Kontinuumsmechanik: Kinematik, Transporthöre, nichtlineare Deformations- und Verzerrungsmaße in absoluter und konvektiver Notation
- Spannungstensoren nach Cauchy, Kirchhoff, Piola-Kirchhoff, Biot, Mandel und Green-Naghdi
- Bilanzrelationen der Mechanik: Massen-, Impuls- und Drallbilanz
- Bilanzrelationen der Thermodynamik: Energiebilanz und Entropieungleichung (1. und 2. Hauptsatz der Thermodynamik)
- Elemente der klassischen Thermodynamik: innere Energie und kalorische Zustandsgröße, thermodynamische Potentiale, Legendre-Transformationen
- Thermodynamische Materialtheorie: Thermodynamische Prinzipien und Prozeßvariablen, materielle Symmetrie
- thermoelastischer Festkörper: Auswertung des Entropieprinzips, Isotropie, das gekoppelte Problem der Thermomechanik,
Thermoelastizität in Nominalform, Energie- und Entropielastizität
• Numerische Aspekte: Schwache Form des Randwertproblems, Zeitintegration gekoppelter Probleme, Linearisierung der Feldgleichungen, Stabilitätskriterien

• E. Becker, W. Bürger [1975], Kontinuumsmechanik, Teubner.
• R. de Boer [1982], Vektor- und Tensorrechnung für Ingenieure, Springer.
• P. Chadwick [1999], Continuum Mechanics, Dover Publications.
• L. E. Malvern [1969], Introduction to the Mechanics of a Continuous Medium, Prentice-Hall.

15. Lehrveranstaltungen und -formen: • 161101 Vorlesung Elemente der nichtlinearen Kontinuumsthermodynamik
• 161102 Übung Elemente der nichtlinearen Kontinuumsthermodynamik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 52 h
Selbststudium: 128 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: • 16111 Elemente der nichtlinearen Kontinuumsthermodynamik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfung evtl. mündlich, Dauer 40 Min., Prüfungsvorleistung: Hausübungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 16120 Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien

2. Modulkürzel: 021020011
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig

4. SWS: 0
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Holger Steeb

9. Dozenten: Wolfgang Ehlers

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
B. Sc.-Abschluß im Bauingenieurwesen, im Maschinenbau, in der Umweltschutztechnik oder einem vergleichbaren Fach sowie Kenntnisse der Technischen Mechanik und Kontinuumsthermodynamik.
(B. Sc. degree in Civil Engineering, in Mechanical Engineering, in Environmental Engineering or a comparable discipline and basic knowledge in applied mechanics and continuum thermodynamics.)

12. Lernziele:
Die Studierenden begreifen die Anwendung kontinuumsmechanischer Methoden auf mehrphasige Materialien. Sie verstehen den Charakter stark gekoppelter Gleichungssysteme zur Beschreibung komplexer Phänomene bei Mehrkomponentenmaterialien und Mischungen.
(The students are able to apply continuum-mechanical methods to multiphasic materials. They understand the character of strongly coupled equation systems for the description of complex phenomena in multi-component materials and mixtures.)

13. Inhalt:
- Kontinuumsmechanische Grundlagen zur Beschreibung von Ein- und Mehrphasenmaterialien: Bewegungszustand, Deformationsmaße, Spannungszustand
- Bilanzrelationen für Mehrphasenmaterialien: Allgemeine Bilanzen, spezielle Bilanzen für Masse, Impuls, Drall, Energie und Entropie
- Kalorische Zustandsvariablen und "freie" Energie
- Grundlagen der Materialtheorie für Mehrphasenmaterialien:
• Thermodynamik und Konstitutivgleichungen
• der flüssigkeitsgesättigte, materiell inkompressibel deformierbare poröse Festkörper
• Elastisches Materialverhalten der Festkörpermatrix
• Plastisches Materialverhalten der Festkörpermatrix (optional)

(Porous solids with a fluid pore content as well as real mixtures of liquids and gases belong both to the class of multi-phase materials. With a continuum theory for multiphasic media, the movement or flow of fluids in deformable porous solids can be described for arbitrary deformation processes and arbitrary material properties of the solid matrix. Moreover, it is possible to consider phase transitions and electrochemical reactions within such a theory. In this regard, a theoretical tool is provided that can be used to mathematically describe and numerically analyse a manifold of distinct materials, ranging from geomaterials over polymer and metal foams to biological tissues. For the numerical application, a system of strongly coupled partial differential equations has to be solved.

• Continuum-mechanical basics for the description of single- and multiphasic materials: state of motion, deformation measures, stress states
• Balance relations for multi-phase materials: master balances, special balances for mass, momentum, moment of momentum, energy and entropy
• Caloric state variables and energy potentials
• Fundamentals of materials theory for multiphasic media
• Thermodynamics and constitutive equations
• The fluid-saturated, materially incompressible deformable porous solid
• Elastic material properties of the solid skeleton
• Plastic behaviour of the solid skeleton (optional))

14. Literatur: Vollständiger Tafelanschrieb, in den Übungen wird Begleitmaterial ausgeteilt (Comprehensive notes on blackboard, additional course materials will be distributed in the exercises).

• R. de Boer [1982], Vektor- und Tensorrechnung für Ingenieure, Springer.
• R. de Boer, W. Ehlers [1986], Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, Heft 40.
• W. Ehlers [1989], Poröse Medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH-Essen, Heft 47.

15. Lehrveranstaltungen und -formen:
• 161202 Übung Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien
• 161201 Vorlesung Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 52 h
Selbststudium: 128 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 161211 Einführung in die Kontinuumsmechanik von Mehrphasenmaterialien (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfung evtl. mündlich, Dauer 40 Min., Prüfungsvorleistung: Hausübungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 16140 Continuum Biomechanics

After the successful completion of the course Continuum Biomechanics, the students will have a basic understanding of modelling soft biological tissues within a continuum-mechanical framework. The students will be familiar with the principles of the Theory of Porous Media (TPM) and will be able to apply these principles to the modelling of porous biological tissues. The students will also acquire knowledge on the constitutive modelling of soft biological tissues. Student presentations on selected recent research studies on various aspects related to the modelling of biological tissues will provide the students with an overview on current theories and research topics within the broad field of continuum biomechanics.

13. Inhalt:

Biological processes can be modelled within a continuum-mechanical framework which leads to the study of continuum biomechanics. The lecture focuses on modelling the mechanical response of soft biological tissues using the principles of continuum biomechanics. Basic concepts of the Theory of Porous Media are introduced which are then applied to the modelling of the intervertebral disc that is selected as an example problem. Principles of material modelling are examined and selected tissues with different mechanical characteristics are modelled accordingly. The lecture covers the following topics: – Introduction and motivation. – Biological tissue as a porous medium: the intervertebral disc as a porous medium, basic concepts and fundamental equations of the Theory of Porous Media. – Material modelling: basic concepts and principles of material modelling, material symmetry, symmetry groups, invariants. – Strain energy functions for selected material types: mechanical characteristics of soft tissues, rubber-like materials, Fung-type material laws, passive and active behaviour of the heart muscle. – Student presentations on recent research studies related to the modelling of biological tissues.
18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computational Micromechanics and Material Design
Modul: 16150 Geometrische Methoden der Nichtlinearen Kontinuumsmechanik und Kontinuumsthermodynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jun.-Prof. Dr.-Ing. Marc-André Keip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Miehe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>B.Sc.-Abschluss im Bauingenieurwesen, im Maschinenbau, in der Umweltschutztechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Kontinuumsmechanik (vergleichbar HMI) und der numerischen Mechanik (vergleichbar HMII)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bilanzprinzip der nichtlinearen Kontinuumsthermodynamik
Phänomenologische Materialtheorie endlicher Verzerrungen
Eindeutigkeit von Randwertproblemen und Stabilitätstheorie

14. Literatur: Vollständiger Tafelanschrieb, Material für die Übungen wird in den
Übungen ausgeteilt.
• J. E. Marsden, T. J. R. Hughes [1983], Mathematical
 Foundations of Elasticity, Prentice-Hall, Inc., Englewood Cliffs,
 New Jersey.
• P. G. Ciarlet [1988], Mathematical Elasticity, Volume 1: Three
 Dimensional Elasticity, North-Holland.
• R. W. Ogden [1984], Non-Linear Elastic Deformations, Ellis
 Horwood Series Mathematics and its Applications.
• M. Silhavy [1997], The Mechanics and Thermodynamics of
 Continuous Media, Springer-Verlag.
• C. A. Truesdell, W. Noll [1965], The Non-linear Field Theories of
 Springer Verlag, Berlin.
• C. A. Truesdell, R. A. Toupin [1960], The Classical Field
 Theories, Handbuch der Physik, Vol. III (1), S. Flügge (Ed.),
 Springer Verlag, Berlin.

15. Lehrveranstaltungen und -formen:
• 161501 Vorlesung Geometrische Methoden der Nichtlinearen
 Kontinuumsmechanik und Kontinuumsthermodynamik
• 161502 Übung Geometrische Methoden der Nichtlinearen
 Kontinuumsmechanik und Kontinuumsthermodynamik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 52 h
 Selbststudium: 128 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 16151 Geometrische Methoden der Nichtlinearen
 Kontinuumsmechanik und Kontinuumsthermodynamik (PL),
 Mündlich, 40 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik I
Modul: 16180 Theoretische und Computerorientierte Materialtheorie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Jun.-Prof. Dr.-Ing. Marc-André Keip

9. Dozenten: Christian Miehe

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Geometrische Methoden der Nichtlinearen Kontinuumsmechanik und Kontinuumsthermodynamik

12. Lernziele:
Den Studierenden ist die Bedeutung einer qualitativ und quantitativ sicheren Beschreibung des Materialverhaltens als das zentrale Problem bei der Formulierung prädiktiver Simulationsmodelle ingenieurtechnischer Prozesse bewusst. Sie beherrschen moderne Konzepte der computerorientierten Materialtheorie komplexen reversiblen und irreversiblen Verhaltens von Festkörpern unter Beachtung von mikromechanischen Aspekten, Mehrskalenansätzen und Homogenisierungstechniken.

13. Inhalt:
- Direkte Variationsmethoden finiter Elastizität und Eindeutigkeit
- Anisotrope Finite Elastizität und isotope Tensorfunktionen
- Schädigungsmodule und Elemente der Bruchmechanik
- Finite Elasto-Visko-Plastizität von Metallen und Polymeren
- Diskrete Modelle: Partikelmethoden und Versetzungs dynamik
• Mehrskalenmodelle und numerische Homogenisierungsmethoden
• Materialinstabilitäten, Phasenübergänge und Mikrostrukturen

• Arnold Krawietz [1986], Materialtheorie, Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens, Springer-Verlag.
• J. C. Simo, T. J. R Hughes [1997], Computational Inelasticity, Springer, New York

15. Lehrveranstaltungen und -formen: • 161801 Vorlesung Theoretische und Computerorientierte Materialtheorie
• 161802 Übung Theoretische und Computerorientierte Materialtheorie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 52 h
Selbststudium: 128 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: • 16181 Theoretische und Computerorientierte Materialtheorie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik I
Modul: 16260 Maschinendynamik

2. Modulkürzel: 072810004
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard

9. Dozenten: Peter Eberhard

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I-III

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM
• Schiehlen, W. und Eberhard, P.: Technische Dynamik. 2. Aufl., Teubner, Wiesbaden

15. Lehrveranstaltungen und -formen:
• 162601 Vorlesung Maschinendynamik
• 162602 Übung Maschinendynamik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 16261 Maschinendynamik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

20. Angeboten von: Technische Mechanik
Modul: 16500 Software Engineering

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Steffen Becker</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Steffen Becker, André van Hoorn</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | • Einführung in die Softwaretechnik
• Programmierung und Softwareentwicklung |
| 13. Inhalt: | Ergänzend zur Einführung in die Softwaretechnik und daran anknüpfend, behandelt diese Lehrveranstaltung folgende Themen:
• Organisationsaspekte des Software Engineerings
• Softwareentwicklungsprozesse, Prozessbewertung und -verbesserung
• Anforderungsanalyse
• Softwarearchitektur
• Realisierung und Debugging
• Softwarequalitätssicherung
• Softwarewartung
• Model-Driven Software Development
• Weitere ausgewählte Kapitel des Software Engineerings |
| 14. Literatur: | • Summerville, Software Engineering, AW
• Ludewig J., Lichter, H., Software Engineering - Grundlagen, Menschen, Prozesse, Techniken, 2. Aufl. 2010
| 15. Lehrveranstaltungen und -formen: | • 165001 Vorlesung Software Engineering
• 165002 Übung Software Engineering |
| 16. Abschätzung Arbeitsaufwand: | Vorlesungen und Zentralübungen |
| 17. Prüfungsnummer/n und -name: | 16501 Software Engineering (PL), Schriftlich, 90 Min., Gewichtung: 1 90min Klausur |
| 18. Grundlage für ... : | Requirements Engineering and Software ArchitectureModel-Driven Software DevelopmentSoftware Qualität und -Wartung |
| 20. Angeboten von: | Zuverlässige Software-Systeme |
Modul: 16720 Dynamik biologischer Systeme

2. Modulkürzel: 74810230
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Nicole Radde

9. Dozenten: Nicole Radde

M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule

11. Empfohlene Voraussetzungen: Grundbegriffe der Theorie dynamischer Systeme, insbesondere Differenzialgleichungen

- Untersuchung von Ruhelagen (hyperbolische und nicht-hyperbolische Fixpunkte und Reduktion auf Zentrumsmanigfaltigkeiten)
- Einführung in die Verzweigungstheorie anhand von biologischen Beispielsystemen
- Nichtlineare dynamische Phänomene
- Analyse von Systemen mit 2 Variablen
- biochemische Oszillatoren

14. Literatur: Es wird ein Manuskript auf dem Ilias Server bereit gestellt, weiterführende Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen: • 167201 Vorlesung und Übung Dynamik biologischer Systeme

16. Abschätzung Arbeitsaufwand: Vorlesung und Übung
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 16721 Dynamik biologischer Systeme (PL), Mündlich, 40 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Beamer, Overhead, überwiegend Tafel

Modul: 16750 Business Dynamics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Pflichtmodule Mathematik, Pflichtmodul Systemdynamik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden • sind in der Lage, komplexe Problemstellungen in sozio-technischen Systemen in Kausaldiagrammen zu modellieren • können Kausaldiagramme analysieren und interpretieren • kennen grundlegende Arten von Systemverhalten und die zugehörigen Systemstrukturen • können System-Dynamics-Simulationsmodelle erstellen • können System-Dynamics-Simulationsmodelle zur Entscheidungsunterstützung in komplexen Problemstellungen anwenden</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Charakteristika von betriebswirtschaftlichen Systemen • Einführung in die Modellierung mit System Dynamics • Kausaldiagramme und Systemarchetypen • Nichtlineares Verhalten, Pfadabhängigkeit, begrenzte Rationalität, Netzwerkeffekte, Innovationsdiffusion und Wertschöpfungsketten • Planspiele The Beer Distribution Game und Fishbanks • Simulation mit Hilfe von Vensim</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 167501 Vorlesung Business Dynamics • 167502 Übung Business Dynamics</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Arbeitsbelastung von 7 Stunden pro Woche während der Vorlesungszeit (Präsenzzeit und Vor-/Nachbereitungzeit) (insgesamt 14 Wochen), zusätzlich 82 Stunden für die Prüfungsvorbereitung, Summe 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>16751 Business Dynamics (PL), Schriftlich, 120 Min., Gewichtung: 1 16751 Business Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 18610 Konzepte der Regelungstechnik

2. Modulkürzel: 074810110
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 6
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
Matthias Müller
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
11. Empfohlene Voraussetzungen:
Grundkenntnisse der mathematischen Beschreibung dynamischer Systeme, der Analyse dynamischer Systeme und der Regelungstechnik, wie sie z.B. in den folgenden B.Sc. Modulen an der Universität Stuttgart vermittelt werden:
• 074710001 Systemdynamik
• 074810040 Einführung in die Regelungstechnik
12. Lernziele:
Die Studierenden
• kennen die relevanten Methoden zur Analyse linearer und nichtlinearer Dynamischer Systeme und sind in der Lage, diese an realen Systemen anzuwenden
• können Regler für lineare und nichtlineare Dynamische Systeme entwerfen und validieren
• kennen und verstehen die Grundbegriffe wichtiger Konzepte der Regelungstechnik, insbesondere der nichtlinearen, optimalen und robusten Regelungstechnik
13. Inhalt:
• Lyapunov-Stabilitätstheorie
• Linear-quadratische Regelung
• Robuste Regelung
• Reglerentwurf für nichtlineare Systeme
14. Literatur:
15. Lehrveranstaltungen und -formen:
• 186101 Vorlesung und Übung Konzepte der Regelungstechnik
• 186102 Gruppenübung Konzepte der Regelungstechnik
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudium: 117h
Gesamt: 180h
17. Prüfungsnummer/n und -name:
18611 Konzepte der Regelungstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ...

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 18620 Optimal Control

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
B.Sc.-Abschluss in Technischer Kybernetik, Maschinenbau, Automatisierungstechnik, Verfahrenstechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Regelungstechnik (vergleichbar Modul Regelungstechnik)

12. Lernziele:
The students learn how to analyze and solve optimal control problems. The course focuses on key ideas and concepts of the underlying theory. The students learn about standard methods for computing and implementing optimal control strategies.

13. Inhalt:
The main part of the lecture focuses on methods to solve nonlinear optimal control problems including the following topics:
- Nonlinear Programming
- Dynamic Programming
- Pontryagin Maximum Principle
- Model Predictive Control
- Applications, examples

The exercises contain student exercises and mini projects in which the students apply their knowledge to solve specific optimal control problem in a predefined time period.

14. Literatur:
- D. Liberzon: Calculus of Variations and Optimal Control Theory, Princeton University Press,
- A. Brassan and B. Piccoli: Introduction to Mathematical Control Theory, AMS,
- I.M. Gelfand and S.V. Fomin: Calculus of Variations, Dover,
- D. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific,
- H. Sagan: Introduction to the Calculus of Variations, Dover,

15. Lehrveranstaltungen und -formen:
- 186201 Vorlesung Optimal Control

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 18621 Optimal Control (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Computations in Control
Modul: 18630 Robust Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520806</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Carsten Scherer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Carsten Scherer</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | Vorlesung Konzepte der Regelungstechnik oder Vorlesung Lineare Kontrolltheorie |
| 12. Lernziele: | The students are able to mathematically describe uncertainties in dynamical systems and are able to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge on a specified project. |
| 13. Inhalt: | • Selected mathematical background for robust control
• Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties, parametric uncertainties, ...)
• The generalized plant framework
• Robust stability and performance analysis of uncertain dynamical systems
• Structured singular value theory
• Theory of optimal H-infinity controller design
• Application of modern controller design methods (H-infinity control and mu-synthesis) to concrete examples |
| 15. Lehrveranstaltungen und -formen: | • 186301 Vorlesung mit Übung und Miniprojekt Robust Control |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h |
| 17. Prüfungsnummer/n und -name: | 18631 Robust Control (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Mathematische Systemtheorie |
Modul: 18640 Nonlinear Control

4. SWS: 4 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
Jan-Maximilian Montenbruck

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Vorlesung: Konzepte der Regelungstechnik

12. Lernziele:
The student
• knows the mathematical foundations of nonlinear control
• has an overview of the properties and characteristics of nonlinear control systems,
• is trained in the analysis of nonlinear systems with respect to system-theoretical properties,
• knows modern nonlinear control design principles,
• is able to apply modern control design methods to practical problems,
• has deepened knowledge, enabling him to write a scientific thesis in the area of nonlinear control and systems-theory.

13. Inhalt:
Course Nonlinear Control:
Mathematical foundations of nonlinear systems, properties of nonlinear systems, non-autonomous systems, Lyapunov stability, ISS, Input/Output stability, Control Lyapunov Functions, Backstepping, Dissipativity, Passivity, and Passivity based control design

14. Literatur:

15. Lehrveranstaltungen und -formen:
186401 Vorlesung Nonlinear Control

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name: 18641 Nonlinear Control (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
210 Wahlmodule aus BSc Simulation Technology

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Code</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10840</td>
<td>Fluidmechanik II</td>
</tr>
<tr>
<td></td>
<td>38240</td>
<td>Simulation Methods in Physics for SimTech II</td>
</tr>
</tbody>
</table>
Modul: 10840 Fluidmechanik II

4. SWS: 6 7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Holger Class
9. Dozenten: Rainer Helmig
 Holger Class

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule aus BSc Simulation Technology ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule aus BSc Simulation Technology ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
Technische Mechanik
• Einführung in die Statik starrer Körper
• Einführung in die Elastostatik und Festigkeitslehre
• Einführung in die Mechanik inkompressibler Fluide

Höhere Mathematik
• Partielle Differentialgleichungen
• Vektoranalysis
• Numerische Integration

Strömungsmechanische Grundlagen
• Erhaltungsgleichungen für Masse, Impuls, Energie
• Navier-Stokes-, Euler-, Reynolds-, Bernoulli-Gleichung

12. Lernziele:
Die Studierenden besitzen Kenntnisse über die Grundlagen der Strömung in verschiedenen natürlichen Hydrosystemen und deren Anwendung im Bau- und Umweltingenieurwesen.

13. Inhalt:
Außerdem werden Fragen der regionalen Grundwasserbewirtschaftung (z.B. Neubildung, ungesättigte Zone) diskutiert. Am Beispiel der Grundwasserströmung werden auch die Grundlagen der CFD (Computational Fluid Dynamics) erarbeitet, insbesondere die numerischen Diskretisierungsverfahren Finite-Volumen und Finite-Differenzen.
Darüberhinaus werden Turbulenz und damit verbundene Berechnungsansätze behandelt, ebenso die Umströmung von Körpern und damit verbundene Strömungskräfte. Anhand von Beispielen aus dem wasserbaulichen Versuchs- und führt
dimensionsloser Kennzahlen. Die erarbeiteten Kenntnisse der Strömung inkompressibler Fluide werden auf kompressible Fluide (z.B. Luft) übertragen. Inhalte sind:
• Potentialströmungen und Grundwasserströmungen
• Computational Fluid Dynamics
• Ähnlichkeitstheorie und dimensionslose Kennzahlen
• Strömung kompressibler Fluide
• Strömungskräfte
• Beispiele aus dem Bau- und Umwelt ingenieurwesen

14. Literatur:
• Helmig, R., Class, H.: Grundlagen der Hydromechanik, Shaker Verlag, Aachen, 2005
• Truckenbrodt, E.: Fluidmechanik, Springer Verlag, 1996
• Cirpka, O.A.: Ausbreitungs- und Transportvorgänge in Strömungen

15. Lehrveranstaltungen und -formen:
• 108401 Vorlesung Fluidmechanik II
• 108402 Übung Fluidmechanik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: (6 SWS) 84 h
Selbststudium (1,2 h pro Präsenzstunden): 100 h
Gesamt: 184 h (ca. 6 LP)

17. Prüfungsnummer/n und -name:
• 10841 Fluidmechanik II (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Schriftliche Prüfungsvorleistung/ Schein Klausur

18. Grundlage für ...

19. Medienform:
Entwicklung der Grundlagen als Tafelanschrieb, Lehrfilme zur Verdeutlichung fluidmechanischer Zusammenhänge, zur Vorlesung und Übung web-basierte Unterlagen zum vertiefenden Selbststudium.

20. Angeboten von:
Hydromechanik und Hydrosystemmodellierung
Modul: 38240 Simulation Methods in Physics for SimTech II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ph.D. Christian Holm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Holm, Maria Fyta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Contents of the Module "Simulationsmethoden in der Physik für SimTech I"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Thorough understanding of the methods for the simulation of physical phenomena of classical and quantum-mechanical systems • Competence to autonomously use various simulation software • The lab sessions also supports the students’ media competence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Homepage (SS 2016):http://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_II_SS_2016 • Ab-initio MD • Advanced MD Methods • Implicit Solvent Models • Methods for Hydrodynamic Interactions • Methods for Electrostatic Interactions • Coarse-graining • Advanced MC Methods • Computing Free Energies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 382401 Lecture Simulation Methods in Physics for SimTech II • 382402 Tutorial Simulation Methods in Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>• Lecture: Simulation Methods in Physics II: 28h Attendance, 56h Self-studies • Tutorial Simulation Methods in Practice: 28h Attendance, 68h Tasks • Sum: 180h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name:

- 38241 Simulation Methods in Physics for SimTech II (PL), Mündlich, 40 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
50% der Punkte in den Übungen

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computerphysik
Modul: 21340 Strömungslehre II

2. Modulkürzel: 060100010
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ewald Krämer
9. Dozenten: Ewald Krämer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
Physik und Grundlagen der Elektrotechnik, HM I-III,
Strömungslehre I, Thermodynamik Grundlagen

12. Lernziele:
Die Studierenden
• kennen die Annahmen, Vereinfachungen und Einschränkungen, die der Potenzialtheorie zugrunde liegen und können die behandelten Gleichungen auf einfache Strömungsprobleme anwenden
• können einfache inkompressible ebene Strömungen durch die Überlagerung elementarer Potenzialströmungen approximieren und daraus das Geschwindigkeits- und Druckfeld der Strömung näherungsweise berechnen
• können m.H. der Singularitätenmethode Geschwindigkeits- und Druckverteilungen, sowie Kraftund Momentenbeiwerte für einfache Tragflügelprofile berechnen
• können die fundamentalen Strömungsvorgänge am Tragflügel endlicher Streckung qualitativ beschreiben und einfache Berechnungen der an einem Flugzeug im stationären Geradeausflug auftretenden Kräfte durchführen
• kennen die relevanten physikalischen Größen, die die Eigenschaften, Strömungszustände und Zustandsänderungen von kompressiblen Fluiden beschreiben
• können die fundamentalen Zusammenhänge und Abhängigkeiten dieser phys. Größen für einfache Strömungsvorgänge sowie strömungsphänomenologische Besonderheiten kompressibler Strömungen erkennen und beschreiben
• kennen die der Herleitung des Energiesatzes zugrunde liegenden physikalischen Prinzipien und können die aus den Erhaltungssätzen abgeleiteten integralen Gleichungen auf einfache eindimensionale reibungsfreie kompressible Strömungen anwenden
• können den Verlauf der Temperaturgrenzschicht in Wandnähe in Abhängigkeit der relevanten Parameter qualitativ darstellen
• können die gasdynamischen Beziehungen auf einfache 1D Innen- und Außenströmungen mit und ohne Verdichtungsstöße und Expansionen anwenden
• können die 1D Strömung in Düsen und Diffusoren bei gegebener Kontur berechnen
• sind in der Lage, dank des erworbenen physikalischen Verständnisses, Ergebnisse kritisch zu hinterfragen und auf Plausibilität zu überprüfen
13. Inhalt:

- Drehungsfreie und drehungsbehaftete Strömungen:
 Begriffe und Definitionen, Wirbelsätze, Potenzialströmungen, Singularitätenmethode
 Einführung in die Aerodynamik von Luftfahrzeugen (Unterschall):
 Profile, Flügel endlicher Streckung, statische Stabilität in der Längsbewegung
- Energieerhaltungssatz:
 Begriffe und Definitionen, Herleitung der differentiellen Form, Spezialformen, Temperaturgrenzschichten bei idealen Gasen, kompressible, reibungsfreie Strömungen
 Gasdynamik:
 Erhaltungssätze bei 1D-Strömungen, isentrope Strömungen in der Stromröhre, senkrechte und schräge Verdichtungsstöße, Expansionen, Stoß-Expansionstheorie, Düsenströmungen, Diffusorströmungen

14. Literatur:

Zusätzlich zur Literatur zum Modul SL I:
- Skript
- Foliensatz

15. Lehrveranstaltungen und -formen:

- 213403 Tutorium Strömungslehre II
- 213402 Übung Strömungslehre II
- 213401 Vorlesung Strömungslehre II

16. Abschätzung Arbeitsaufwand:

180h (55h Präsenzzeit, 125h Selbststudium)

17. Prüfungsnummer/n und -name:

21341 Strömungslehre II (PL), Schriftlich, 120 Min., Gewichtung: 1
40 min Kurzfragen ohne Hilfsmittel, 80 min Aufgaben mit Hilfsmitteln

18. Grundlage für ... :

19. Medienform:

PowerPoint, Overhead-Projektor, Visualizer, Kurzvideos

20. Angeboten von:

Aerodynamik von Luft- und Raumfahrzeugen
Modul: 21360 Wärmeübertragung / Wärmestrahlung

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Rico Poser
9. Dozenten: Poser, Rico; Dr.-Ing. Lamanna, Grazia; Dr.-Ing.

11. Empfohlene Voraussetzungen: 060100009 Strömungslehre I 060700001 Thermodynamik Grundlagen

12. Lernziele:
Die Studierenden:

- kennen die Wärmemessungsmethoden.
- sind in der Lage eindimensionale stationäre und instationäre Wärmeleitungsprozesse zu analysieren.
- besitzen ein grundlegendes Verständnis zur numerischen Behandlung von Wärmeleitungsproblemen.
- kennen die Formen der konvektiven Wärmeübertragung und die zugehörigen Kenngrößen.
- verstehen die phänomenologischen Zusammenhänge bei Wärmetransportvorgängen mit Phasenübergängen.
- sind in der Lage, verschiedene Wärmetauscherkonfigurationen zu analysieren.
- kennen die Grundlagen der Wärmestrahlung.
- verstehen die Strahlungseigenschaften technischer Oberflächen.
- können Energie- und Strahlungsbilanzen für grundlegende Geometrien beschreiben.

13. Inhalt:

Wärmestrahlung
- Entstehung der Wärmestrahlung
- Schwarzer/Grauer Strahler (Hohlraumstrahlung, Kirchhoffscher Satz, Reflexion, Absorption, Transmission, Plancksche Strahlungsformel, Stefan-Boltzmannsches Gesetz)
- Geometrische Grundlagen der Übertragung von Strahlungsenergie (Energiebilanzen, Einstrahlzahlen, Rückführung auf bekannte Einstrahlzahlen)
- Energetische Beschreibung der Wärmestrahlung
- Thermodynamische Eigenschaften der Strahlung (Energie, Strahlungsdruck, Enthalpie und Entropie)

Wärmeübertragung
- Stationäre und instationäre Wärmeleitung für 1D und 2D Probleme
- Analytische und numerische Lösung von Wärmeleitproblemen
- Konvektive Wärmeübertragung
- Freie- und erzwungene Konvektion
- Nußelt Beziehungen
- Reynoldssche Analogie
- Ähnlichkeitstheorem der Wärmeübertragung
- Wärmeübertragung bei Änderung des Aggregatzustandes
14. Literatur:
Vorlesungsskript.

15. Lehrveranstaltungen und -formen:
• 213601 Vorlesung Wärmestrahlung
• 213602 Übung Wärmestrahlung
• 213603 Tutorium Wärmestrahlung
• 213606 Tutorium Wärmeübertragung
• 213605 Übung Wärmeübertragung
• 213604 Vorlesung Wärmeübertragung

16. Abschätzung Arbeitsaufwand:
Wärmestrahlung, Vorlesung: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)
Wärmeübertragung, Vorlesung: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)
Wärmeübertragung, Übungen: 35 h (Präsenzzeit 14 h, Selbststudium 21 h)
Gesamt: 203 h (70 h Präsenzzeit, 133 h Selbststudium)

17. Prüfungsnummer/n und -name:
21361 Wärmeübertragung / Wärmestrahlung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Klassische Form der Stoffvermittlung in der Vorlesung unter Verwendung von Tafel, Overhead, Beamer und Anschauungsobjekten. Der Vorlesungsstoff wird in Übungen vertieft.

20. Angeboten von:
Thermodynamik der Luft- und Raumfahrt
Modul: 21820 Statistical and Adaptive Signal Processing

2. Modulkürzel: 051610012
5. Moduldauber: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Basic knowledges about signals and systems are mandatory. Solid knowledges of probability theory, random variables, and stochastic processes as from the course Stochastische Signale are highly recommended.

12. Lernziele: Students

- master advanced methods for parameter and signal estimation,
- can solve practical problems by using techniques of statistical and adaptive signal processing,
- can estimate the accuracy of parameter and signal estimation in advance.

13. Inhalt:
- Parameter estimation, estimate and estimator, bias, covariance matrix, mean square error (MSE)
- Classical parameter estimation, minimum variance unbiased estimator (MVUE), Cramer-Rao bound (CRB), efficient and consistent estimator, maximum-likelihood (ML) estimator, least-squares (LS) estimator, transform of parameters
- Bayesian parameter estimation, maximum a posteriori (MAP), minimum mean square error (MMSE), linear MMSE
- System identification, channel equalization, linear prediction, interference cancellation
- Wiener filter, Wiener Hopf equation, method of steepest descent, linear prediction, Levinson-Durbin algorithm, lattice filter
- Kalman filter, innovation approach
- Adaptive filter, block and recursive adaptive filter, least mean square (LMS) algorithm, recursive least square (RLS) algorithm

14. Literatur:
- Lecture slides, video recording of the lecture

15. Lehrveranstaltungen und -formen:
- 218202 Übung Statistical and adaptive signal processing
- 218201 Vorlesung Statistical and adaptive signal processing

16. Abschätzung Arbeitsaufwand:

Presence time: 56 h
Self study: 124 h
Total: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>21821 Statistical and Adaptive Signal Processing (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In case of a small number of attending students, the exam can be oral. This will be announced in the lecture.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>computer, beamer, video recording of all lectures and exercises</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Netzwerk- und Systemtheorie</td>
</tr>
</tbody>
</table>
Modul: 22190 Detection and Pattern Recognition

2. Modulkürzel: 051610013
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Bin Yang
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
11. Empfohlene Voraussetzungen:
Basic knowledges about signals and systems are mandatory. Solid knowledges of probability theory, random variables, and stochastic processes as from the course Stochastische Signale are highly recommended.
12. Lernziele:
Students
• master advanced methods for detection and pattern recognition,
• can solve practical problems by using techniques of detection and machine learning,
• can estimate the accuracy of detection and pattern recognition in advance.
13. Inhalt:
• Bayesian decision, minimum risk decision, zero/one loss, discriminant functions
• Supervised learning, nearest neighbours, Bayesian classification, Gaussian mixture model, linear discriminant functions, neural networks, support vector machines
• Unsupervised learning, clustering, k-means, fuzzy c-means, mean-shift, DBSCAN
• Feature selection, SFFS, feature transform
• Signal detection, Bayesian detection, minimax detection, Neyman-Pearson detection, hypothesis testing, likelihood-ratio test
14. Literatur:
• Lecture slides, video recording of the lecture
• R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, Wiley-Interscience, 2001
• L. L. Scharf: Statistical Signal Processing, Addison-Wesley, 1991
• H. V. Poor: An Introduction to Signal Detection and Estimation, Springer, 1988
15. Lehrveranstaltungen und -formen:
• 221901 Vorlesung Detection and pattern recognition
• 221902 Übung Detection and pattern recognition
16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self study: 124 h
Total: 180 h
17. Prüfungsnummer/n und -name:
22191 Detection and Pattern Recognition (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
In case of a small number of attending students, the exam can be oral. This will be announced in the lecture.

18. Grundlage für ... :

19. Medienform: computer, beamer, video recording of all lectures and exercises

20. Angeboten von: Netzwerk- und Systemtheorie
Modul: 24930 Computerorientierte Methoden für Kontinua und Flächentragwerke

2. Modulkürzel: 020300012
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Bischoff

9. Dozenten: Manfred Bischoff
Wolfgang Ehlers
Holger Steeb

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule

11. Empfohlene Voraussetzungen:

Die Methoden der Kontinuumsmechanik und Materialtheorie werden in einer vereinheitlichten Form auf der Grundlage von Energiemethoden begriffen. Am Ende der Lehrveranstaltung stehen den Studenten die für die Modellbildung und die Beurteilung des Tragverhaltens von Flächentragwerken (Scheiben und Platten) notwendigen theoretischen und methodischen Grundlagen zur Verfügung. Wichtige mathematische und mechanische Grundlagen für ein tieferes Verständnis der Methode der finiten Elemente auf der Basis von Energiemethoden wurden geschaffen.
Die Studenten haben dimensionsreduzierte Modelle und Diskretisierungsverfahren, die heute in allen Ingenieurbereichen eingesetzt werden, kennengelernt. Die Kombination von mechanischen Grundlagen und beispielhafter Anwendung in der Tragwerksmodellierung schafft die notwendige Wissensbasis zum verantwortlichen und kritischen Umgang mit solchen Methoden bei der Modellierung und Simulation allgemeiner Prozesse des Bau- und Umwelttechnikumwesens.

13. Inhalt: Die Lehrveranstaltung kombiniert Themen aus der Technischen Mechanik (Ehlers/Miehe) und der Baustatik und Baudynamik (Bischoff).

Im Einzelnen werden folgende Vorlesungsinhalte behandelt:

Kontinua
- Zusammenfassung des Tensorkalküls
- Elementare Kinematik der Kontinua
- Mechanische und thermodynamische Bilanzgleichungen
- Elemente der Materialtheorie (Festkörper, Fluide, Gase)
- Variationsprinzip für Kontinua (Lagrange und Hamilton)

Flächentragwerke
- Scheibentheorie, Plattentheorien nach Kirchhoff und Mindlin
- Tragverhalten von Flächentragwerken
- Dimensionsreduktion, Schnittgrößen, kinematische Variablen und Randbedingungen
- finite Elemente für Scheiben und Platten
- Modellbildung mit finiten Elementen
- Anwendung, Ergebnisinterpretation und Kontrolle
- Einflusslinien und Einflussflächen

14. Literatur:
- Vorlesungsmanuskript "Computerorientierte Methoden für Kontinua und Flächentragwerke", Institut für Baustatik und Baudynamik
- P. Chadwick [1999], Continuum Mechanics, Dover Publications
- W. Nolting [2006], Grundkurs Theoretische Physik: 2 Analytische Mechanik, 7. Auflage, Springer

15. Lehrveranstaltungen und -formen:
- 249301 Vorlesung Computerorientierte Methoden für Kontinua und Flächentragwerke
- 249302 Übung Computerorientierte Methoden für Kontinua und Flächentragwerke

16. Abschätzung Arbeitsaufwand:
- 24931 Computerorientierte Methoden für Kontinua und Flächentragwerke (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich
 Vorleistung: 4 bestandene Hausübungen (unbenotet)

18. Grundlage für ...:
19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 24940 Statistik und Optimierung

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin
9. Dozenten: Markus Friedrich
Wolfgang Nowak
Ullrich Martin
Manfred Bischoff
Fabian Hantsch

11. Empfohlene Voraussetzungen: Statistik/Informatik (Bachelor), Höhere Mathematik I - III, Grundkenntnisse MATLAB (MATrixLABoratory)

Die Teilnehmer können:

- die in der Statistik und Optimierung verwendeten Begriffe verstehen,
- lineare und nicht-lineare Optimierungsprobleme formulieren und lösen,
- Methoden der Graphentheorie anwenden,
- Heuristische Methoden verstehen und beispielhaft anwenden.

13. Inhalt: Veranstaltung Statistik für Ingenieure:
Der Schwerpunkt der Vorlesung liegt auf der stochastischen Modellierung und Simulation von stationären und instationären Parametern, Prozessen und Systemen. Die Bedeutung der Zufallszahlen wird hierbei besonders herausgestellt:
- Erzeugen und Beurteilen von Zufallszahlen,
- Erzeugen von zufälligen Reihen, die einer (diskreten oder kontinuierlichen) Verteilung folgen,
- Beschreibung und Erzeugung multivariater Verteilungen,
- Hauptkomponentenanalyse,
- Modellierung- und Optimierungsverfahren, z.B. Monte-Carlo-Simulation, Bootstrapping,
- Zuverlässigkeit von Systemen, Kenngrößen der Zuverlässigkeit, Verteilungen der Zuverlässigkeitsparameter, Zustand von zusammengesetzten Anlagen, Lebensdauer von zusammengesetzten Anlagen, Simulation der Zuverlässigkeit,
- Systeme mit Gedächtnis.
In der Veranstaltung **Optimierungsverfahren für Ingenieuranwendungen** erfolgt eine Behandlung folgender Themengebiete:

- Vom Problem zum Modell und zur Methode: Überblick über Begriffe, Modelle und Methoden,
- Methoden der linearen Optimierung,
- Rechnerbasierte Verfahren und Programme der Linearen Optimierung,
- Methoden der nicht-linearen Optimierung,
- Graphen und Netzwerke (Graphentheorie, kürzeste Wege, Rundreiseprobleme, Tourenplanung, Flussalgorithmen und Netzplantechnik),
- Heuristische Methoden (Neuronale Netze, Genetische Algorithmen, Simulated Annealing),
- Modelle und Methoden der Simulation (Zelluläre Automaten, Monte-Carlo, Agentensysteme),
- Vorstellung von Anwendungsfeldern am Beispiel.

14. Literatur:

- Skript zu den Lehrveranstaltungen Statistik für Ingenieure und Optimierungsverfahren für Ingenieuranwendungen
- Jarre/Stoer: Optimierung, Springer-Lehrbuch, neueste Auflage
- Fahrmeir/Künstler/Pigeot/Tutz: Statistik: Der Weg zur Datenanalyse, Springer-Lehrbuch, neueste Auflage

15. Lehrveranstaltungen und -formen:

- 249401 Statistik für Ingenieure (Vorlesung)
- 249402 Statistik und Optimierung (Übung)
- 249403 Optimierungsverfahren für Ingenieuranwendungen (Vorlesung)
- 249404 Statistik und Optimierung (Übung)

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 55 h
Selbststudium: 125 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 24941 Statistik und Optimierung (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:

Schienenbahnen und Öffentlicher Verkehr
Modul: 25170 Schalen

2. Modulkürzel: 020300012
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Bischoff
9. Dozenten: Manfred Bischoff

 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Computerorientierte Methoden für Kontinua und Flächentragwerke

13. Inhalt: • historischer Überblick
 • Geometrische Grundlagen und Tragverhalten
 • Schalenmodelle, Annahmen und Voraussetzungen
 • Membrantheorie, Grundgleichungen und rotationssymmetrischer Fall
 • Berechnung von Schnittgrößen und Verschiebungen
 • Biegetheorie der Zylinderschalen
 • Finite Elemente für Schalen, Anwendung von FE-Programmen
 • Stabilität

14. Literatur: Vorlesungsmanuskript "Schalen", Institut für Baustatik und Baudynamik

15. Lehrveranstaltungen und -formen: • 251701 Vorlesung Schalen
 • 251702 Übung Schalen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: • 25171 Schalen (PL), Schriftlich, 120 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Schriftlich
 Vorleistung: 3 bestandene Hausübungen (unbenotet)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 25530 Wahrscheinlichkeit und Statistik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ph.D. Christian Hesse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Zulassungsvoraussetzung: Analysis 1, Analysis 2 Inhaltliche Voraussetzung: LAAG 1, LAAG 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Kenntnis grundlegender wahrscheinlichkeitstheoretischer Konzepte und Fähigkeit, diese in den Anwendungen einzusetzen.
• Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen.
• Abstraktion und mathematische Argumentation. |
| 15. Lehrveranstaltungen und -formen: | • 255302 Übung Wahrscheinlichkeit und Statistik
• 255301 Vorlesung Wahrscheinlichkeit und Statistik |
| 16. Abschätzung Arbeitsaufwand: | Präsenztunden: 63 h
Selbststudium: 207 h
Gesamt: 270 h |
| 17. Prüfungsnummer/n und -name: | • 25531 Wahrscheinlichkeit und Statistik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich |
| 19. Medienform: | |
| 20. Angeboten von: | Mathematische Stochastik |
Modul: 26410 Molekularsimulation

2. Modulkürzel: 042100004
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß

9. Dozenten: Joachim Groß
Niels Hansen

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
inhaltslich: Technische Thermodynamik I und II, Molekulare Thermodynamik
formal: Bachelor-Abschluss

12. Lernziele:
Die Studierenden
• können mit Hilfe von Computersimulationen thermodynamische Stoffeigenschaften einzig aus zwischenmolekularen Kräften ableiten.
• können etablierte Methoden im Bereich der "Molekularsimulation", und der "Monte-Carlo-Simulation", anwenden und haben darüber hinaus vertiefte Kenntnisse um eigene Programme zur Berechnung verschiedener Stoffeigenschaften wie beispielsweise Diffusionskoeffizienten zu entwickeln.
• können durch die Simulationen unterstützt eine optimale Auswahl von Fluiden für eine verfahrenstechnische Anwendung generieren, so beispielsweise ein prozessoptimiertes Lösungsmittel.
• haben die Fähigkeit bestehende Berechnungsmethoden bezüglich ihrer physikalischen Grundannahmen, der Genauigkeit der Ergebnisse und der Recheneffizienz zu bewerten und weiter zu entwickeln.

13. Inhalt:

14. Literatur:
• M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids, Oxford University Press
| 15. Lehrveranstaltungen und -formen: | • 264101 Vorlesung Molekularsimulation
• 264102 Übung Molekularsimulation |
|-----------------------------------|--|
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Nachbearbeitungszeit: 124 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 26411 Molekularsimulation (PL), Mündlich, 40 Min., Gewichtung: 1
Prüfungsvoraussetzung: (USL-V), schriftliche Prüfung |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | Thermodynamik und Thermische Verfahrenstechnik |
Modul: 28440 Astrophysik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Holger Cartarius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Günter Wunner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkurse des BSc-Studiengangs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Die Studierenden kennen wesentliche astronomische Beobachtungsergebnisse im Sonnen- und Milchstraßensystem und im Kosmos und verfügen über die theoretisch-physikalischen Kenntnisse zur Interpretation der Ergebnisse.</td>
<td>• Sie können astrophysikalische Probleme mathematisch behandeln und lösen.</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Astronomie und Astrophysik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Sternentstehung, Endstadien von Sternen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zustandsgleichungen normaler und entarteter Materie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Theorie der Weißen Zwergsterne und der Neutronensterne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pulsare und Neutronensterne: Beobachtungen und spektakuläre Physik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Steilkurs Allgemeine Relativitätstheorie und klassische Tests im Sonnensystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Das Prunkstück der ART: der Doppelpulsar 1913+16, Gravitationswellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astronomie und Astrophysik 2 (Kosmologie)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kosmologie auf der Grundlage der Allgemeinen Relativitätstheorie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lösung der Gravitationsgleichungen, kosmologische Rotverschiebung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weltmodelle mit kosmologischer Konstante</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supernovae und Kosmologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anisotropie der kosmischen Hintergrundstrahlung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Das frühe Universum (Szenarien für die Evolution des Universums)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Spatschek: Astrophysik, Teubner Stuttgart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Baschek, Unsöld, Der neue Kosmos, Springer Heidelberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weigert, Wendker, Astronomie und Astrophysik, VCH Weinheim</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Berry, Kosmologie und Gravitation, Teubner Stuttgart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sexl, Weiße Zwerge, schwarze Löcher, Vieweg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Goenner, Einführung in die Kosmologie, Spektrum Akad. Verlag Heidelberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rebhan, Theoretische Physik, Band 1, Relativitätstheorie, Spektr. Akad. Verlag Heidelberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 284401 Vorlesung Astrophysik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 284402 Übung Astrophysik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 284404 Übung Astrophysik 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 284403 Vorlesung Astrophysik 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

Vorlesung:
Präsenzstunden: 1,5 h (2 SWS) * 28 Wochen = 84 h
Vor- u. Nachbereitung: 2 h pro Präsenzstunde = 21 h

Übungen:
Präsenzstunden: 0,75 h (1 SWS) * 28 Wochen = 63 h
Vor- u. Nachbereitung: 3 h pro Präsenzstunde = 60 h

Prüfung incl. Vorbereitung = 270 h

17. Prüfungsnummer/n und -name:
• 28441 Astrophysik (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Sonstige erfolgreich Teilnahme in den Übungen beider Vorlesungssteile

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Theoretische Physik
Modul: 28620 Stochastic Dynamics I + II

2. Modulkürzel: 082110320
5. Modulduer: Zweisemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester
4. SWS: 3
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr. Hans Peter Büchler
9. Dozenten: Felix Höfling
10. Zuordnung zum Curriculum in diesem Studiengang:
 - M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
 - M.Sc. Simulation Technology, PO 972-2016, 1. Semester ➞ Zusatzmodule
11. Empfohlene Voraussetzungen: Theoretische Physik I - IV
12. Lernziele:
 Students master the basic concepts and techniques of stochastic dynamics for modelling processes in physics, chemistry and biology.
13. Inhalt:
 - Review of probability theory and stochastic processes: random variables, analysis of stationary data.
 - Basic equations for stochastic processes: Markov processes, the Master Equation, the Fokker-Planck equation, the Langevin Equation
 - Detailed balance and stationary non-equilibrium states
 - Driven systems
 - Dynamics: temporal correlations, linear response and fluctuation-dissipation theorem
 - Non-equilibrium thermodynamics: entropy production, Jarzynski relations and fluctuations theorems
 - Master equation: examples and treatments, connection with the Monte Carlo simulation methods
 - Applications: evolutionary dynamics, chemical reactions, dynamic phase transitions in driven lattice gases
14. Literatur:
15. Lehrveranstaltungen und -formen:
 - 286201 Vorlesung Stochastic Dynamics I
 - 286203 Vorlesung Stochastic Dynamics II
 - 286202 Übung Stochastic Dynamics I
 - 286204 Übung Stochastic Dynamics II
16. Abschätzung Arbeitsaufwand:
 Vorlesung:
 Präsenzstunden: 1,5 h (2 SWS) * 28 Wochen = 42 h
 Vor- und Nachbereitung: 2 h pro Präsenztunde = 84 h
 Übungen:
 Präsenzstunden: 0,75 h (1 SWS) * 28 Wochen = 21 h
 Vor- und Nachbereitung: 3 h pro Präsenztunde = 63 h
Prüfung inkl. Vorbereitung = 60 h

Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 28621 Stochastic Dynamics I + II (PL), Mündlich, 30 Min., Gewichtung: 1
- V Vorleistung (USL-V), Sonstige erfolgreiche Teilnahme in den Übungen beider Vorlesungssteile

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computational Photonics
Modul: 28650 Relativitätstheorie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Jörg Main</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | Jörg Main
Johannes Roth |
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahmodule |
| 11. Empfohlene Voraussetzungen: | Grundkurse des BSc-Studiengangs |
| 13. Inhalt: | **Teil I: Spezielle Relativitätstheorie**
- Vorrelativistische Physik
- Einsteins Relativitätsprinzip
- Tensorkalkül
- Relativistische Kinematik und Mechanik
- Elektrodynamik als relativistische Feldtheorie

Teil II: Allgemeine Relativitätstheorie
- Grundlagen der Allg. Relativitätstheorie
- Mathematik gekrümmter Räume
- Schwarzschild Metrik und Schwarze Löcher
- Kosmologie
- Gravitationswellen |
| 14. Literatur: | • U.E. Schröder, Spezielle Relativitätstheorie
• R. Sexl, H. K. Schmidt, Raum-Zeit-Relativität
• H Ruder, M. Ruder, Die Spezielle Relativitätstheorie
• L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik, Band II
• S. Weinberg, Gravitation and Cosmology
• M. Berry, Principles of cosmology and gravitation
• P. Hyong, Relativistic Astrophysics and Cosmology |
| 15. Lehrveranstaltungen und -formen: | • 286503 Übung Relativitätstheorie Teil 1
• 286504 Übung Relativitätstheorie Teil 2
• 286501 Vorlesung Relativitätstheorie Teil 1
• 286502 Vorlesung Relativitätstheorie Teil 2 |
| 16. Abschätzung Arbeitsaufwand: | **Vorlesung:**
Präsenztunden: 1,5 h (2 SWS)*28 Wochen = 42 h
Vor- u. Nachbereitung: 2 h pro Präsenztunde = 84 h

Übungen:
Präsenztunden: 0,75 h (1 SWS)*28 Wochen = 21 h
Vor- u. Nachbereitung: 3 h pro Präsenztunde = 63 h
Prüfung incl. Vorbereitung = 60 h
Gesamt: 270 h |
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td></td>
<td>• 28651 Relativitätstheorie (PL), Schriftlich oder Mündlich, 30 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Sonstige, 30 Min. erfolgreich Teilnahme in den Übungen beider Vorlesungsteile</td>
</tr>
<tr>
<td>18</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19</td>
<td>Medienform: Tafel und Videopräsentationen</td>
</tr>
<tr>
<td>20</td>
<td>Angeboten von: Theoretische Physik</td>
</tr>
</tbody>
</table>
Modul: 29410 Diskrete Optimierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050410110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stefan Funke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Funke</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>The participants get to know the basic techniques in discrete optimization and have a good overview of the standard methods to be able to deal with new problems instances.</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>We teach basic techniques of discrete optimization like (integer) linear programming, approximation algorithms and network flow algorithms.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 294101 Vorlesung Diskrete Optimierung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 29411 Diskrete Optimierung (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Schriftlich, 120 Min.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Algorithmik</td>
</tr>
</tbody>
</table>
Modul: 29430 Computer Vision

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andrés Bruhn
9. Dozenten: Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
 • Modul 10190 Mathematik für Informatiker und Softwaretechniker
 • Modul 10170 Imaging Science

12. Lernziele:
 Der Student / die Studentin beherrscht die Grundlagen der Merkmalsextraktion und -repräsentation, des 3-D Maschinensehens, der Bildsegmentierung sowie der Mustererkennung. Er/sie kann Probleme aus dem Fachgebiet einordnen und diese selbständig mit den erlernten Algorithmen und Verfahren lösen.

13. Inhalt:
 • Lineare Diffusion, Skalenräume
 • Bildpyramiden, Kanten und Eckendetektion
 • Hough-Transformation, Invarianten
 • Texturanalyse
 • Scale Invariant Feature Transform (SIFT)
 • Bildfolgenanalyse: lokale Verfahren
 • Bewegungsmodelle, Objektverfolgung, Feature Matching
 • Bildfolgenanalyse: globale Verfahren
 • Kamerageometrie, Epipolare geometrie
 • Stereo Matching und 3-D Rekonstruktion
 • Shape-from-Shading
 • Isotrope und anisotrope nichtlineare Diffusion
 • Segmentierung mit globalen Verfahren
 • Kontinuierliche Morphologie, Schockfilter
 • Mean Curvature Motion
 • Self-Snakes, Aktive Konturen
 • Bayessche Entscheidungsthorie der Mustererkennung
 • Klassifikation mit parametrischen Verfahren, Dichteschätzung
 • Klassifikation mit nicht-parametrischen Verfahren
 • Dimensionsreduktion

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 294301 Vorlesung Computer Vision
 • 294302 Übung Computer Vision

16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name:

- 29431 Computer Vision (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

[29431] Computer Vision (PL), schriftlich oder mündlich, 120 Min., Gewicht: 1.0

Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben

[Prüfungsvorleistung] Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

Correspondence Problems in Computer Vision

19. Medienform:

20. Angeboten von:

Intelligente Systeme
Module: 29440 Geometric Modeling and Computer Animation

2. Modulkürzel: 051900010

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Moduldozierer: Univ.-Prof. Dr. Daniel Weiskopf

6. Turnus: Sommersemester

7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Daniel Weiskopf

9. Dozenten:
 - Thomas Ertl
 - Daniel Weiskopf
 - Guido Reina

10. Zuordnung zum Curriculum in diesem Studiengang:
 - M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

11. Empfohlene Voraussetzungen:
 Basic computer graphics, for example:
 - 10060 Computergraphik

12. Lernziele:
 Students gain an understanding of the fundamental concepts and techniques of geometric modeling and computer animation. This includes theoretical and mathematical foundations, important algorithms, and implementation aspects as well as practical experience with modeling and animation tools such as Maya.

13. Inhalt:
 This course covers foundations and methods for the modeling of scenes and for computer animation. This includes the representation of curves and surfaces, which are used by modeling and animation software for modeling of objects, description of the dynamics of parameters, or keyframe animation. Physically based animation describes motion via kinematic and dynamics laws of mechanics. Applications thereof include particle systems all the way to character animation and deformation. In particular, the following topics are covered:
 - Description and modeling of curves: differential geometry of curves, polynomial curves in general, interpolation, Bezier curves, B-splines, rational curves, NURBS
 - Description and modeling of surfaces: differential geometry of surfaces, tensor product surfaces, Bezier patches, NURBS, ruled surfaces, Coons pathes
 - Subdivision schemes: basic concept, convergence and limit process, subdivision curves, subdivision surfaces
 - Overview of animation techniques
 - Keyframe animation, inverse kinematics
 - Physically based animation of points and rigid bodies: kinematics and dynamics
 - Particle systems: Reeves, flocking and boids, agent-based simulation
 - Cloth animation: continuum mechanics, mass-spring model, numerical solvers for ordinary differential equations, explicit and implicit integrators
 - Collision: efficient collision detection, bounding volume hierarchies, hierarchical space partitioning, collision handling, sliding and resting contact
 - Fluid simulation: wave equation, Navier Stokes, level sets, particle level sets
14. Literature:

15. Lehrveranstaltungen und -formen:

- 294401 Vorlesung mit Übungen Geometrische Modellierung und Animation

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- 29441 Geometric Modeling and Computer Animation (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- Video projector, blackboard, exercises using PCs

20. Angeboten von:

- Visualisierung
Modul: 29450 Graphentheorie

2. Modulkürzel: 050420105
5. Moduldaueur: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf

9. Dozenten: Volker Diekert
Ulrich Hertrampf
Manfred Kufleitner

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Grundvorlesungen in theorietischer Informatik

13. Inhalt: Die Vorlesung behandelt algorithmische Problem und strukturelle Zusammenhänge bei Graphen. Im Einzelnen werden die folgenden Themen behandelt:
• Eulergraphen
• Cographen
• Bipartite Graphen
• Planare Graphen, Eulerformel, Satz von Kuratowski
• Graphparameter
• Perfekte Graphen
• Graphenfärbungen und der Satz von Ramsey
• Extremale Graphentheorie

14. Literatur:

15. Lehrveranstaltungen und -formen: • 294501 Vorlesung mit Übungen Graphentheorie

16. Abschätzung Arbeitsaufwand:
Präsenztunden: 42 h
Eigenstudiumstunden: 138 h
Gesamtstunden: 180 h

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), Schriftlich oder Mündlich
• 29451 Graphentheorie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
[29451] Graphentheorie (PL), schriftlich oder mündlich, 120 Min, Gewicht: 1.0 [Prüfungsvorleistung] Vorleistung (USL-V), schriftlich oder mündlich

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Theoretische Informatik
Modul: 29460 Algorithmen für die Kryptographie

2. Modulkürzel: 050420110
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf

9. Dozenten: Manfred Kufleitner

11. Empfohlene Voraussetzungen: Theorie-Vorlesungen des Bachelor-Studiums

12. Lernziele:
 Die Studierenden kennen die wichtigsten zahlentheoretischen Algorithmen aus dem Bereich der Kryptographie. Sie können dadurch moderne Verschlüsselungsverfahren anwenden, ihre Sicherheit beurteilen und die Effizienz einstufen.

13. Inhalt:

14. Literatur:
 • Douglas Robert Stinson, Cryptography: Theory and Practice, 1995
 • Friedrich Ludwig Bauer, Entzifferte Geheimnisse: Methoden und Maximen der Kryptologie, 1995
 • Johannes Buchmann, Einführung in die Kryptozographie, 1999

15. Lehrveranstaltungen und -formen:
 • 294601 Vorlesung mit Übungen Algorithmen für die Kryptographie

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 • 29461 Algorithmen für die Kryptographie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Theoretische Informatik
Modul: 29470 Machine Learning

4. SWS: 4 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint
9. Dozenten: Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Solid knowledge in Linear Algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele:
Students will acquire an in depth understanding of Machine Learning methods. The concepts and formalisms of Machine Learning are understood as generic approach to a variety of disciplines, including image processing, robotics, computational linguistics and software engineering. This course will enable students to formalize problems from such disciplines in terms of probabilistic models and the derive respective learning and inference algorithms.

13. Inhalt:
Exploiting large-scale data is a central challenge of our time. Machine Learning is the core discipline to address this challenge, aiming to extract useful models and structure from data. Studying Machine Learning is motivated in multiple ways: 1) as the basis of commercial data mining (Google, Amazon, Picasa, etc), 2) a core methodological tool for data analysis in all sciences (vision, linguistics, software engineering, but also biology, physics, neuroscience, etc) and finally, 3) as a core foundation of autonomous intelligent systems (which is my personal motivation for research in Machine Learning).

This lecture introduces to modern methods in Machine Learning, including discriminative as well as probabilistic generative models. A preliminary outline of topics is:
• motivation and history
• probabilistic modeling and inference
• regression and classification methods (kernel methods, Gaussian Processes, Bayesian kernel logistic regression, relations)
• discriminative learning (logistic regression, Conditional Random Fields)
• feature selection
• boosting and ensemble learning
• representation learning and embedding (kernel PCA and derivatives, deep learning)
• graphical models
• inference in graphical models (MCMC, message passing, variational)
• learning in graphical models
• structure learning and model selection
• relational learning

14. Literatur:
• *Pattern Recognition and Machine Learning* by Bishop, C. M.. Springer 2006. online: http://research.microsoft.com/en-us/um/people/cmbishop/prml/ (especially chapter 8, which is fully online)

15. Lehrveranstaltungen und -formen:
• 294701 Lecture Machine Learning
• 294702 Exercise Machine Learning

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), Schriftlich oder Mündlich
• 29471 Machine Learning (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für … :

19. Medienform:

20. Angeboten von: Maschinelles Lernen und Robotik
Modul: 29580 Data Compression

2. Modulkürzel: 051230110
5. Moduldauser: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Sven Simon
9. Dozenten: Sven Simon

11. Empfohlene Voraussetzungen: This course requires basic knowledge in mathematics.
12. Lernziele: The students learn the concepts of data compression and acquire an understanding of different algorithms for data compression. Furthermore they will be able to implement and further develop the algorithms discussed in the course.

13. Inhalt:
- Shannon Entropy
- Huffman coding
- Universal codes
- Arithmetic coding
- Lossy and Lossless compression
- Image data compression
- Dictionary based compression

15. Lehrveranstaltungen und -formen: 295801 Vorlesung mit Übung Datenkompression

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 29581 Data Compression (PL), Schriftlich, 90 Min., Gewichtung: 1 [29581] Data Compression (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0, written 90 Min. or oral 30 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Parallele Systeme
Modul: 29660 Programmanalysen und Compilerbau

2. Modulkürzel: 051510311
5. Modulldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Erhard Plödereder

9. Dozenten: Erhard Plödereder
Felix Krause

11. Empfohlene Voraussetzungen: Kenntnisse, die in etwa den Inhalten des Moduls 10150
- Grundlagen des Compilerbaus und der Programmiersprachen
- des Bachelor-Studiums entsprechen, sind dringend empfohlen.

12. Lernziele:
Die Studierenden haben grundlegende Kenntnisse über die typischen in Compilern und anderen statischen Programmanalysen verwandten Verfahren erworben, sowohl in Bezug auf Basisanalysen (Kontroll- und Datenflussanalysen) als auch auf weitergehende, zielgerichteten Analysen wie Zeigeranalysen, Abhängigkeitsanalysen oder Slicing. Speziell lernen sie eine Reihe von Codeoptimierungen im Compiler kennen, aber auch diverse Globalanalysen, wie sie in Werkzeugen zur Fehlersuche, zum Reengineering oder zu Architekturanalysen nötig sind.

13. Inhalt:
- Attributgrammatiken (Wiederholung)
- Programmanalysen und -Optimierung (Schwerpunkt)
- klassische Optimierungen
- Lokale und globale Kontrollflussanalyse
- Lokale und globale Datenflussanalysen
- Dominatoren, Dominatorgrenzen, Kontrollstrukturanalysen
- Zeigeranalysen
- Seiteneffekt-Analyse
- Datenabhängigkeit, Konfliktanalysen und Registervergabe
- SSA-Form und ihre Berechnung
- Code-Erzeugung
- Implementierung von OOP
- Das Laufzeitsystem
- Separate Übersetzung
- Slicing
- Mustersuchen und Klonerkennung
- Begriffsanalyse und ihre Anwendungen

Orthogonal zu den jeweiligen Analyseverfahren werden die Verwendungen in Codeoptimierung und in Programmanalysen anderer Werkzeuge des Software Engineering aufgezeigt.

14. Literatur:
- Morgan, Robert, Building an Optimizing Compiler, 1998
- Muchnick, Steven S., Advanced Compiler Design and Implementation, 1997
- Uwe Kastens: Übersetzerbau, Oldenbourg Verlag (1990)

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>296601 Vorlesung mit Übung Programmanalysen und Compilerbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>29661 Programmanalysen und Compilerbau (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Programmiersprachen und Übersetzerbau</td>
</tr>
</tbody>
</table>
Modul: 29680 Real-Time Programming

2. Modulkürzel: 051510301
5. Moduldaauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Erhard Plödereder
9. Dozenten: Erhard Plödereder
 Felix Krause

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Simulation Technology, PO 972-2016,
 ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
 ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
 ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
 ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:

• Significant programming experience (not necessarily in real-time application) is highly advisable.
• Knowledge of Ada, C/C++ and Unix is helpful, but not required.

12. Lernziele:

Students understand the standard terminology of deadline-driven, safety-critical real-time systems. They understand the issues that differentiate such systems from general software systems, and they know about available solutions, if any.

13. Inhalt:

1) General requirements and terminology of real-time systems
2) Deterministic execution: avoiding language-, implementation- and hardware-induced non-determinisms, coping with limited resources, storage estimation and management, execution time estimation
3) Fault tolerance: Faults and failure modes, N-version programming, voting, forward and backward recovery
4) Simple scheduling regimes: cyclic executives, deadline guarantees
5) Parallelism and priority scheduling regimes: processes, threads, tasks, run-time kernels, task management, interrupt handling
6) Synchronization and communication: semaphores, critical regions, monitors, protected objects, rendezvous, messaging
7) Control of shared resources
8) Distributed Systems: basic concepts, major issues

14. Literatur:

• Alan Burns and Andy Wellings: Real-Time Systems and Programming Languages, Addison Wesley, 1997 ... or later editions of the Burns/Wellings-Book, e.g., 4.ed. 2009
• Language reference manuals (C++, Java, Ada) are useful at times.

15. Lehrveranstaltungen und -formen:

• 296801 Vorlesung mit Übung Real-Time Programming

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 29681 Real-Time Programming (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Programmiersprachen und Übersetzerbau</td>
</tr>
</tbody>
</table>
Modul: 29760 Algorithmische Gruppentheorie

2. Modulkürzel: 050420115
5. Modul dauert: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf
9. Dozenten: Volker Diekert

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

11. Empfohlene Voraussetzungen: Elementare Gruppentheorie

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 297601 Vorlesung mit Übung Algorithmische Gruppentheorie

16. Abschätzung Arbeitsaufwand:
Präsenztunden: 42 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29761 Algorithmische Gruppentheorie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</th>
<th>[29761] Algorithmische Gruppentheorie (PL), schriftlich oder mündlich, 120 Min., Gewicht: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Theoretische Informatik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 29900 Dynamik verteiltparametrischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule |
| 15. Lehrveranstaltungen und -formen: | • 299001 Vorlesung Dynamik verteiltparametrischer Systeme
• 299002 Übung Dynamik verteiltparametrischer Systeme |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29901 Dynamik verteiltparametrischer Systeme (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hilfsmittel: Alle nicht-elektronischen Hilfsmittel</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 29940 Convex Optimization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Ebenbauer

9. Dozenten: Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

 - M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 - M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: The students obtain a solid understanding of convex optimization. In particular, they are able to formulate and assess optimization problems and to apply methods and tools from convex optimization, such as linear, quadratic and semi-definite programming, duality theory and relaxation techniques, to solve optimization problems in various areas of engineering and sciences.

13. Inhalt: - Convex sets and functions
 - Optimality conditions
 - Conic programming
 - Duality theory
 - Algorithms
 - Applications, examples

14. Literatur:

 - Vollständiger Tafelanschrieb,
 - Handouts,
 - Buch: Convex Optimization (S. Boyd, L. Vandenberghe), Nichtlineare Optimierung (R.H. Elster), Lectures on Modern Convex Optimization (A. Ben-Tal, A. Nemirovski)

 - Material für (Rechner-)Übungen wird in den Übungen ausgeteilt

15. Lehrveranstaltungen und -formen: 299401 Vorlesung Convex Optimization

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 29941 Convex Optimization (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computations in Control
Modul: 29990 Grundlagen der Laserstrahlquellen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Grundlagen der Laserstrahlquellen</td>
</tr>
<tr>
<td>6. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Thomas Graf</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>9. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>10. Modul:</td>
<td>Grundlagen der Laserstrahlquellen</td>
</tr>
<tr>
<td>14. Lehrveranstaltungen und -formen:</td>
<td>• 299901 Vorlesung (mit integrierten Übungen) Grundlagen der Laserstrahlquellen</td>
</tr>
<tr>
<td>16. Prüfungsnummer/n und -name:</td>
<td>29991 Grundlagen der Laserstrahlquellen (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>17. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>18. Medienform:</td>
<td></td>
</tr>
<tr>
<td>19. Angeboten von:</td>
<td>Strahlwerkzeuge</td>
</tr>
</tbody>
</table>
Modul: 30010 Modellierung und Simulation in der Mechatronik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jörg Christoph Fehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen in Technischer Mechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Kenntnis und Verständnis mechatronischer Grundlagen, selbständige, sichere, kritische und kreative Anwendung und Kombination verschiedenster mechatronischer Methoden und Prinzipien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung und Übersicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundgleichungen mechanischer Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sensorik, Signalverarbeitung, Aktorik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Regelungskonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numerische Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Signalanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ausgewählte Schwingungssysteme, Freie Schwingungen, Erzwungene Schwingungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Experimentelle Modalanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anwendungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsmitschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vorlesungsunterlagen des ITM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 300101 Vorlesung Modellierung und Simulation in der Mechatronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 300102 Übung Modellierung und Simulation in der Mechatronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 138 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **17. Prüfungsnummer/n und -name:** | 30011
Modellierung und Simulation in der Mechatronik (PL),
Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Modellierung und Simulation in der Mechatronik, 1,0, schriftlich 90 min oder 30 min mündlich, Bekanntgabe in der Vorlesung |
| **18. Grundlage für ...:** | |
| **19. Medienform:** | |
| **20. Angeboten von:** | Technische Mechanik |
Modul: 30020 Biomechanik

2. Modulkürzel: 072810008
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: Albrecht Eiber
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik
12. Lernziele: Kenntnis und Verständnis biomechanischer Grundlagen, selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Biomechanik
13. Inhalt:
 - Einführung und Übersicht
 - Skelett
 - Gelenke
 - Knochen
 - Weichgewebe
 - Biokompatible Werkstoffe
 - Muskeln
 - Kreislauf
 - Beispiele
14. Literatur:
 - Vorlesungsmitschrieb
 - Vorlesungsunterlagen des ITM
15. Lehrveranstaltungen und -formen: • 300201 Vorlesung Biomechanik
16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 21 Stunden
 - Selbststudium: 69 Stunden
 - Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 30021 Biomechanik (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Technische Mechanik
Modul: 30030 Fahrzeugdynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard, Pascal Ziegler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen in Technischer Mechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Kenntnis und Verständnis fahrzeugdynamischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Fahrzeugdynamik.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Systembeschreibung und Modellbildung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fahrzeugmodelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modelle für Trag- und Führsysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fahrwegmodelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modelle für Fahrzeug-Fahrweg-Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beurteilungskriterien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berechnungsmethoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longitudinalbewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateralebewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertikalbewegungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsmitschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vorlesungsunterlagen des ITM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>300301 Vorlesung Fahrzeugdynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30031 Fahrzeugdynamik (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Technische Mechanik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 30040 Flexible Mehrkörpersysteme

4. SWS: 4 7. Sprache: Deutsch

Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard

Dozenten: Peter Eberhard
Jörg Christoph Fehr

Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

Lernziele:
Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme, selbständige, sichere, kritische und kreative Anwendung Methoden der Flexiblen Mehrkörperdynamik zur Lösung dynamischer Problemstellungen.

Inhalt:
O Einleitung
O Grundlagen der Mehrkörperdynamik: Grundgleichungen, holonome und nicht-holnome Mehrkörpersysteme in Minimalkoordinaten, Systeme mit kinematischen Schleifen, Differential-Algebraischer Ansatz
O Grundlagen zur Beschreibung eines elastischen Körpers: Grundlagen der Kontinuumsmechanik und linearen Finiten Elemente Methode, lineare Modellreduktion
O Ansatz des mitbewegten Referenzsystems für einen elastischen Körper: Kinematik, Diskretisierung, Kinetik, Wahl des Refernzsystems, Geometrische Steifigkeiten, Standard Input Data
O Beschreibung flexibler Mehrkörpersysteme: DAE Formulierung, ODE Formulierung, Programmtechnische Umsetzung, Einführung in das MKS-Programm Neweul-M²
O Ansätze zur Regelung starrer und flexibler Mehrkörpersysteme: Inverse Kinematik und Dynamik, quasi-statische Deformationskompensation, exakte Inversion, Servo-Bindungen
O Kontaktprobleme in Mehrkörpersystemen: kontinuierliche Kontaktmodelle, Mehrskalensimulation, Diskrete-Elemente-Simulation

Literatur:
O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM

Lehrveranstaltungen und -formen: • 300401 Vorlesung Flexible Mehrkörpersysteme
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30041 Flexible Mehrkörpersysteme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Technische Mechanik
Modul: 30060 Optimization of Mechanical Systems

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972EI02016, 1. Semester ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972EI02013, 1. Semester ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972EI12013, 3. Semester ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, 3. Semester ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, 3. Semester ➞ Zusatzmodule

12. Lernziele: Knowledge of the basics of optimization in engineering systems, Independent, confident, critical and creative application of optimization techniques to mechanical systems

13. Inhalt:
- **Formulation of the optimization problem**: optimization criteria, scalar optimization problem, multicriteria optimization
- **Sensitivity Analysis**: Numerical differentiation, semianalytical methods, automatic differentiation
- **Unconstrained parameter optimization**: theoretical basics, strategies, Quasi-Newton methods, stochastic methods
- **Constrained parameter optimization**: theoretical basics, strategies, Lagrange-Newton methods

14. Literatur:
- Lecture notes
- Lecture materials of the ITM

15. Lehrveranstaltungen und -formen:
- 300601 Lecture Optimization of Mechanical Systems

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden
| 17. Prüfungsnummer/n und -name: | 30061 Optimization of Mechanical Systems (BSL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
| | schriftlich 90min oder mündlich 20min |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Technische Mechanik |
Modul: 30080 Introduction to Systems Biology

4. SWS: 4 7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr. Nicole Radde
9. Dozenten: Ronny Feuer
Nicole Radde

13. Inhalt: Die Studenten werden an folgende Themen herangeführt:
• Kinetische Modellierung biochemischer Netzwerke basierend auf chemischer Reaktionskinetik
• Datenbanken und Modellierungstools
• Beschränktheitsbasierte Modellierung
• Stochastische Modellierungsansätze für biochemische Reaktionsnetzwerke
• Boolsche Modellierung

14. Literatur: Skript auf Ilias und weiterführende Literatur, die in der Vorlesung bekannt gegeben wird

15. Lehrveranstaltungen und -formen: • 300801 Vorlesung Introduction to Systems Biology
• 300802 Übung Introduction to Systems Biology

16. Abschätzung Arbeitsaufwand: Vorlesung und Übung
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
SUMME: 180 Stunden

17. Prüfungsnummer/n und -name: 30081 Introduction to Systems Biology (LBP), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Overhead, Beamer

Modul: 30100 Nichtlineare Dynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Ebenbauer

9. Dozenten: Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
→ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016,
→ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
→ Wahlmodule

11. Empfohlene Voraussetzungen:
Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele:
This course provides the necessary background for students to understand and solve engineering problems involving nonlinear dynamical systems. The main focus of this course is on differential geometric methods. Applications will include problems from nonlinear control, optimization and mechanics.

13. Inhalt:
- Basic facts about nonlinear differential equations, vector fields, flows
- Stability and bifurcation
- Lie brackets, nonlinear controllability, integrability
- Manifolds, calculus on manifolds, optimization on manifolds
- Extremum seeking
- Advanced stability analysis and center manifolds
- Oscillations and averaging

14. Literatur:
- Arnol'd: Ordinary Differential Equations
- Moser, Zehnder: Notes on Dynamical Systems
- Bloch: Nonholonomic Mechanics and Control
- Isidori: Nonlinear Control Systems I
- Guckenheimer, Holmes: Nonlinear Oscillations, dynamical systems, and bifurcations

15. Lehrveranstaltungen und -formen:
- 301001 Vorlesung Nichtlineare Dynamik
- 301002 Übung Nichtlineare Dynamik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
30101 Nichtlineare Dynamik (PL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Computations in Control
Modul: 31650 Beugungsuntersuchungen in der Materialwissenschaft

2. Modulkürzel: 031410021
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Unregelmäßig

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Udo Welzel

9. Dozenten: Udo Welzel

11. Empfohlene Voraussetzungen: Einführung Materialwissenschaft, Kristallstruktur und Mikrostruktur

12. Lernziele:
• Die Studierenden erwerben die Kenntnis der Grundlagen von Beugungsuntersuchungen (Strahlungsarten und Eigenschaften, Interferenz etc.).
• Die Studierenden erwerben die Kenntnis verschiedener auf Beugungsbildungsphänomenen beruhender Untersuchungsmethoden zur Charakterisierung von Festkörpern.
• Die Studierenden sind in der Lage eine Beziehung zwischen der Kristallstruktur, der Mikrostruktur (insoweit diese mit Beugungsuntersuchungen charakterisiert werden kann) und den physikalischen Eigenschaften von Materialien herzustellen.

13. Inhalt:
Gegenstand der Vorlesung sind Beugungsuntersuchungen die in den Materialwissenschaften ihre Anwendung finden. Ausgehend von den Grundlagen (Strahlungsarten, Wellen-Teilchen-Dualismus, Interferenz) werden auf Beugung beruhende Untersuchungsmethoden zur Untersuchung der Kristallstruktur, der Mikrostruktur von Festkörpern und der Struktur von Oberflächen vorgestellt und anhand konkreter Beispiele aus der Materialforschung erläutert. Insbesondere behandelt werden sollen:
- Physikalische Grundlagen von Beugungsuntersuchungen.
- Bestimmung der Kristallstruktur.
- Untersuchung der Mikrostruktur (Inhomogenitäten, kristallographische Textur, Defekte).
- Messung von Spannungen in Materialien
- Untersuchungen an Oberflächen.
Während der Vorlesung sollen auch Beziehungen zwischen der Kristallstruktur, der Mikrostruktur (insoweit diese mit Beugungsuntersuchungen charakterisiert werden kann) und den physikalischen Eigenschaften von Materialien aufgezeigt werden.

14. Literatur:
• B.E. Warren: X-ray Diffraction (1969, Addison-Wesley, Reading Mass.)

15. Lehrveranstaltungen und -formen:
• 316501 Vorlesung Beugungsuntersuchungen in der Materialwissenschaft
Selbststudium: 62 Stunden
Summe: 90 Stunden |
|-------------------------------|--------------------------------|
| 17. Prüfungsnummer/n und -name: | 31651 Beugungsuntersuchungen in der Materialwissenschaft (PL),
Schriftlich, 60 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Powerpoint-Präsentation |
| 20. Angeboten von: | Materialdesign |
Modul: 31690 Experimentelle Modalanalyse

2. Modulkürzel: 072810019
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Michael Hanss
9. Dozenten: Michael Hanss
 Pascal Ziegler
11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

13. Inhalt: Die Vorlesung vermittelt die Inhalte in folgender Gliederung:
• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich
Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur: Vorlesungsmitschrieb,
Weiterführende Literatur:

15. Lehrveranstaltungen und -formen: • 316901 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 31691 Experimentelle Modalanalyse (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Technische Mechanik
Modul: 31720 Model Predictive Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810260</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulendauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Matthias Müller</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Müller</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | Linear systems theory, non-linear control theory, Lyapunov stability e.g. courses "Systemdynamische Grundlagen der Regelungstechnik, "Einfuehrung in die Regelungstechnik und "Konzepte der Regelungstechnik |
| 12. Lernziele: | The students analyze and synthesize various types of model predictive controllers for different system classes and implement them in Matlab. They are able to derive systems-theoretic guarantees of MPC controllers, including closed-loop stability and robustness, and can assess the different properties, advantages, and disadvantages of different MPC schemes. The students have insight into current research topics in the field of model predictive control, which enables them to do their own first research projects in this area. |
| 13. Inhalt: | Basic concepts of MPC
Stability of MPC
Robust MPC
Economic MPC
Distributed MPC |
| 15. Lehrveranstaltungen und -formen: | • 317201 Vorlesung Model Predictive Control |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 31721 Model Predictive Control (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Systemtheorie und Regelungstechnik |
Modul: 32170 Numerik für Höchstleistungsrechner

2. Modulkürzel: 041500011
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modulbeginn:
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Michael Resch
9. Dozenten: Ralf Schneider
11. Empfohlene Voraussetzungen: Mathematisches Grundverständnis, Programmierkenntnisse, Interesse an Algorithmen
14. Literatur: Eigene Unterlagen
15. Lehrveranstaltungen und -formen: • 321701 Vorlesung Numerik für Höchstleistungsrechner
Selbststudium: 69 Stunden
Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 32171 Numerik für Höchstleistungsrechner (BSL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform: PPT-Präsentation, Tafelanschrieb
20. Angeboten von: Höchstleistungsrechnen
Modul: 32350 Anwendung der Methode der Finiten Elemente im Maschinenbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710071</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Matthias Bachmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Bachmann</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagenausbildung in Konstruktionslehre, Festigkeitslehre und Technischer Mechanik, z. B. durch die Module Konstruktionslehre I - IV und Technische Mechanik I - IV</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | Im Modul Anwendung der Methode der Finiten Elemente im Maschinenbau
• haben die Studierenden verschiedene Finite-Element-Programme kennen gelernt,
• haben die Studierenden verschiedene Problemstellungen aus dem Bereich Strukturmechanik kennen gelernt,
• können die Studierenden die Finite-Elemente-Methode zur Lösung strukturmechanischer Problemstellungen einsetzen. |
weshalb die zielgerichtete Ergebnisauswertung und die
Plausibilitätsprüfung einen wesentlichen Inhaltspunkt darstellen.
Darauf aufbauend werden nicht-lineare Modelle vorgestellt, wobei
hier ausschließlich geometrische Nicht-Linearitäten behandelt
werden. Der Fokus liegt auf der Modellierung von Kontakten und
der Definition der Berechnungssteuerung. Darüber hinausgehende
Problemstellungen wie Eigenwertprobleme (Stabilitätsanalysen,
Modalanalysen) und Optimierungsprobleme (Parameter-,
Topologieoptimierung) werden ebenfalls vorgestellt.
In der Vorlesung wird der theoretische Hintergrund an
Anwendungsbeispielen vermittelt, während in den Übungen eine
Vertiefung des Stoffs durch eigene Anwendung am Rechner
erfolgt.

14. Literatur:
- Bachmann, M.: Anwendung der Methode der Finiten Elemente im
 Maschinenbau. Unterlagen zur Vorlesung
- Fröhlich, P.: FEM-Anwendungsbeispiele. 1. Auflage, Vieweg
 Verlag Wiesbaden, 2005
- Wissmann, J., Sarnes, K.-D.: Finite Elemente in der
 Strukturmechanik, Springer Verlag, Berlin, 2005
- Vogel, M., Ebel, T.: Pro/Engineer und Pro/Mechanica. 5. Auflage,
 Hanser Verlag München, 2009
- Gebhardt, C.: ANSYS DesignSpace. 1. Auflage, Hanser Verlag
 München, 2009

15. Lehrveranstaltungen und -formen:
• 323501 Vorlesung Anwendung der Methode der Finiten Elemente im
 Maschinenbau
• 323502 Übung Anwendung der Methode der Finiten Elemente im
 Maschinenbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 32 Stunden
Selbststudium: 58 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32351 Anwendung der Methode der Finiten Elemente im
Maschinenbau (BSL), Schriftlich oder Mündlich, 60 Min.,
Gewichtung: 1
(15 Minuten mündlich, 45 Minuten Test am Computer)

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Tafel, Arbeit am Rechner

20. Angeboten von:
Maschinenkonstruktionen und Getriebebau
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme • 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme</td>
</tr>
</tbody>
</table>
2. Teil: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht-elektronischen Hilfsmittel

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Systemdynamik
Modul: 33180 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport

2. Modulkürzel: 042100006
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß

9. Dozenten: Joachim Groß

11. Empfohlene Voraussetzungen: inhaltlich: Technische Thermodynamik I und II, Technische Mechanik, Höhere Mathematik formal: Bachelor-Abschluss

12. Lernziele:

Die Studierenden
• können kinetisch limitierte Prozesse der Verfahrenstechnik (insbesondere im Bereich der thermischen Trenntechnik, der Reaktionstechnik, aber auch in der Bioverfahrens- und Polymertechnik) beurteilen und deren Auswirkung auf allgemeine Gestaltungsregeln technischer Trennanlagen bewerten.
• können für kinetisch limitierte Prozesse Modelle der Nichtgleichgewichtsthermodynamik aufstellen und in thermodynamisch konsistenter Formulierung von Transportgesetzen eine systematische (Funktional)optimierung von Prozessen durchführen.
• sind in der Lage selbständige Lösungen von Mehrkomponentendiffusionsproblemen zu entwickeln (auch im Druck- und elektrischen Feld).
• verinnerlichen die durch die Thermodynamik vorgeschriebenen treibenden Kräfte für Transportvorgänge und deren Kopplung untereinander und können diesbezüglich reale Teilprozesse abstrahieren.
• können, mit dem vertieften Verständnis für diffusive Stoffübertragungsprozesse, Beschreibungsmethoden kinetisch limitierter Prozesse entwickeln und mit diesen Methoden zur praxisbezogenen Prozesse optimieren.
• können die thermodynamische Nachhaltigkeit technischer Prozesse über deren Entropieproduktion ausdrücken und bewerten.

13. Inhalt:

eingehend vermittelt. Auch die Diffusion im Druck- und elektrischen Feld sind Anwendungen dieses Ansatzes.

14. Literatur:

- R. Haase: Thermodynamik der irreversiblen Prozesse, Dr. Dietrich Steinkopff Verlag

15. Lehrveranstaltungen und -formen:

- 331801 Vorlesung Nichtgleichgewichts- Thermodynamik: Diffusion und Stofftransport

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 28 h
- Selbststudiumszeit / Nacharbeitszeit: 62 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

- 33181 Nichtgleichgewichts-Thermodynamik: Wärme und Stofftransport (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

- Entwicklung des Vorlesungsinhalts als Tafelanschrieb unterstützt durch Präsentationsfolien,
- Beiblätter werden als Ergänzung zum Tafelanschrieb ausgegeben, Übungen als Tafelanschrieb.

20. Angeboten von:

- Thermodynamik und Thermische Verfahrenstechnik
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

2. Modulkürzel: 074730001
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Eckhard Arnold
9. Dozenten: Eckhard Arnold
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
11. Empfohlene Voraussetzungen:
 Einführung in die Regelungstechnik, Systemdynamik, Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik)
12. Lernziele:
 Die Studierenden sind in der Lage, Problemstellungen der Analyse und der Steuerung dynamischer Systeme als Optimierungsproblem zu formulieren und die Optimierungsauflage zu klassifizieren. Geeignete numerische Verfahren können ausgewählt und eingesetzt werden. Der praktische Umgang mit entsprechenden Softwarewerkzeugen wird anhand von Übungsaufgaben vermittelt.
13. Inhalt:
14. Literatur:
 • Vorlesungsumdrucke
15. Lehrveranstaltungen und -formen:
 • 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung
 • 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
|-------------------------------|--|
| 17. Prüfungsnummer/n und -name: | 33191 Numerische Methoden der Optimierung und Optimalen
Steuerung (PL), Mündlich, 30 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Systemdynamik |
Modul: 33340 Methode der finiten Elemente in Statik und Dynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td>Andre Schmidt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, Wahlmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td>TM 1-4</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td>Die Studierenden sind vertraut mit den theoretischen Grundlagen der Methode der finiten Elemente (FEM), ihrer rechentechnischen Umsetzung sowie ihrer Anwendung zur Lösung von Aufgabenstellungen aus Statik und Dynamik.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td>- Manuskript zur Vorlesung</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td></td>
<td>• 333402 Übung Methode der finiten Elemente in Statik und Dynamik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 333401 Vorlesung Methode der finiten Elemente in Statik und Dynamik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
<td></td>
<td>33341 Methode der finiten Elemente in Statik und Dynamik (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Seite selbst erstellte Formelsammlung</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td>Nichtlineare Mechanik</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td>Overhead, Tafel, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td>Nichtlineare Mechanik</td>
</tr>
</tbody>
</table>
Modul: 33360 Fuzzy Methoden

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810017</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>apl. Prof. Dr.-Ing. Michael Hanss</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Hanss</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Regelungstechnik 1 und 2</th>
</tr>
</thead>
</table>

| 15. Lehrveranstaltungen und -formen: | • 333601 Vorlesung + Übungen Fuzzy Methoden |

| 17. Prüfungsnummer/n und -name: | 33361 Fuzzy Methoden (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1 |

| 18. Grundlage für ...: | |

| 19. Medienform: | |

| 20. Angeboten von: | Technische Mechanik |
Modul: 33680 Service Engineering - Systematische Entwicklung von Dienstleistungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Dieter Spath</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Meiren, Christian Schiller</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

13. Inhalt: Die Vorlesung Service Engineering umfasst folgende Inhalte:
- Definitionen und Begriffsklärungen
- Grundlagen des Service Engineering
- Vorgehensmodelle
- Methoden und Werkzeuge
- Kundenerwartungen und -bedürfnisse
- Gestaltung der Kundeninteraktion
- Pricing von Dienstleistungen
- Management der Dienstleistungsentwicklung
- Exkurs: Produktbegleitende Dienstleistungen
Darüber hinaus wird das Konzipieren und Testen von Dienstleistungen in Form von Gruppenarbeiten im ServLab vertieft.

14. Literatur: Die Studenten erhalten folgende Literatur während der Vorlesung:
- Meiren, T., Barth, T.: Service Engineering in Unternehmen umsetzen. Leitfaden für die Entwicklung von Dienstleistungen, IRB-Verlag, 2002
Darüber hinaus ist folgende weiterführende Literatur empfehlenswert:
Spath, D., Fähnrich, K.-P. (Hrsg.): Advances in Services Innovations, Springer-Verlag, 2007

15. Lehrveranstaltungen und -formen:
 • 336801 Vorlesung Service Engineering - Systematische Entwicklung von Dienstleistungen
 • 336802 Übung Service Engineering - Systematische Entwicklung von Dienstleistungen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33681 Service Engineering - Systematische Entwicklung von Dienstleistungen (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Videos (Testen von Dienstleistungen), Animation (CASET), Gruppenarbeit im ServLab

20. Angeboten von: Technologiemanagement und Arbeitswissenschaften
Modul: 33820 Flat Systems

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache: Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Lectures "Einführung in die Regelungstechnik" und "Konzepte der Regelungstechnik" Basic knowledge in state space techniques</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students know methods for model-based design of tracking control for linear and nonlinear SISO (single-input-single-output) and MIMO (multiple-input-multiple-output) systems. By solving the assigned exercises the students gain experience in the usage of computer algebra systems.</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Flatness based methods are used to plan reference trajectories. Moreover, model-based design of feedforward controllers and stabilizing feedback controllers for the tracking of the reference trajectory are realized. The corresponding 2-Degree-of-Freedom control structure consisting of feedforward and feedback controller is used to control linear time invariant systems, linear time varying systems and nonlinear SISO and MIMO systems. The methods are explained on various examples. For realizing the flatness based controller an introduction in the design of linear and nonlinear observer is given.</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>33821 Flat Systems (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemdynamik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33840 Dynamische Filterverfahren

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>074711007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Modul:</td>
<td>33840</td>
</tr>
</tbody>
</table>

Inhalt:
- Einführung zur adaptiven Filterung
- Stochastische Prozesse and Modell
- Fourier-Analyse von stationären Zufallssignalen
- Wiener Filter
- Lineare Prädiktion
- Least-Mean-Square adaptive Filterung
- Kalman Filter

Literatur:
- Vorlesungsumdruck (Vorlesungsfolien)
- Übungsblätter
- Aus der Bibliothek:
 - Oppenheim and Schafer: Discrete-Time Signal Processing
 - Haykin: Aadaptive Filter Theory
- Weitere Literatur wird in der Vorlesung bekannt gegeben

Lehrveranstaltungen und -formen:
- 338401 Vorlesung (inkl. Übungen) Dynamische Filterverfahren

Prüfungsnummer/n und -name:
- 33841 Dynamische Filterverfahren (PL), Schriftlich, 90 Min., Gewichtung: 1

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden
- 4 SWS gegliedert in 2 VL und 2 Ü

Lernziele:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer-Präsentation, Tafelanschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Prozessleitechnik im Maschinenbau</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 34120 Virtuelles Engineering

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Dieter Spath
9. Dozenten: Manfred Dangelmaier
Franz Otto Vogel

11. Empfohlene Voraussetzungen: CAD-Kenntnisse (3D)

12. Lernziele:
Erworbene Kompetenzen: Die Studierenden kennen die Methoden, Technologien und Werkzeuge des Virtuellen Engineerings verstehen die Einsatzmöglichkeiten der Virtuellen Realität im Rahmen des Virtuellen Engineerings sowie der Schnellen Produktentwicklung und können die Anwendbarkeit im Einzelfall beurteilen können Methoden und Werkzeuge des Virtuellen Engineerings praktisch in der Projektarbeit anwenden können ein Produktkonzept in der Arbeitsgruppe mittels CAx und Methoden des Virtuellen Engineerings erarbeiten

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 341201 Vorlesung Virtuelles Engineering
• 341202 Übung Virtuelles Engineering

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
34121 Virtuelles Engineering (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 34810 Nichtlineare partielle Differentialgleichungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080802804</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Guido Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Simulation Technology, PO 972E102013, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972E102016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: empfohlen: Analysis 1-3, Höhere Analysis, Funktionalanalysis

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 348101 Vorlesung Nichtlineare Partielle Differentialgleichungen
- 348102 Übung Nichtlineare Partielle Differentialgleichungen

16. Abschätzung Arbeitsaufwand: Insgesamt 270 h, wie folgt:

- Präsenzzeit: 42 h (V), 21 h (Ü)
- Selbststudium: 207 h

17. Prüfungsnummer/n und -name: 34811 Nichtlineare partielle Differentialgleichungen (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Analysis und Modellierung
Modul: 34910 Einführung in die Numerik partieller Differentialgleichungen

2. Modulkürzel:	080803801
3. Leistungspunkte:	9 LP
4. SWS:	6
5. Modulduer:	Einsemestrig
6. Turnus:	Unregelmäßig
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof. Dr. Kunibert Gregor Siebert
M.Sc. Simulation Technology, PO 972-2013, 3. Semester ➞ Zusatzmodule	
M.Sc. Simulation Technology, PO 972EIO2013, 3. Semester ➞ Pflichtmodule	
M.Sc. Simulation Technology, PO 972-2016, 3. Semester ➞ Pflichtmodule	
M.Sc. Simulation Technology, PO 972EiI2016, 3. Semester ➞ Pflichtmodule	
M.Sc. Simulation Technology, PO 972EIO2016, 3. Semester ➞ Pflichtmodule	
11. Empfohlene Voraussetzungen:	keine
15. Lehrveranstaltungen und -formen:	• 349101 Vorlesung Einführung in die Numerik partieller Differentialgleichungen
• 349102 Übung Einführung in die Numerik partieller Differentialgleichungen	
16. Abschätzung Arbeitsaufwand:	Insgesamt 270 h, wie folgt:
Präsenzzeit: 42 h (V), 21 h (Ü)	
Selbststudium: 207	
17. Prüfungsnummer/n und -name:	• 349111 Einführung in die Numerik partieller Differentialgleichungen (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich	
18. Grundlage für ...:	
19. Medienform:

20. Angeboten von: Angewandte Mathematik/Numerik für Höchstleistungsrechner
Modul: 34940 Weiterführende Numerik partieller Differentialgleichungen

2. Modulkürzel: 080803802
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Unregelmäßig
4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Kunibert Gregor Siebert
9. Dozenten: Christian Rohde
Kunibert Gregor Siebert
Bernard Haasdonk

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, 3. Semester ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, 3. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
empfohlen: Einführung in die Numerik partieller Differentialgleichungen

12. Lernziele:
Die Studenten verfügen über Kenntnis weiterführender Konzepte, Algorithmen und Methoden zur Lösung von partiellen Differentialgleichungen, sie erwerben die Fähigkeit, mit den erlernten Kenntnissen selbständig Methoden zu entwickeln, zu analysieren und umzusetzen, mit denen anwendungsorientierte Probleme effizient und genau gelöst werden

13. Inhalt:
Vertiefende Themen der Numerik für PDEs, beispielsweise aus dem Bereich der Spektralmethoden, Finite Volumen, Continuous und Discontinuous Galerkin, schnelle Löser für dünnbesetzte Systeme, Mehrgitter und Multilevelverfahren, Anwendungen in der Kontinuumsmechanik, hierarchische Ansätze

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 349401 Vorlesung Weiterführende Numerik partieller Differentialgleichungen
• 349402 Übung Weiterführende Numerik partieller Differentialgleichungen

16. Abschätzung Arbeitsaufwand:
Insgesamt 270 h, wie folgt:
Präsenzzeit: 42 h (V), 21 h (Ü)
Selbststudium: 207

17. Prüfungsnummer/n und -name:
• 34941 Weiterführende Numerik partieller Differentialgleichungen (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorlesung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Angewandte Mathematik/Numerik für Höchstleistungsrechner
Modul: 34950 Spezielle Aspekte der Numerik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Kunibert Gregor Siebert</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2016, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2016, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>empfohlen: Einführung in die Numerik und Weiterführende Numerik partieller Differentialgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Spezielle Aspekte der Numerik, beispielsweise Optimalsteuerungsprobleme, freie Randwertprobleme, Numerik stochastischer Differentialgleichungen, Randelementmethoden, Approximationstheorie, Modellreduktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 349502 Übung Spezielle Aspekte der Numerik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 349501 Vorlesung Spezielle Aspekte der Numerik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungszahl/n und -name:</td>
<td>• 34951 Spezielle Aspekte der Numerik (PL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorlesung (USL-V), Schriftlich oder Mündlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Angewandte Mathematik/Numerik für Höchstleistungsrechner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 34960 Stochastische Analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten kennen die grundlegenden Probleme und Konzepte, sie beherrschen Kalkül der stochastischen Analysis, verstehen wichtige Beweismethoden, und besitzen die Fähigkeit selbständig Übungsaufgaben zur stochastischen Analysis zu lösen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Martingale und Semimartingale, stochastische Integrale, Ito-Formel, Maßwechsel und Satz von Girsanov, Martingaldarstellungssatz, Sprungprozesse, Levy-Prozesse, stochastische Differentialgleichungen, Anwendungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 349602 Übung Stochastische Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Insgesamt 270 h, wie folgt: Präsenzzeit: 60 h (V), 30 h (Ü) Selbststudium: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 34961 Stochastische Analysis (PL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Stochastik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 34980 Zeitreihenanalyse

2. Modulkürzel: 080806803
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ph.D. Christian Hesse
9. Dozenten: Christian Hesse
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: empfohlen: Wahrscheinlichkeitstheorie, Mathematische Statistik
12. Lernziele:
Die Studenten verfügen über Kenntnis der grundlegenden und weiterführenden Konzepte und Probleme. Sie erwerben die Fähigkeit zur Modellierung und zur Prognose mit univariaten Zeitreihen.

13. Inhalt:
Grundlagen, ARMA-Modelle, Schätz- und Test-Theorie im Zeitbereich, Spektralanalyse, Schätz- und Test-Theorie im Frequenzbereich, Prognose

14. Literatur:
Schlittgen, R. und Streitberg, S.: Zeitreihenanalyse

15. Lehrveranstaltungen und -formen:
• 349802 Übung Zeitreihenanalyse
• 349801 Vorlesung Zeitreihenanalyse

16. Abschätzung Arbeitsaufwand:
Insgesamt 180 h, wie folgt:
Präsenzzeit: 21 h (V), 21 h (Ü)
Selbststudium: 138 h

17. Prüfungsnummer/n und -name:
• 34981 Zeitreihenanalyse (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mathematische Stochastik
Modul: 35000 Linear Matrix Inequalities in Control

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Carsten Scherer

9. Dozenten: Carsten Scherer

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Linear Control Theory, Robust Control

12. Lernziele:

The student is able to reproduce the theory and apply convex optimization in controller analysis and synthesis.

More specifically, the student must be able to:
1. summarize essential ingredients from convex optimization
2. discuss dissipation theory for dynamical system and its implication for performance specifications
4. sketch derivation of generic convexifying transformation for state- and output-feedback controller synthesis
5. master derivation of synthesis inequalities for single- and multi-objective controller design
6. construct LMI regions and understand synthesis with constraints on pole-locations
7. explain quadratic stability and its inherent conservatism
8. apply robust stability tests with parameter-dependent Lyapunov functions
9. describe multiplier relaxation for robust LMI problems and sketch theory of integral quadratic constraints
10. understand the difficulties of robust control design and
11. discuss design of gain-scheduling controllers by linear-parameter-varying controller synthesis

13. Inhalt:

Brief introduction to optimization theory (convexity, linear matrix inequalities)
Dissipation theory and nominal performance analysis for various criteria
From analysis in terms of linear matrix inequalities to controller synthesis: a general procedure
Design of multi-objective controllers (Youla Parametrization)
Robustness tests for time-varying parametric uncertainties
The multiplier approach to robustness analysis and integral quadratic constraints
Design of robust controllers: state-feedback, estimator design and output-feedback control
Linear-parametrically-varying systems and the design of linear parametrically-varying controllers

14. Literatur:
 - Folien und Skript

15. Lehrveranstaltungen und -formen:
 - 350002 Übung Linear Matrix Inequalities in Control
 - 350001 Vorlesung Linear Matrix Inequalities in Control

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 63 Stunden
 - Selbststudium: 207 Stunden
 - Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
 - 35001 Linear Matrix Inequalities in Control (PL), Mündlich, 40 Min., Gewichtung: 1
 - V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mathematische Systemtheorie
Modul: 35100 Seminar zur Numerischen Mathematik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Kunibert Gregor Siebert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule |
| 11. Empfohlene Voraussetzungen: | empfohlen: Mindestens eine Mastervorlesung zur Numerischen Mathematik |
| 13. Inhalt: | Aktuelle Forschungsthemen zur Numerischen Mathematik |
| 15. Lehrveranstaltungen und -formen: | • 351001 Seminar zur Numerischen Mathematik |
| 16. Abschätzung Arbeitsaufwand: | Insgesamt 180 Stunden, die sich wie folgt ergeben
Präsenzzeit: 21 h
Selbststudium: 159 h |
| 17. Prüfungsnummer/n und -name: | 35101 Seminar zur Numerischen Mathematik (LBP), Mündlich, 90 Min., Gewichtung: 1
LBP (Vortrag über 90 Minuten mit Ausarbeitung) |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: | Angewandte Mathematik/Numerik für Höchstleistungsrechner |
Modul: 35260 Computational Linguistics Seminar A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jonas Kuhn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozente:</td>
<td>lectureres of the institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>as in the course chosen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students become familiar with an advanced topic area of computational linguistics and at the same time develop their oral presentation skills and scientific writing skills, they practise self-organized work in an independent study and train their competence to put specific scientific contributions in a broader context and provide a critical discussion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>This module consists of (1) a course in an advanced topic area of computational linguistics (comprising 2 SWS) and (2) students’ independent studies (and/or practical implementation) of a specific thematic complex from the area covered in the course. The investigations are usually conveyed in a student presentation during the course and in some cases written up as a seminar paper. NOTE: The instructor of the course chosen has to agree AT THE BEGINNING OF THE COURSE to the option of using the course as part of the seminar module; this course can then not be used for any other modules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>as in the course chosen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 352601 Vorlesung Computational Linguistics Seminar A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>35261 Computational Linguistics Seminar A (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Grundlagen der Computerlinguistik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 35810 Computational Biochemistry

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Jürgen Pleiss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Pleiss, Johannes Kästner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

12. Lernziele:
The students know widely used bioinformatics methods to analyse protein sequences and to model protein structures. They are able to apply these methods to simple problems by using biological databases and bioinformatics tools, and to present and discuss the results in written and in oral form. They understand the basic concepts of the description of proteins by force fields. They know system properties that can be modelled by molecular dynamics simulations, and know the respective methods. They know the biochemical properties that can be modelled by QM/MM simulations. They know how molecular mechanics and molecular docking are applied to predict protein-ligand-complexes.

13. Inhalt:
- Biological databases (sequence and structure of proteins)
- Sequence alignment
- Phylogenetic analysis
- Patterns, profiles, domains
- Protein architectures and protein folding
- Modelling of protein structure
- Molecular dynamics simulation
- Force fields for proteins and ligands
- QM/MM simulations
- Docking of proteins and ligands

14. Literatur:
- Durbin, Eddy, Krogh, Mitchison Biological Sequence Analysis
- Leach Molecular Modelling

15. Lehrveranstaltungen und -formen:
- 358101 Vorlesung Bioinformatik 1
- 358102 Vorlesung Simulation von Proteinen
- 358103 Übung Simulation von Proteinen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 Stunden
- Selbststudium: 124 Stunden
- Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>35811 Computational Biochemistry (BSL), Schriftlich oder Mündlich, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Technische Biochemie</td>
</tr>
</tbody>
</table>
Modul: 35820 Advanced Methods of Quantum Chemistry

2. Modulkürzel: 031110052
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Köhn
9. Dozenten: Andreas Köhn
Johannes Kästner
Hans-Joachim Werner

M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

11. Empfohlene Voraussetzungen: Vorlesung Theoretische Chemie,
Vorlesung Computational Chemistry

12. Lernziele: The students

- Know the most important methods of quantum chemistry.
- Are able to choose for a given simulation task an appropriate method.
- Can judge the computational effort and the accuracy of different methods.
- Understand the physical and mathematical foundations of important quantum chemical methods.

14. Literatur:
R. McWeeny, Methods of Molecular Quantum Mechanics, second edition, 1989

15. Lehrveranstaltungen und -formen:
- 358201 Vorlesung Fortgeschrittene Methoden der Quantenchemie
- 358202 Übung Fortgeschrittene Methoden der Quantenchemie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>35821 Advanced Methods of Quantum Chemistry (BSL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Theoretische Chemie</td>
</tr>
</tbody>
</table>
Modul: 35850 Group Theory and Molecular Spectroscopy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Guntram Rauhut</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students will understand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• basics and applications of group theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• the quantum chemical simulation of molecular spectra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• the calculation of spectra with the help of quantum chemical software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Group theory:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basics: Symmetry and point groups, mathematical basis, matrix representations, irreducible representations, character table, reduction of representations, direct products, vanishing integrals and selection rules, projection operators, symmetry adapted bases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications: Hückel Theory, Crystal Field Theory, vibrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theoretical spectroscopy of molecules:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection between molecular properties and gradients, coordinate systems (separation of rotation and vibration), potential energy surface generation, vibrational spectroscopy (harmonic and variational anharmonic approaches), vibration correlation methods, calculation of electronic excitation energies, multi-reference methods (MCSCF), transition moments, calculation of vibronic transitions (Franck-Condon factors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Atkins, Friedman, "Molecular Quantum Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cotton, "Chemical Applications of Group Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jensen, "Introduction to Computational Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 358501 Lecture Group Theory and Molecular Spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 358502 Exercise Group Theory and Molecular Spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzeit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Group Theory and Molecular Spectroscopy, lecure: 3 SWS x 14 Wochen = 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Exercises: 1 SWS x 14 Wochen = 14 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2 h pro Präsenzstunde = 112 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abschlussprüfung incl. Vorbereitung: 12 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 17. Prüfungsnummer/n und -name: | 35851
Group Theory and Molecular Spectroscopy (BSL), Schriftlich oder Mündlich, Gewichtung: 1 |
|-----------------------------|----------------------------------|

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Theoretische Chemie
Modul: 35860 Molecular Quantum Mechanics

2. Modulkürzel: 031100055
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Köhn

9. Dozenten: Johannes Kästner
Andreas Köhn

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
The students:
Understand the techniques used in quantum theory
Can solve Schrödinger's equation for special one-dimensional problems
Understand the quantization of the angular momentum and its additions
Can derive and apply perturbation theory
Know the consequences of relativity on quantum-mechanical systems
Are able to calculate reaction rates by using transition state theory
Understand the basis of scattering theory

13. Inhalt:
Chemical Kinetics and Tunneling: partition functions, transition state theory, RRKM, wave packets, one-dimensional potential problems, basis of scattering theory, Feynman path integrals and instanton theory. Other topics in theoretical chemistry.

14. Literatur:
• Atkins, Molecular Quantum Mechanics
• Cohen-Tannoudji, Quantum Mechanics

15. Lehrveranstaltungen und -formen:
• 358601 Lecture Molecular Quantummechanics
• 358602 Exercise Molecular Quantummechanics

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>35861 Molecular Quantum Mechanics (BSL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Theoretische Chemie</td>
</tr>
</tbody>
</table>
Modul: 36010 Simulation Methods in Physics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081800013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Ph.D. Christian Holm

9. Dozenten: Christian Holm, Maria Fyta

11. Empfohlene Voraussetzungen:
- Fundamental Knowledge of theoretical and experimental physics, in particular Thermodynamics and Statistical Physics.
- Unix basics
- Basic Programming skills in C and Python
- Basics of Numerical Mathematics

12. Lernziele:
The goal is to obtain a thorough understanding of numerical methods for simulating physical phenomena of classical and quantum systems. Afterward, the participants shall be able to autonomously apply simulation methods to a given problem. The tutorials also support media- and methodological skills.

13. Inhalt:
Simulation Methods in Physics 1 (2 SWS Lecture + 2 SWS Tutorials in Winter Term)
Homepage (Winter Term 2016/2017):
https://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_I_WS_2016/2017
- History of Computers
- Finite-Element-Method
- Molecular Dynamics (MD)
 - Integrators
 - Different Ensembles: Thermostats, Barostats
 - Observables
- Simulation of quantum mechanical problems
 - Solving the Schrödinger equation
 - Lattice models, Lattice gauge theory
- Monte-Carlo-Simulations (MC)
- Spin Systems, Critical Phenomena, Finite Size Scaling
- Statistical Errors, Autocorrelation

Simulation Methods in Physics 2 (2 SWS Lecture in Summer Term)
- Ab-initio MD
- Advanced MD methods
- Implicit solvent models
- Hydrodynamic interactions
- Electrostatic interactions
- Coarse-graining
- Advanced MC methods
- Computing free energies
If desired, you can attend to the lab 04563 Simulation Methods in Practice of the MSc Module Advanced Simulation Methods in parallel to this lecture, which then counts as preponed course from the MSc module.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 360101 Vorlesung Simulationsmethoden in der Physik I
- 360102 Vorlesung Simulationsmethoden in der Physik II
- 360103 Übung Simulationsmethoden in der Physik I
- 360104 Übung Simulationsmethoden in der Physik II

16. Abschätzung Arbeitsaufwand:
- Lecture Simulation Methods in Physics 1: 28h Attendance, 56h Home work
- Tutorials Simulation Methods in Physics 1: 28h Attendance, 68h Doing the Exercises
- Lecture Simulation Methods in Physics 2: 28h Attendance, 62h Home work

Total: 270h

17. Prüfungsnummer/n und -name:
- 36011 Simulation Methods in Physics (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
- Vorleistung (USL-V), Sonstige schriftlich (120 min) oder mündlich (60 min)

18. Grundlage für ...:
Fortgeschrittene Simulationsmethoden (Schwerpunkt) Advanced Simulation Methods

19. Medienform:

20. Angeboten von:
Computerphysik
Modul: 36100 Programmierparadigmen

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Erhard Plödereder
9. Dozenten: Erhard Plödereder

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

12. Lernziele:

13. Inhalt:
 Überblick typischer Konzepte in Programmiersprachen und ihrer Auswirkungen auf die Sprache und deren Anwendung:
 • Grundsätzliche Ausführungsmodelle
 • Speichermodelle und deren Konsequenzen
 • Datentypen und Typsysteme
 • unterschiedliche Bindungskonzepte und ihre Auswirkungen
 • objekt-orientierte Sprachkonzepte
 • Abstraktion und Kompositionsmechanismen
 • funktionale Sprachen.
 • Eventuell werden auch Elemente der parallelen Programmierung und der Logik-Programmierung mit einbezogen. Die Vorlesung ist kein Streifzug durch diverse Programmiersprachen, sondern die Vorstellung zugrundeliegender Prinzipien, und ihrer Begründung aus der Sicht des Software Engineering, insbesondere der Zuverlässigkeit der Anwendung, und, wo nötig, der Implementierungsmodelle.

14. Literatur:
 • Sebesta, Robert, Concepts of Programming Languages, Pearson Verlag, 2010 (Hörerschein verfügbar).
 • weitere Literatur wird zu Beginn der Lehrveranstaltung und auf den Webseiten bekanntgegeben.

15. Lehrveranstaltungen und -formen:
 • 361001 Vorlesung Programmierparadigmen
 • 361002 Übung Programmierparadigmen

16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name:
 • 36101 Programmierparadigmen (PL), Schriftlich, 90 Min., Gewichtung: 1
 • Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
 Programmiersprachen und Übersetzerbau
Modul: 36360 Qualitätsmanagement

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Alexander Schloske

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden kennen die modernen Qualitätsmanagement-Systeme und Qualitätsmanagement-Methoden und können diese beurteilen sowie deren Anwendungsbereiche entlang des Produktlebenslaufes aufzeigen.

13. Inhalt:
 Übung: 7 Qualitätsmanagement-Tools, 7 Management-Tools, Quality Function Deployment (QFD), Fehlermöglichkeiten- und Einflussanalyse (FMEA), Stichprobenprüfung, Statistische Prozessregelung (SPC)

14. Literatur:
 • Folien und Skriptum der Vorlesung
 Standardliteratur zum Thema Qualitätsmanagement:
15. Lehrveranstaltungen und -formen:
- 363601 Vorlesung Qualitätsmanagement
- 363602 Übung Qualitätsmanagement

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
36361 Qualitätsmanagement (PL), Schriftlich, 120 Min., Gewichtung: 1
Die Teilnahme an den Übungen ist verpflichtend

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Industrielle Fertigung und Fabrikbetrieb
Modul: 36900 Molekulare Thermodynamik

2. Modulkürzel: 042100008
5. Moduldaeu: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß

9. Dozenten: Joachim Groß

M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: inhaltlich: Technische Thermodynamik I und II, Technische Mechanik, Höhere Mathematik formal: Bachelor-Abschluss

12. Lernziele:
Die Studierenden können molekulare Modelle und in den Ingenieurswissenschaften erforderlichen makroskopischen Stoffeigenschaften kombinieren und dieses Wissen in die Gestaltung optimaler Prozesse einfließen lassen.

• können die grundlegenden Arbeitsmethoden der molekularen Thermodynamik anwenden, beurteilen und bewertend miteinander vergleichen.

• können die Auswirkungen molekularer Parameter auf makroskopische, thermodynamische Größen beschreiben und identifizieren und sind damit befähigt Methoden aus der angrenzenden Disziplin der statistischen Physik anzuwenden um daraus eigene Lösungsansätze für thermodynamische Ingenieursprobleme zu generieren.

• können, ausgehend von den verschiedenen intermolekularen Wechselwirkungstypen, wie Repulsion, Dispersion und Elektrostatik, durch Analyse und Beschreibung dieser Wechselwirkungen auch komplexe Probleme der theoretischen und angewandten Verfahrenstechnik und angrenzender Fachgebiete abstrahieren und diese darauf aufbauend modellieren, z.B. zur Entwicklung physikalisch-basierter Zustandsgleichungen, Beschreibung von Grenzflächen, Modellierung von Flüssigkristallen oder Polymerlösungen.

14. Literatur:

15. Lehrveranstaltungen und -formen: 369001 Vorlesung Molekulare Thermodynamik

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 28 h
 - Selbststudiumszeit / Nacharbeitszeit: 62 h
 - Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 - 36901 Molekulare Thermodynamik (BSL), Mündlich, 20 Min., Gewichtung: 1
 - Prüfungsvoraussetzung: (USL-V), schriftliche Prüfung

19. Medienform:
 - Entwicklung des Vorlesungsinhaltes als Tafelanschrieb, Beiblätter werden als Ergänzung zum Tafelanschrieb ausgegeben. Die Übung wird als Rechnerübung gehalten.

20. Angeboten von:
 - Thermodynamik und Thermische Verfahrenstechnik
Modul: 37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910092</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Alexander Verl</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Urs Schneider</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Einführung in die Orthopädie
• Bewegungserfassung, Bewegungssteuerung und Bewegungszerzeugung
• Anwendungen in der Prothetik, Orthetik und Rehabilitation. |
| 15. Lehrveranstaltungen und -formen: | • 372701 Vorlesung Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 37271 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation (BSL), Schriftlich oder Mündlich, Gewichtung: 1 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Fraunhofer Institut für Produktionstechnik und Automatisierung |
Modul: 37670 Nichtlineare Optimierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Werner Grimm</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Grimm</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Die Studierenden sind in der Lage, praktische Optimierungsprobleme in die Standardform eines nichtlinearen Parameteroptimierungsproblems zu überführen und die notwendigen und hinreichenden Bedingungen für die Lösung aufzustellen.
• Die Studierenden haben einen Überblick über die numerischen Lösungsverfahren für nichtlineare Parameteroptimierungsprobleme. Das betrifft insbesondere die einem Verfahren zugrunde liegende Entwurfsidee und die praktischen Vor- und Nachteile. |
| 13. Inhalt: | • das nichtlineare Parameteroptimierungsproblem: Aufgabenstellung und Beispiele
• notwendige und hinreichende Bedingungen für ein lokales Minimum
• numerische Verfahren für unbeschränkte Probleme (Gradientenverfahren, Newton- und Quasi-Newton-Verfahren usw.)
• numerische Verfahren für beschränkte Probleme (SQP-Verfahren usw.) |
| 14. Literatur: | • W. Grimm, K.H. Well: Nichtlineare Optimierung, Skript
• J.S. Arora, Introduction to Optimum Design, McGraw-Hill
• R. Fletcher, Practical Methods of Optimization, Wiley
• G.L. Nemhauser et al. (eds.), Optimization, Handbooks in Operations Research and Management Science, Vol. 1, North Holland
• Vortragsübungen im Netz |
| 15. Lehrveranstaltungen und -formen: | • 376702 Übung Nichtlineare Optimierung
• 376701 Vorlesung Nichtlineare Optimierung |
| 16. Abschätzung Arbeitsaufwand: | Nichtlineare Optimierung, Vorlesung: 28 h Präsenzzeit, 30 h Selbststudium
Nichtlineare Optimierung, Übung: 14 h Präsenzzeit, 18 h Selbststudium |
| 17. Prüfungsnummer/n und -name: | 37671 Nichtlineare Optimierung (PL), Schriftlich, 60 Min., Gewichtung: 1
Klausur mit allen Hilfsmitteln, 60 Min. |
| 18. Grundlage für ... : | Optimalsteuerung in der LRT |

Stand: 13. Dezember 2018
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz (Skript, alte Prüfungen, Foliensatz usw.) Matlab-Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Flugmechanik und Flugregelung</td>
</tr>
</tbody>
</table>
Modul: 38240 Simulation Methods in Physics for SimTech II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ph.D. Christian Holm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Holm, Maria Fyta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule aus BSc Simulation Technology --→ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule aus BSc Simulation Technology --→ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Contents of the Module "Simulationsmethoden in der Physik für SimTech I"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Thorough understanding of the methods for the simulation of physical phenomena of classical and quantum-mechanical systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Competence to autonomously use various simulation software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The lab sessions also supports the students' media competence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ab-initio MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Advanced MD Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Implicit Solvent Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methods for Hydrodynamic Interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methods for Electrostatic Interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coarse-graining</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Advanced MC Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Computing Free Energies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 382401 Lecture Simulation Methods in Physics for SimTech II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 382402 Tutorial Simulation Methods in Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tutorial Simulation Methods in Practice: 28h Attendance, 68h Tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum: 180h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name:
• 38241 Simulation Methods in Physics for SimTech II (PL), Mündlich,
 40 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
 50% der Punkte in den Übungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Computerphysik
Modul: 38720 Meteorologie

2. Modulkürzel: 042500051
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Ulrich Vogt

M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Keine

12. Lernziele: Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt einwirken (Wasser, Vegetation) erforderlich sind.

13. Inhalt: In der Vorlesung "Meteorologie werden die folgenden Themen behandelt:
• Strahlung und Strahlungsbilanz,
• Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Wind) und ihre Messung,
• allgemeine Gesetze,
• Aufbau der Erdatmosphäre,
• klein- und großräumige Zirkulationssysteme in der Atmosphäre,
• Wetterkarte und Wettervorhersage,
• Ausbreitung von Schadstoffen in der Atmosphäre,
• Stadtklimatologie,
• Globale Klimaveränderungen und ihre Auswirkungen, "Ozonloch.

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: • 387201 Vorlesung Meteorologie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeit: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 38721 Meteorologie (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, ILIAS
20. Angeboten von: Thermische Kraftwerkstechnik
Modul: 38780 Systemdynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Pflichtmodule Mathematik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende • kann lineare dynamische Systeme analysieren, • kann lineare dynamische Systeme auf deren Struktureigenschaften untersuchen • kennt den mathematisch-methodischen Hintergrund zur Systemdynamik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Einführung mathematischer Modelle, vertiefte Darstellung zur Analyse im Zeitbereich, vertiefte Darstellung zur Analyse im Frequenzbereich/Bildbereich, Integraltransformation</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 387801 Vorlesung Systemdynamik • 387802 Übung Systemdynamik</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>38781 Systemdynamik (BSL), Schriftlich, 90 Min., Gewichtung: 1 Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht-elektronischen Hilfsmittel</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jörg Wrachtrup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gert Denninger, Peter Michler, Harald Gießen, Jörg Wrachtrup</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Inhalte der Module Experimentalphysik I - IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden sollen grundlegende Kenntnisse im Bereich der Molekül- und Festkörperphysik erwerben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Molekülphysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrische und magnetische Eigenschaften der Moleküle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chemische Bindung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Molekülpektroskopie (Rotation- und Schwingungsspektren)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektronenzustände und Molekülpektren (Franck-Condon Prinzip, Auswahlregeln)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festkörperphysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bindungsverhältnisse in Kristallen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reziprokes Gitter und Kristallstrukturanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kristallwachstum und Fehlordnung in Kristallen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gitterdynamik (Phononenspektroskopie, Spezifische Wärme, Wärmeleitung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fermi-Gas freier Elektronen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energiebänder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Halbleiterkristalle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Haken/Wolf, Molekülphysik und Quantenchemie, Springer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Atkins, Friedmann, Molecular Quantum Mechanics, Oxford</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kittel, Einführung in die Festkörperphysik, Oldenbourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ibach/Lüth, Festkörperphysik, Einführung in die Grundlagen, Springer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ashcroft/Mermin, Festkörperphysik, Oldenbourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kopitzki/Herzog, Einführung in die Festkörperphysik, Teubner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 393701 Vorlesung Grundlagen der Experimentalphysik V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 393702 Übung Grundlagen der Experimentalphysik V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 84 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 186 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 270 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
17. Prüfungsnummer/n und -name: • V Vorleistung (USL-V), Schriftlich oder Mündlich
 • 39372 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Overhead, Projektion, Tafel, Demonstration

20. Angeboten von: Halbleiteroptik und Funktionelle Grenzflächen
Modul: 39390 Theoretische Physik II: Quantenmechanik

2. Modulkürzel: 082210002
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Moduldauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Maria Daghofer
9. Dozenten: Siegfried Dietrich
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
12. Lernziele: Erwerb eines gründlichen Verständnisses der fundamentalen Begriffe der Quantenmechanik
13. Inhalt: * Wellenmechanik * Mathematisches Schema der Quantenmechanik * Die Prinzipien der Quantenmechanik * Der Drehimpuls * Teilchen im Zentralpotential
15. Lehrveranstaltungen und -formen: • 393901 Vorlesung Theoretische Physik II: Quantenmechanik
• 393902 Übung Theoretische Physik II: Quantenmechanik
16. Abschätzung Arbeitsaufwand: 270 h
17. Prüfungsnummer/n und -name: • V Vorlesung (USL-V), Schriftlich und Mündlich
• 39392 Theoretische Physik II: Quantenmechanik (PL), Schriftlich, 180 Min., Gewichtung: 1
Vorlesung ist Bestehen der Übungen: Übungsaugaben mit Tafelvortrag + 120-minütige unbenotete Scheinklausur
Damit kann zur Vorlesungsprüfung (Schriftlich, 180 Minuten) angetreten werden
18. Grundlage für ... : Theoretische Physik III: Elektrodynamik Theoretische Physik IV: Statistische Mechanik
19. Medienform: Tafelanschrieb
20. Angeboten von: Theoretische Physik
Modul: 39400 Theoretische Physik III: Elektrodynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Siegfried Dietrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Siegfried Dietrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
> M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
> M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
> M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule |
| 11. Empfohlene Voraussetzungen: | Modul Theoretische Physik I: Klassische Mechanik
> Modul Theoretische Physik II: Quantenmechanik |
| 12. Lernziele: | Erwerb eines gründlichen Verständnisses der mathematisch-quantitativen Beschreibung der Elektrodynamik und Befähigung zu selbständigen Anwendungen der erlernten Rechenmethoden |
| 13. Inhalt: | 1) Elektromagnetisches Feld
> 2) Statische Felder, Elektromagnetische Wellen
> 3) Spezielle Relativitätstheorie
> 4) Strahlung beschleunigter Teilchen |
| 14. Literatur: | • Jackson, „Klassische Elektrodynamik“
> • Landau-Lifschitz: „Lehrbuch der Theoretischen Physik“, Band 2: Klassische Feldtheorie, Band 8: Elektrodynamik der Kontinua |
| 15. Lehrveranstaltungen und -formen: | • 394001 Vorlesung Theoretische Physik III: Elektrodynamik
> • 394002 Übung Theoretische Physik III: Elektrodynamik |
| 16. Abschätzung Arbeitsaufwand: | 270 Stunden |
| 17. Prüfungsnummer/n und -name: | • V Vorlesung (USL-V), Schriftlich oder Mündlich
> • 39402 Theoretische Physik III: Elektrodynamik (PL), Schriftlich, 180 Min., Gewichtung: 1
> Übungsaufgaben mit Tafelvortrag |
| 18. Grundlage für ... : | Theoretische Physik IV: Statistische Mechanik |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Theoretische Physik III |
Modul: 39410 Theoretische Physik IV: Statistische Mechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>082410410</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Siegfried Dietrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Udo Seifert</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | Modul Theoretische Physik I: Klassische Mechanik
Modul Theoretische Physik II: Quantenmechanik
Modul Theoretische Physik III: Elektrodynamik |
| 12. Lernziele: | Erwerb eines gründlichen Verständnisses der mathematisch-quantitativen Beschreibung der Statistischen Physik und Befähigung zu selbständigen Anwendungen der erlernten Rechenmethoden |
| 13. Inhalt: | • Grundbegriffe der Wahrscheinlichkeitsstatistik: Verteilungen, Mittelwerte, Momente
• Grundzüge der Statistischen Physik: Mikro- und Makrozustand, Entropie, Hauptsätze, Ensembles
• Klassische Thermodynamik: Prozesse, Potentiale, Responsegrößen
• Anwendungen: Klassische Gase, Quantengase, Spinsysteme, Phasendiagramme, Phasenübergänge
• Grundzüge der Transporttheorie: Diffusion, Langevin- und Fokker-Planck-Gleichung |
| 14. Literatur: | Auswahl:
• Thermodynamik, Kittel und Kroemer, Oldenbourg (2001).
• Thermal Physics, Baielkin, Cambridge (1999).
• Statistische Physik, Fliessbach, Spektrum (1999).
• Statistische Mechanik, Schwabl, Springer (2000).
• Statistical and Thermal Physics, Gould and Tobochnik, Princeton (2010).
| 15. Lehrveranstaltungen und -formen: | • 394101 Vorlesung Theoretische Physik IV: Statistische Mechanik
• 394102 Übung Theoretische Physik IV: Statistische Mechanik |
| 16. Abschätzung Arbeitsaufwand: | 270 Stunden |
| 17. Prüfungsnummer/n und -name: | • V Vorleistung (USL-V), Schriftlich oder Mündlich
• 39412 Theoretische Physik IV: Statistische Mechanik (PL), Schriftlich, 180 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
20. Angeboten von: Theoretische Festkörperphysik
Modul: 40010 Analytische und Numerische Methoden in der LRT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Claus-Dieter Munz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Claus-Dieter Munz Bernhard Weigand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>MatLab-Kenntnisse, Kenntnisse in der numerische Mathematik für Ingenieure, wie sie im Rahmen des Moduls Numerische Simulation (060100001) des Bachelor-Studienganges Luft- und Raumfahrttechnik erworben werden.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen: • 400101 Vorlesung mit Übungen Analytische und numerische Methoden
 • 400102 Tutorium Analytische und numerische Methoden

16. Abschätzung Arbeitsaufwand: Analytische und numerische Methoden, Vorlesung: 120 h (Präsenzzeit 56 h, Selbststudium 64 h)
 Tutorium: 60 h (Präsenzzeit 28 h, Selbststudium 32 h)

17. Prüfungsnr/n und -name: 40011 Analytische und Numerische Methoden in der LRT (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Numerische Methoden der Strömungsmechanik
Modul: 40520 Simulation Methods in Physics for SimTech I

4. SWS: 4 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Ph.D. Christian Holm
9. Dozenten: Christian Holm
 Maria Fyta

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:
 • Fundamental Knowledge of theoretical and experimental physics, in particular Thermodynamics and Statistical Physics.
 • Unix basics
 • Basic Programming skills in C and Python
 • Basics of Numerical Mathematics

12. Lernziele:
 The goal is to obtain a thorough understanding of numerical methods for simulating physical phenomena of classical and quantum systems. Afterward, the participants shall be able to autonomously apply simulation methods to a given problem. The tutorials also support media- and methodological skills.

13. Inhalt:
 Simulation Methods in Physics 1 (2 SWS Lecture + 2 SWS Tutorials in Winter Term)
 Homepage (Winter Term 2016/2017):
 https://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Physics_I_WS_2016/2017
 • History of Computers
 • Finite-Element-Method
 • Molecular Dynamics (MD)
 • Integrators
 • Different Ensembles: Thermostats, Barostats
 • Observables
 • Simulation of quantum mechanical problems
 • Solving the Schrödinger equation
 • Lattice models, Lattice gauge theory
 • Monte-Carlo-Simulations (MC)
 • Spin Systems, Critical Phenomena, Finite Size Scaling
 • Statistical Errors, Autocorrelation

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 405201 Lecture Simulation Methods in Physics for SimTech I
 • 405202 Exercise Simulation Methods in Physics for SimTech I

16. Abschätzung Arbeitsaufwand:
 • Lecture Simulation Methods in Physics 1: 28h Attendance, 56h Home work
 • Tutorials Simulation Methods in Physics 1: 28h Attendance, 68h Doing the Exercises

Stand: 13. Dezember 2018
Total: 180h

17. Prüfungsnummer/n und -name:
 • 40521 Simulation Methods in Physics for SimTech I (BSL), Mündlich, 40 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Sonstige 50% der Punkte aus den Übungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Computerphysik
Modul: 40680 Optimization

2. Modulkürzel: 051200113

5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Unregelmäßig

4. SWS: 4

7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint

9. Dozenten: Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:

 - M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 - M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Solid basic knowledge in linear algebra and analysis. Basic programming skills.

12. Lernziele:

 Students will learn to identify, mathematically formalize, and derive algorithmic solutions to optimization problems as they occur in nearly all disciplines, e.g. Machine Learning, Combinatorial Optimization, Computer Vision, Robotics, Simulation. The focus will be on continuous optimization problems (including as they arise from relaxations of discrete problems), including convex problems, quadratic and linear programming, but also non-linear black-box problems. The goal is to give an overview of the various approaches and mathematical formulations and practical experience with the basic paradigms.

13. Inhalt:

 Optimization is one of the most fundamental tools of modern sciences. Many phenomena -- be it in computer science, artificial intelligence, logistics, physics, finance, or even psychology and neuroscience -- are typically described in terms of optimality principles. The reason is that it is often easier to describe or design an optimality principle or cost function rather than the system itself. However, if systems are described in terms of optimality principles, the computational problem of optimization becomes central to all these sciences.

 This lecture aims give an overview and introduction to various approaches to optimization together with practical experience in the exercises. The focus will be on continuous optimization problems and we will cover methods ranging from standard convex optimization and gradient methods to non-linear black-box problems (evolutionary algorithms) and optimal global optimization. Students will learn to identify, mathematically formalize, and derive algorithmic solutions to optimization problems as they occur in nearly all disciplines. A preliminary list of topics is:

 - gradient methods, log-barrier, conjugate gradients, Rprop
 - constraints, KKT, primal/dual
 - Linear Programming, simplex algorithm
 - (sequential) Quadratic Programming
 - Markov Chain Monte Carlo methods
 - 2nd order methods, (Gauss-)Newton, (L)BFGS
 - blackbox stochastic search, including a discussion of evolutionary algorithms

14. Literatur:
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>• 406801 Vorlesung mit Übungen Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>40681 Optimization (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Maschinelles Lernen und Robotik</td>
</tr>
</tbody>
</table>
Modul: 41500 Fortgeschrittene Vielteilchentheorie

2. Modulkürzel: 082000402
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Udo Seifert

9. Dozenten: Maria Daghofer
Hans Peter Büchler
Udo Seifert

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Quantenmechanik u. Elektrodynamik aus dem Bachelor-Studiengang

12. Lernziele:
Vorlesung und Übung:

* Erwerb eines gründlichen Verständnisses der fundamentalen Konzepte und Anwendungen der fortgeschrittenen Quantenmechanik.

* Befähigung zur mathematischen Behandlung und Lösung von Aufgaben der fortgeschrittenen Quantenmechanik.

13. Inhalt:
1) Zeitabhängige Störungstheorie
2) Relativistische Quantenmechanik
3) Zweite Quantisierung. Quantenfeldtheorie
4) Das Fermigas und die Fermi-Flüssigkeit
5) Bose-Einstein-Kondensation. Suprafluidität

14. Literatur:
wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
• 415001 Vorlesung Fortgeschrittene Vielteilchentheorie
• 415002 Übung Fortgeschrittene Vielteilchentheorie

16. Abschätzung Arbeitsaufwand:

Vorlesung:
Präsenzstunden: 3 h (4 SWS) * 14 Wochen = 42h
Vor- und Nachbereitung: 2 h pro Präsenzstunde = 84h

Übungen:
Präsenzstunden: 1.5 h (2 SWS) * 14 Wochen = 21h
Vor- und Nachbereitung: 3 h pro Präsenzstunde = 63h
Prüfung inkl. Vorbereitung = 70h

Gesamt: 280h

17. Prüfungsnummer/n und -name:
• 41501 Fortgeschrittene Vielteilchentheorie (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Theoretische Physik III
Modul: 41630 Mathematisches Seminar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Christian Rohde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Zulassungsvoraussetzung: Orientierungsprüfung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Fähigkeit zur Erarbeitung der Inhalte eines mathematischen Textes. • Fähigkeit zum freien Vortrag über den Inhalt. • Stärkung der Diskussionsfähigkeit zu mathematischen Themen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die Themen werden zu allen am Fachbereich vertretenen Themenbereichen vergeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Wird zu jeder Lehrveranstaltung einzeln bekannt gegeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 416301 Mathematisches Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>41631 Mathematisches Seminar (BSL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Stochastik und Anwendungen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 41880 Grundlagen der Bionik

2. Modulkürzel: 072910094
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Michael Seyfarth
9. Dozenten: Oliver Schwarz

 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen: Keine

13. Inhalt:

• Geschichte der Bionik
• Evolution und Optimierung in Biologie, und Technik
• Modellbildung, Analogiebildung, Transfer in die Technik
• Bionik als Kreativitätstechnik
• Biologische Materialien und Strukturen
• Formgestaltung und Design
• Konstruktionen und Geräte
• Bau und Klimatisierung
• Robotik und Lokomotion
• Sensoren und neuronale Steuerungen
• Biomedizinische Technik
• System und Organisation

14. Literatur:

Weitere Literatur wird in der Vorlesung bekanntgegeben

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 28 Stunden
 Selbststudium: 52 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 41881 Grundlagen der Bionik (BSL), Schriftlich, 60 Min., Gewichtung: 1
18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 42410 Grundlagen des Wissenschaftlichen Rechnens

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Dirk Pflüger

11. Empfohlene Voraussetzungen:

- Modul 10190 Mathematik für Informatiker und Softwaretechniker
- Module 78680 Statistische und Stochastische Grundlagen und 78670 Numerische Grundlagen bzw. eines der früheren Module 10240 Numerische und Stochastische Grundlagen der Informatik oder 41590 Einführung in die Numerik und Stochastik für Softwaretechniker

13. Inhalt:

- Überblick über die Simulationspipeline und die Wechselwirkungen zwischen den einzelnen Schritten
- Skalenabhängige Modellierung
- Diskretisierung (Gitter, Finite Elemente, Zeitschrittverfahren)
- Algorithmen (Gittergenerierung, Adaptivität, Lineare Löser, Linked-Cell, Fast Multipole)
- Parallelisierung (Gitterpartitionierung, Lastbalancierung)
- Kurzer Überblick über die Visualisierung

15. Lehrveranstaltungen und -formen:

- 424101 Vorlesung Grundlagen des Wissenschaftlichen Rechnens
- 424102 Übung Grundlagen des Wissenschaftlichen Rechnens

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 42411 Grundlagen des Wissenschaftlichen Rechnens (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

[42411] Grundlagen des Wissenschaftlichen Rechnens (PL), schriftlich oder mündlich, 90 Min., Gewicht: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Simulation Software Engineering
Modul: 42420 High Performance Computing

2. Modulkürzel: 051240040
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dirk Pflüger

9. Dozenten: Martin Bernreuther
 Miriam Mehl
 Dirk Pflüger

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972Eio2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972Eio2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
 • Modul 10190 Mathematik für Informatiker und Softwaretechniker und
 • Modul 10240 Numerische und Stochastische Grundlagen der Informatik bzw.
 • Modul 41590 Einführung in die Numerik und Stochastik für Softwaretechniker

12. Lernziele:
 • Fähigkeit, parallele Algorithmen auf unterschiedlichen parallelen Plattformen mit Hilfe geeigneter algorithmischer Modelle zu bewerten.
 • Kenntnis verschiedener Programmiermodelle für Parallelrechner mit verteiltem und gemeinsamem Speicher.
 • Fähigkeit, auch fortgeschrittene Implementierungsaufgaben aus dem Bereich des Höchstleistungsrechnens auf Basis ausgewählter Programmiermodelle zu bewältigen.

13. Inhalt:
Algorithmen und Implementierungstechniken als Beispiele behandelt, z.B. parallele Algorithmen aus der linearen Algebra (Matrixmultiplikation, etc. oder einfache Verfahren zur Lösung partieller Differentialgleichungen). Zusätzlich können Themen wie Lastverteilung und Lastbalancierung (Grundlagen, Algorithmen zur Partitionierung und Lastbalancierung, etc.) vorgestellt werden.

14. Literatur:

- D. Kirk, W.-M. Hwu Programming Massively Parallel Processors.

15. Lehrveranstaltungen und -formen:

- 424201 Vorlesung High Performance Computing
- 424202 Übung High Performance Computing

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

42421 High Performance Computing (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
[42421] High Performance Computing (PL), schriftlich oder mündlich, 90 Min., Gewicht: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Simulation Software Engineering
Modul: 42480 Ausgewählte Kapitel des Wissenschaftlichen Rechnens

2. Modulkürzel: 051240030
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulda: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dirk Pflüger
9. Dozenten: Miriam Mehl
 Dirk Pflüger
 Stefan Zimmer
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 → Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 → Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 → Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 → Zusatzmodule
11. Empfohlene Voraussetzungen:
 • Modul 10190 Mathematik für Informatiker und Softwaretechniker
 • Modul 10240 Numerische und Stochastische Grundlagen der Informatik bzw.
 • Modul 41590 Einführung in die Numerik und Stochastik für Softwaretechniker
 • Modul 42410 Grundlagen des wissenschaftlichen Rechnens
12. Lernziele:
 Die Teilnehmer kennen ausgewählte aktuelle Forschungsthemen des wissenschaftlichen Rechnens und können mit der zugehörigen Primärliteratur arbeiten.
13. Inhalt:
14. Literatur:
 Primärliteratur zu den behandelten Themen:
 • Quarteroni: Numerical models for differential problems.
15. Lehrveranstaltungen und -formen:
 • 424801 Vorlesung Ausgewählte Kapitel des Wissenschaftlichen Rechnens
 • 424802 Übung Ausgewählte Kapitel des Wissenschaftlichen Rechnens
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 42481 Ausgewählte Kapitel des Wissenschaftlichen Rechnens (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
 42481 Ausgewählte Kapitel des Wissenschaftlichen Rechnens (PL), schriftlich oder mündlich, 90 Min., Gewicht: 1.0
18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Simulation Software Engineering
Modul: 42900 Business Process Management

2. Modulkürzel: 052010011
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Leymann

9. Dozenten: Frank Leymann

M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen: Grundlagen der Architektur von Anwendungssystemen, Vorlesung mit Übung, 4 SWS

12. Lernziele: The course has the objective to provide knowledge about the essentional modelling constructs for workflows and their mapping to corresponding workflow languages. In addition, the life cycle of Workflow-based applications will be presented in detail and connected to the Architecture of Workflow Management Systems, which will also be presented. Moreover, the goal is to enable students to use workflow languages (in particular BPEL) in practice. In this respects students will also understand the fundamental approach process graphs, which is applied in workflow languages. Of great importance are , mechanisms for fault handling and exception handling - these will be explained in detail and students will be able to apply them.

13. Inhalt: Workflows are IT realisations of business processes and are also considered an approach of significant importance for composition of applications. This course will introduce the foundations of this area, also known as Business Process Management BPM).
1) Historical Development of the Workflow Technology
2) Business Re-engineering (BPM Lifecycle, Tools,...)
3) Architecture of WFMS (Navigator, Executor, Worklist Manager,...)
4) Flow Languages (FDL, BPEL)
5) Process Model Graph (mathematical meta-model: syntax, operational semantics)
6) Advanced functions (sub-processes, event handling, instance modifications, adaptation)
7) Two-level programming paradigm
8) Transactional support in workflows

• W. van der Aalst, K. van Hee, Workflow Management, 2002

15. Lehrveranstaltungen und -formen: • 429001 Vorlesung mit Übungen, Workflow Management 1

16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 42901 Business Process Management (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
schriftlich (60 min) oder mündlich (20 min)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Architektur von Anwendungssystemen
Modul: 43590 Antikörper Engineering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>13</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Roland Kontermann

9. Dozenten: Roland Kontermann, Dafne Müller

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden besitzen detaillierte Kenntnisse im Bereich des Antikörper Engineerings und können die Struktur und Funktion von Antikörpern sowie deren Entstehung erklären.

Die Studierenden können Methoden zur Gewinnung monoklonaler und rekombinanter Antikörper theoretisch anwenden und Lösungen zu deren Optimierung aufzeigen.

Die Studierenden können die molekularen Grundlagen sowie die therapeutischen Potentiale gentechnisch modifizierter Antikörper diskutieren und dieses Wissen auf ausgewählte Indikationen, z.B. Onkologie und Entzündung übertragen und anwenden.

Die Studierenden können wichtige Schritte zur Generierung gentechnisch hergestellter Antikörper identifizieren und ihre praktisch erworbenen Fertigkeiten für die Herstellung, Produktion und Charakterisierung rekombinanter Antikörper anwenden.

13. Inhalt:

Praxis: Computeranalyse von Antikörpersequenzen und -strukturen, Produktion rekombinanter Antikörper in E. coli und Säugetierzellen, Reinigung, Biochemische und Immunologische Charakterisierung, in vitro Funktionstests, Selektion von neuen Antikörpern mittels Phagen-Display.

14. Literatur:
- Skript zur Vorlesung Antikörper Engineering und zum Praktikum
- Aktuelle Publikationen aus dem Bereich des Antikörper Engineerings
- Lehrbuch: Immunbiologie (Vollmar und Dingermann), Wissenschaftliche Verlagsgesellschaft Stuttgart

15. Lehrveranstaltungen und -formen:
- 435901 Vorlesung Antikörper Engineering
- 435902 Seminar Antikörper Engineering
16. Abschätzung Arbeitsaufwand:

Vorlesung
Präsenzzeit: 28 Stunden
Selbststudium: 56 Stunden
Summe: 84 Stunden

Literaturseminar
Präsenzzeit: 28 Stunden
Selbststudium: 28 Stunden
Summe: 56 Stunden

Laborübung
Präsenzzeit: 126 Stunden
Selbststudium: 94 Stunden
Summe: 220 Stunden
SUMME: 360 Stunden

17. Prüfungsnummer/n und -name:

- 43591 Antikörper Engineering (PL), Mündlich, 60 Min., Gewichtung: 1
- 43592 Antikörper Engineering (USL), Sonstige, Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
Powerpoint Präsentationen

20. Angeboten von:
Biomedical Engineering
Modul: 43770 Systemtheorie in der Systembiologie (mit Rechnerpraktikum)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>12</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Nicole Radde</th>
</tr>
</thead>
</table>
| 9. Dozenten: | Ronny Feuer
Nicole Radde
Dozenten des Instituts |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Introduction to Systems Biology</td>
</tr>
</tbody>
</table>

| 13. Inhalt: | • Rückführschleifen in biochemischen Netzwerken
• Biologische Oszillatoren, Schalter und Rhythmen
• Statistische Ansätze zur Parameter- und Strukturidentifikation
• Modellreduktion
• Boolesche und strukturelle Modellierung
• Einführung in die verwendeten Programme (u.a. Matlab, Copasi)
• Modellierung von verschiedenen biologisch relevanten Systemen mit verschiedenen Modellierungsansätzen
• Parameteridentifikation
• Modellanalyse |

| 15. Lehrveranstaltungen und -formen: | • 437701 Vorlesung Systems Theory in Systems Biology
• 437702 Übung Systems Theory in Systems Biology
• 437703 Seminar Systems Theory in Systems Biology
• 437704 Praktikum Systems Theory in Systems Biology |

| 16. Abschätzung Arbeitsaufwand: | Vorlesung mit Übung und Seminar,
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden |
Summe: 180 Stunden

Praktikum
Präsenzzeit: 120 Stunden
Selbststudium: 60 Stunden
Summe: 180 Stunden
SUMME: 360 Stunden

17. Prüfungsnummer/n und -name:

• 43771 Systemtheorie in der Systembiologie (mit Rechnerpraktikum) (PL), Mündlich, 40 Min., Gewichtung: 1
• 43772 Systemtheorie in der Systembiologie (mit Rechnerpraktikum) (USL), Sonstige, Gewichtung: 1

18. Grundlage für ...:

19. Medienform: Vorlesung, Übung, Seminar, Rechnerpraktikum

20. Angeboten von: Systemdynamik
Modul: 43910 Stochastische Prozesse und Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810310</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Nicole Radde</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nicole Radde, Christian Ebenbauer</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Höhere Mathematik, Grundlagen der Statistik</td>
</tr>
<tr>
<td></td>
<td>Die Studenten können mit stochastischen Differenzialgleichungen rechnen und modellieren.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Stochastische Prozesse (Poisson, Markov und Wiener Prozesse)</td>
</tr>
<tr>
<td></td>
<td>• Stochastische Differenzialgleichungen</td>
</tr>
<tr>
<td></td>
<td>• Zustandsschätzung</td>
</tr>
<tr>
<td></td>
<td>Weiterführende Literatur wird in der Vorlesung bekannt gegeben.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 439101 Vorlesung Statistische Lernverfahren und stochastische Modellierung</td>
</tr>
<tr>
<td></td>
<td>• 439102 Übung Statistische Lernverfahren und stochastische Modellierung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitungszeit: 98 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 40h</td>
</tr>
<tr>
<td></td>
<td>Gesamter Arbeitsaufwand: 180h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>43911 Stochastische Prozesse und Modellierung (PL), Schriftlich oder Mündlich, 40 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, Beamer</td>
</tr>
</tbody>
</table>
Modul: 43970 Aerodynamik und Flugzeugentwurf I

2. Modulkürzel: 060101001
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Thorsten Lutz

9. Dozenten: Thorsten Lutz
 Johannes Schneider
 Andreas Strohmayer

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 • Die Studierenden sind in der Lage Profilpolaren zu lesen und zu interpretieren und verstehen den Einfluss elementarer geometrischer Parameter auf die Profileigenschaften.
 • Sie kennen den Einfluss der Mach-Zahl auf die Umströmung und die aerodynamischen Eigenschaften von Profilen.
 • Die Studierenden verstehen den Einfluss des Grundrisses auf die aerodynamische Leistung und das Abreißverhalten von subsonischen Tragflügeln und können Berechnungsprogramme zur Auslegung von Tragflügeln anwenden.
 • Die Studierenden kennen Rahmenbedingungen und Ablauf einer Flugzeugentwicklung.
 • Sie kennen die im Flugzeugvorentwurf gängigen Verfahren und können Eingangsparameter wie Massenaufteilung, Flächenlast und Schubbelastung abschätzen.
 • Die Studierenden sind in der Lage, eine Flugzeugkonfiguration mit ihren Hauptkomponenten auszulegen und den Entwurf zu bewerten.

13. Inhalt:

 Flugzeug aerodynamik I:
 • Reibungsfreie und reibungsbehafte inkompressible Profilumströmung
 • Skelett-Theorie
 • Profilpolaren
 • Druck- und Neutralpunkt
 • Linearisierte Potentialgleichung
 • Ähnlichkeitsregeln für Unter- und Überschall
 • transsonische Profilumströmung
 • supersonische Profilumströmung
 • subsonische Tragflügelumströmung
 • Prandtl'sches Traglinienverfahren
 • Multhopp-Verfahren und Anwendungen
 • Einfluss des Grundrisses auf die Tragflügel aerodynamik
Flugzeugentwurf I:
- Technische und wirtschaftliche Voraussetzungen für eine Flugzeugentwicklung
- Entwurfsmethodik und Phasen im Entwurfsprozess
- Verfahren für den Vorentwurf
- Wahl der Flugzeugkonfiguration und Auslegung der Hauptkomponenten: Rumpf, Tragflügel, Leitwerk, Steuerflächen, Antriebs- und Fahrwerksintegration
- Entwurfsbewertung: Auftrieb und Widerstand, Massen und Schwerpunktlagen, Flugleistungen und Flugeigenschaften

14. **Literatur:**
- Skript zur Vorlesung
- Ergänzende Vortragsfolien
- Übungsbögen
- Graphisch interaktives Programm "AERO"
- Anderson, J.D.: Fundamentals of Aerodynamics
- Anderson, J.D.: Modern Compressible Flow
- Schlichting, Truckenbrodt: Aerodynamik des Flugzeuges
- Roskam, J.: Airplane Design
- Stinton, D.: The Anatomy of the Aeroplane
- Stinton, D.: The Design of the Aeroplane
- Torenbeek, E.: Synthesis of Subsonic Airplane Design

15. **Lehrveranstaltungen und -formen:**
- 439701 Vorlesung Flugzeug aerodynamik I
- 439702 Übung Flugzeug aerodynamik I
- 439704 Übung Flugzeugentwurf I
- 439703 Vorlesung Flugzeugentwurf I

16. **Abschätzung Arbeitsaufwand:**
- Flugzeug aerodynamik I, Vorlesung: 73 h (Präsenzzeit 28 h, Selbststudium 45 h)
- Flugzeug aerodynamik I, Übungen: 17 h (Präsenzzeit 7 h, Selbststudium 10 h)
- Flugzeugentwurf I, Vorlesung+Übungen: 90 h (Präsenzzeit 35 h, Selbststudium 55 h)
- Gesamt: 180 h (Präsenzzeit 70 h, Selbststudium 110 h)

17. **Prüfungsnummer/n und -name:**
- 43971 Aerodynamik und Flugzeugentwurf I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. **Grundlage für ...:**
- Aerodynamik und Flugzeugentwurf II

19. **Medienform:**
- PowerPoint, Tafelanschrieb, Programmanwendungen

20. **Angeboten von:**
- Aerodynamik von Luft- und Raumfahrzeugen
Modul: 43980 Luftfahrttriebwerke und Verbrennung

2. Modulkürzel: 060400119
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/ Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stephan Staudacher

9. Dozenten: Stephan Staudacher
Manfred Aigner
Uwe Riedel
Peter Gerlinger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
• Die Anwendung von Ähnlichkeitsparametern für Komponenten und ganze Gasturbinenanlagen ist verstanden.
• Die mechanische und thermodynamische Kopplung der einzelnen Komponenten ist verstanden.
• Das stationäre Betriebsverhalten verschiedenster Fluggasturbinen ist verstanden und kann in Beispielen angewandt werden.
• Die daraus resultierende Vorgehensweise bei der Leistungsberechnung von Flugtriebwerken ist durchdrungen.
• Das instationäre Betriebsverhalten von Gasturbinenanlagen kann an hand von Ähnlichkeitsparametern beschrieben werden.
• Grundlegendes Verständnis von Verbrennungsvorgängen ist vorhanden
• Erste quantitative Methoden zu Wärme- u. Stoffübertragung sind bekannt
• Die Studierenden kennen die Haupteinsatzgebiete verschiedener gasförmiger und flüssiger Brennstoffe
• Die Wirkketten bei der Schadstoffbildung können benannt werden
• Die wesentlichen Konzepte der Chemischen Thermodynamik und Reaktionskinetik können benannt und erläutert werden

13. Inhalt:
Ähnlichkeitsparameter, stationäres und instationäres Betriebsverhalten
Brennstoffe, Thermodynamik, Reaktionskinetik, Schadstoffbildung

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 439801 Vorlesung mit Übungen Turboflugtriebwerke
• 439802 Vorlesung mit Übungen Einführung in die Verbrennung

16. Abschätzung Arbeitsaufwand:
Turboflugtriebwerke. Vorlesung + Übungen: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)
Einführung in die Verbrennung, Vorlesung + Übungen: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)
Gesamt: 180 h (Präsenzzeit 56, Selbststudium 124)
17. Prüfungsnummer/n und -name: 43981 Luftfahrtriebwerke und Verbrennung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für … :

19. Medienform:

20. Angeboten von: Luftfahrtantriebe
Modul: 43990 Raumfahrttechnik I

2. Modulkürzel: 060500099
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester/ Sommersemester

4. SWS: 3
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefanos Fasoulas

9. Dozenten: Stefanos Fasoulas

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden haben einen weiterführenden Überblick der Raumfahrsysteme und können deren Bedeutung und die erforderlichen Aufwendungen einordnen.
- Die Studierenden kennen Aspekte der Bahnmanöver und können den Nutzen von Manövern wie Gravity Assist rechnerisch erfassen.
- Die Studierenden kennen Umweltfaktoren und haben sich mit diesen auch im Hinblick auf die Weltraumqualifikation auseinandergesetzt.
- Die Studierenden kennen die Subsysteme eines Raumfahrteräts und haben sich Wissen über die systemischen Aspekte eines Raumfahrprojektes angeeignet.
- Die Studierenden haben grundlegende Kenntnisse über die Anforderungen an die Weltraumqualifikation von technischen Systemen, die verschiedenen Qualifikationstests und die hierfür notwendige Dokumentation.

13. Inhalt:
Überblick Entwurfskonzepte für Raumfahrzeuge, Auswirkungen Weltraumumgebung auf den Entwurf, bahnmechanische und antriebstechnische Aspekte, Subsysteme von Raumfahrzeugen (Kommunikation, Strukturen und Materialien, Energieversorgung, Lageregelung, Lebenserhaltung, Thermkontrolle, etc.), Überblick Wiedereintritt, Weltraumqualifikation.

14. Literatur:
Vorlesungsunterlagen (werden zu Beginn bereitgestellt).

15. Lehrveranstaltungen und -formen:

- 439901 Vorlesung Raumfahrttechnik
- 439902 Übung Raumfahrttechnik

16. Abschätzung Arbeitsaufwand:
Raumfahrttechnik, Vorlesung: 60 h (Präsenzzeit: 28 h, Selbststudium: 32 h)
Raumfahrttechnik, Übungen: 30 h (Präsenzzeit: 14 h, Selbststudium: 16 h)
Gesamt: 90 h (Präsenzzeit: 42 h, Selbststudium: 48 h)

17. Prüfungsnummer/n und -name: 43991 Raumfahrttechnik I (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Raumfahrtsysteme
Modul: 44010 Aeroakustik der Luft- und Raumfahrt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060110111</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>44010</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Manuel Keßler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manuel Keßler</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>1) Einführung</td>
</tr>
<tr>
<td></td>
<td>2) Eigenschaften von Schall</td>
</tr>
<tr>
<td></td>
<td>3) Wellenakustik</td>
</tr>
<tr>
<td></td>
<td>4) Schallausbreitung</td>
</tr>
<tr>
<td></td>
<td>5) Aerodynamische Quellen</td>
</tr>
<tr>
<td></td>
<td>6) Kopplung Schall - Strömung</td>
</tr>
<tr>
<td></td>
<td>7) Luftfahrt</td>
</tr>
<tr>
<td></td>
<td>8) Numerische Verfahren</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript "Aeroakustik der Luft- und Raumfahrt"</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 440101 Vorlesung mit Übungen Aeroakustik der Luft- und Raumfahrt</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44011 Aeroakustik der Luft- und Raumfahrt (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Aerodynamik und Gasdynamik</td>
</tr>
</tbody>
</table>
Modul: 44040 Analyse tropfendynamischer Prozesse

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester/
4. SWS: 2 7. Sprache: Deutsch/Englisch
8. Modulverantwortlicher: Dr. Norbert Roth
9. Dozenten: Roth, Norbert; Dr.-Ing.
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
11. Empfohlene Voraussetzungen:
12. Lernziele:
 • Die Studierenden können Prozesse mit Tropfen in den Alltag einordnen.
 • Die Studierenden können Tropfen und Prozesse mit Tropfen physikalisch beschreiben.
 • Die Studierenden können mit ausgewählten verschiedenen Beschreibungsmethoden (Analytik, Numerik, Experiment) umgehen.
 • Die Studierenden haben einen Überblick über den aktuellen Stand der Forschung bei ausgewählten tropfendynamischen Prozessen.
13. Inhalt:
 • Einführung in die Physik von Tropfen
 • Beschreibung von verschiedenen tropfendynamischen Prozessen
 • Experimente zu ausgewähltem Prozess mit Tropfen
 • Numerisches Experiment zu ausgewähltem Prozess mit Tropfen
14. Literatur:
 Weiterführende und vertiefende Literatur:
 • P.-G. de Gennes et al.: Capillarity and Wetting Phenomena, Springer Verlag, 2004
 • A. Frohn und N. Roth: Dynamics of Droplets, Springer Verlag, 2000
 • Proceedings n-th ILASS
15. Lehrveranstaltungen und -formen:
 • 440401 Vorlesung Analyse tropfendynamischer Prozesse
16. Abschätzung Arbeitsaufwand: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)
17. Prüfungsnummer/n und -name: 44041 Analyse tropfendynamischer Prozesse (BSL), Mündlich, 20 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform: Tafel, Overhead-Projektor, Folienpräsentation, Labortermine
 Vorlesung im Sommersemester auf Deutsch
 Vorlesung im Wintersemester wahlweise auf Englisch
20. Angeboten von: Thermodynamik der Luft- und Raumfahrt

Stand: 13. Dezember 2018
Modul: 44070 Analytische Methoden

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bernhard Weigand
9. Dozenten: Weigand, Bernhard; Univ.-Prof. Dr.-Ing. (Sommersemester/summer semester) Schulte, Kathrin; Dr.-Ing. (Wintersemester/winter semester) Gomaa, Hassan; Dr.-Ing.

11. Empfohlene Voraussetzungen:

12. Lernziele:
• Die Studierenden kennen die verschiedenen Einheitensysteme.
• Die Studierenden verstehen die Aussage des Pi-Theorems.
• Die Studierenden können eine Dimensionsmatrix aufstellen und die dimensionslosen Gruppen bestimmen.
• Die Studierenden wissen, wie man die Modelltheorie anwenden muss.
• Die Studierenden wissen, was man unter einer Ähnlichkeitslösung versteht.
• Die Studierenden können partielle Differenzialgleichungen einteilen und wissen welche Lösungsmethoden für welche Gleichung möglich ist.
• Die Studierenden können Separationsmethoden anwenden und können Eigenwertprobleme lösen.
• Die Studierenden wissen wie man eine partielle DGL auf Ähnlichkeitslösungen hin überprüft und wie man diese dann bestimmt.

13. Inhalt:
• Einheitensysteme, Dimensionsformel und Bridgeman-Gleichung
• Buckingham (Pi) Theorem
• Modelltheorie
• Wahl des Basisgrößensystems
• Ähnlichkeitslösungen
• Einteilung von partiellen Differenzialgleichungen
• Lösungsmethoden für lineare partielle Differenzialgleichungen (Separationsmethoden, Integraltransformationen)
• Allgemeine Eigenwertprobleme (Sturm-Liouville'sche Eigenwertprobleme)
• Lösungsmethoden für nichtlineare partielle Differenzialgleichungen (Variablentransformation, Trennung der Variablen, Ähnlichkeitslösungen)
• Störungsrechung

14. Literatur:
• V. Simon, B. Weigand, H. Gomaa: Dimensional Analysis for Engineers, Springer, 2017
15. Lehrveranstaltungen und -formen:

- 440701 Vorlesung Dimensionsanalyse
- 440702 Seminar Dimensionsanalyse
- 440703 Vorlesung Analytische Lösungsmethoden für Wärme- und Stoffübertragungsprobleme
- 440704 Seminar Analytische Lösungsmethoden für Wärme- und Stoffübertragungsprobleme

16. Abschätzung Arbeitsaufwand:

Dimensionsanalyse, Vorlesung: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)
Dimensionsanalyse, Seminar (freiwillig): 35 h (Präsenzzeit 14 h, Selbststudium 21 h)
Analytische Lösungsmethoden für Wärme- und Stoffübertragungsprobleme,
Vorlesung: 70 h (Präsenzzeit 28 h, Selbststudium 42 h)
Analytische Lösungsmethoden für Wärme- und Stoffübertragungsprobleme,
Seminar: 35 h (Präsenzzeit 14 h, Selbststudium 21 h)
Gesamt: 189 h (70 h Präsenzzeit, 119 h Selbststudium)

17. Prüfungsnummer/n und -name:

44071 Analytische Methoden (PL), Schriftlich, 180 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

Vorlesungsaufschrieb, Projektor, Tafel

20. Angeboten von:

Thermodynamik der Luft- und Raumfahrt
Modul: 44110 Angewandte/ausgewählte Turbulenzmodelle

2. Modulkürzel:	060110153
5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP
6. Turnus:	Wintersemester
4. SWS:	2
7. Sprache:	Deutsch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Ulrich Rist
9. Dozenten: Peter Gerlinger
Ulrich Rist

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

11. Empfohlene Voraussetzungen:
12. Lernziele:
Die Studenten kennen:
• ausgewählte Turbulenzmodelle und Transportgleichungsmodelle
• Large-Eddy Simulation und hybride Verfahren
• turbulente Mischung und Verbrennung
• Fragen der Validierung und Implementierung
• typische Anwendungsergebnisse

13. Inhalt:
• algebraische Modelle
• Ein- und Zweigleichungsmodelle
• Reynolds-Stress-Modelle
• Wahrscheinlichkeitsdichtefunktion
• Grobstruktursimulation

14. Literatur:
John L. Lumley, First Course of Turbulence
Stephen B. Pope, Turbulent Flows
David C. Wilcox: Turbulence Modeling for CFD

15. Lehrveranstaltungen und -formen:
• 441101 Vorlesung Angewandte/ausgewählte Turbulenzmodelle
• 441102 Tutorium Angewandte/ausgewählte Turbulenzmodelle

16. Abschätzung Arbeitsaufwand:
90 h (Präsenzzeit 35 h, Selbststudium 55 h)

17. Prüfungsnummer/n und -name:
44111 Angewandte/ausgewählte Turbulenzmodelle (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ... :
19. Medienform: Präsentation & Folien
20. Angeboten von: Verbrennungstechnik der Luft- und Raumfahrt
Modul: 44150 Bahnmechanik für Raumfahrzeuge

2. Modulkürzel: 060500116
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 3
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefanos Fasoulas

9. Dozenten: Stefanos Fasoulas
 Frank Zimmermann

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
 • Einleitung, Definitionen und Konstanten
 • Bewegungsgleichung (Zwei-Körper-Problem, Dreikörper- und n-Körper-Problem, Darstellung von Satellitenbahnen - Bahnelemente)
 • Grundlegende Anwendungen (Keplergleichungen für elliptische, parabolische und hyperbolische Bahnen, Positionsvektoren Sonne, Mond und Planeten, Sonnenaufgang und -untergang, Sicht- und Beleuchtungsverhältnisse von Satelliten)
 • Lösungen der Keplergleichung (elliptische parabolische und hyperbolische Bahnen, Schattenphasen von Satelliten)
 • Bestimmung von Bahnelementen aus Beobachtungen (Beobachtungstransformationen, Datenaufnahme)
 • Störungen der Keplerbewegung (Lösungsansätze auf der Basis der Bewegungsgleichung, Variation der Bahnelemente, Störungen durch Gravitationspotential, Restatmosphäre, Drittkörper, solaren Strahlungsdruck, relativistische Störung)
 • Manöver zur Bahnänderung (planare und nicht-planare Manöver, Startfenster, kombinierte Manöver, Rendezvous- und Andockmanöver Bahnen mit endlichen Schubphasen, Gravity-Assist)
 • Bahnmechanik in der Missionsauslegung (Orbit Design Prozess, Erdabdeckung, Sonnensynchrone Bahnen, Bahnen mit sich wiederholender Bodenspur, etc.)
 • Interplanetare Bahnen (Mondbahnen, Marsbahnen, etc.)

14. Literatur:
 • S. Fasoulas: Manuskript zur Vorlesung Bahnmechanik für Raumfahrzeuge, jährlich aktualisiert
 • ergänzende Vortragsfolien
15. Lehrveranstaltungen und -formen:
- 441501 Vorlesung Bahnmechanik für Raumfahrzeuge
- 441502 Praktikum zur Bahnmechanik

16. Abschätzung Arbeitsaufwand:
- Bahnmechanik für Raumfahrzeuge, Vorlesung: 70 h (Präsenzzeit: 28 h, Selbststudium: 42 h)
- Praktikum zur Bahnmechanik: 20 h (Präsenzzeit: 7 h, Selbststudium: 13 h)
- Gesamt: 90 h (Präsenzzeit: 35 h, Selbststudium: 55 h)

17. Prüfungsnummer/n und -name:
- 44151 Bahnmechanik für Raumfahrzeuge (BSL), Schriftlich, 60 Min., Gewichtung: 1

19. Medienform:

20. Angeboten von:
- Raumfahrtsysteme
Modul: 44220 Differenzenverfahren hoher Genauigkeit

2. Modulkürzel: 060110122
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Moduldauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Markus Kloker
9. Dozenten: Markus Kloker
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
11. Empfohlene Voraussetzungen:
13. Inhalt: Gewöhnliche Differentialgleichungen (G-DGLs) Revisited
 • Optimierungsstrategien für hohe Genauigkeit: Low Dissipation/Dispersion
 • Diagrammkatalog I: Stabilitätsbereiche und Lösungseigenschaften von G-DGL-Lösern (Zeitintegrationsverfahren für P-DGLs)
 • Gleichungssysteme: Steifigkeit, inhärente Instabilität, direkte Verfahren
 Partielle Differentialgleichungen (P-DGLs)
 • Integrationsgebiete / Randbedingungen: sponge zones, lokale Hyper-/Parabolisierungsstrategie
 • Differenzie: kompakte Finite Differenzen, Fourier-Spektralmethoden; Parallelisierungsmöglichkeiten
 • Parabolische DGL: Viskoses Zeitschritt-Limit, Genauigkeitsoptimierung, Instabilitätsursachen
 • Hyperbolische DGL: Konvektives Zeitschritt-Limit, Genauigkeitsoptimierung, Instabilitätsursachen
 • Philosophie der 4 Verfahrens-Grundtypen: Dämpfung, Upwind-Verfahren, McCormack-Typ-Verfahren, Filterung/De-Aliasing
 • Diagrammkatalog II: Eigenschaften ausgewählter FD-Zeitschrittverfahren hoher Genauigkeit für die Advektions-/Diffusionsgleichung
 • Gittertransformation: grundlegende Vorgehensweisen, Genauigkeitsanalysen
14. Literatur: Skript, weitere Lektüre:
15. Lehrveranstaltungen und -formen: • 442201 Vorlesung FD-Verfahren hoher Genauigkeit
16. Abschätzung Arbeitsaufwand: Vorlesung: 90 h (Präsenzzeit 28 h, Selbststudiumszeit: 62 h)
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44221 Differenzenverfahren hoher Genauigkeit (BSL), Mündlich, 25 Min., Gewichtung: 1 Mündliche Prüfung 25 min. in deutsch oder englisch, Prüfungsdatum: nach Liste wählbar</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel und Beamer, Aufschriebe/Skript in deutsch so weit</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Aerodynamik von Luft- und Raumfahrzeugen</td>
</tr>
</tbody>
</table>
Modul: 44240 Digitale Strömungsvisualisierung

2. Modulkürzel: 060110151
5. Modulduer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch/Englisch
8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Ulrich Rist
9. Dozenten: Ulrich Rist
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden kennen
 - die Visualisierungspipeline und deren Umsetzung in Softwarepaketen
 - die physiologischen und psychologischen Aspekte der Datenvisualisierung
 - die mathematischen und computergrafischen Grundlagen der Visualisierung
 - grundlegende und spezielle Darstellungstechniken
 - Verfahren zur Visualisierung, Extraktion und Verfolgung von Strömungsfeldstrukturen
 - Grundlagen, Möglichkeiten und Grenzen ausgewählter Verfahren
 - den Stand der Forschung im Bereich Visualisierung

 Die Studierenden sind in der Lage
 - Visualisierungsartefakte von Messfehlern oder Fehlern der Modellierung bzw. Simulation unterscheiden zu können
 - Strömungsdaten in sinnvolle und verständliche Darstellungen umzusetzen und die dabei durchgeführten Schritte und möglichen Fehlerquellen zu verstehen

13. Inhalt:

 Die Vorlesung soll eine Einführung in die Visualisierung numerischer Strömungsfelder geben. Grundlage ist die Darstellung dreidimensionaler instationärer Daten, die entweder als Ergebnis numerischer Berechnungen oder als Messwerte diskret im Raum und in der Zeit vorliegen.

14. Literatur:

 - Kopien der Folien (auch elektronisch)

15. Lehrveranstaltungen und -formen:

 • 442401 Vorlesung Digitale Strömungsvisualisierung
16. Abschätzung Arbeitsaufwand:	90 h (Präsenzzeit 28 h, Selbststudium 62 h)
17. Prüfungsnummer/n und -name: | 44241 Digitale Strömungsvisualisierung (BSL), Mündlich, 20 Min., Gewichtung: 1
18. Grundlage für ... : |
19. Medienform: |
20. Angeboten von: | Aerodynamik von Luft- und Raumfahrzeugen
Modul: 44260 Dimensionsanalyse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060700302</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bernhard Weigand</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gomaa, Hassan; Dr.-Ing.</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele:
- Die Studierenden kennen die verschiedenen Einheitensysteme.
- Die Studierenden verstehen die Aussage des Pi-Theorems.
- Die Studierenden können eine Dimensionsmatrix aufstellen und die dimensionslosen Gruppen bestimmen.
- Die Studierenden wissen, wie man die Modelltheorie anwenden muss.
- Die Studierenden wissen, was man unter einer Ähnlichkeitslösung versteht.

13. Inhalt:
- Einheitensysteme
- Dimensionsformel und Bridgeman-Gleichung
- Buckingham (Pi) Theorem
- Wahl des Basisgrößensystems
- Modelltheorie
- Ähnlichkeitslösungen

14. Literatur:
- V. Simon, B. Weigand, H. Gomaa: Dimensional Analysis for Engineers, Springer, 2017
- J.H. Spurk, Dimensionsanalyse in der Strömungsführung, Springer-Verlag
- H. Görtler, Dimensionsanalyse, Springer-Verlag

15. Lehrveranstaltungen und -formen:
- 442601 Vorlesung Dimensionsanalyse
- 442602 Seminar Dimensionsanalyse

16. Abschätzung Arbeitsaufwand:
- Dimensionsanalyse, Vorlesung: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)
- Dimensionsanalyse, Seminar (freiwillig): 35 h (Präsenzzeit 14 h, Selbststudium 21 h)
- Gesamt: 84 h (28 h Präsenzzeit, 56 h Selbststudium)

17. Prüfungsnummer/n und -name: 44261 Dimensionsanalyse (BSL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
- Projektor, Tafel, Präsentation

20. Angeboten von:
- Thermodynamik der Luft- und Raumfahrt
Modul: 44270 Discontinuous-Galerkin-Verfahren

2. Modulkürzel: 060120133
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz
9. Dozenten:
11. Empfohlene Voraussetzungen:
12. Lernziele:
 Programmierung von Discontinuous-Galerkin-Verfahren:

 Konstruktion von Discontinuous-Galerkin-Verfahren:

13. Inhalt:
 Programmierung von Discontinuous-Galerkin-Verfahren:

 Konstruktion von Discontinuous-Galerkin-Verfahren:

14. Literatur:
 Ein Skript wird zur Verfügung gestellt.
 "Nodal Discontinuous Galerkin Methods von Jan Hesthaven und Tim Warburton
 "Implementing Spectral Methods for Partial Differential Equations von David Kopriva
 Weitere Lehrbücher werden in der Vorlesung angegeben.
15. Lehrveranstaltungen und -formen:
 • 442701 Vorlesung Konstruktion von Discontinuous Galerkin Verfahren
 • 442702 Vorlesung Programmierung von Discontinuous Galerkin Verfahren

16. Abschätzung Arbeitsaufwand:
 Konstruktion von Discontinuous Galerkin Verfahren: 90h
 (Präsenzzeit 28 h, Selbststudium 62 h)
 Programmierung von Discontinuous Galerkin Verfahren: 90h
 (Präsenzzeit 28 h, Selbststudium 62 h)
 Gesamt: 180 h (Präsenzzeit 56 h, Selbststudium 124 h)

17. Prüfungsnummer/n und -name:
 44271 Discontinuous-Galerkin-Verfahren (PL), Mündlich, 40 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
 Numerische Methoden der Strömungsmechanik
Modul: 44280 Effizient programmieren

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr. Manuel Keßler
9. Dozenten: Manuel Keßler

11. Empfohlene Voraussetzungen: Programmiererfahrung mit größeren Codes, vorzugsweise in C/C++ und/oder Fortran

12. Lernziele:
Die Studierenden sind in der Lage, große Programmsysteme strukturiert und systematisch weiter zu entwickeln, wie es beispielsweise für eine Masterarbeit oder Promotion erforderlich sein könnte. Insbesondere steht dabei die effiziente Ausführung auf HPC-Systemen mit im Vordergrund.

13. Inhalt:
- Arbeitsumgebung, nützliche Tools in der automatischen Entwicklung
- Fehlersuche und Dokumentation
- Codemanagement
- Hardwarebesonderheiten
- Parallelisierung
- Wiederverwendung
- Objektorientierung und UML
- Python und C++
- GPU-Programmierung

14. Literatur:
Vortragsfolien "Effizient programmieren"

15. Lehrveranstaltungen und -formen:
- 442801 Vorlesung Effizient programmieren

16. Abschätzung Arbeitsaufwand:
180 h (Präsenzzeit 45 h, Selbststudium 45 h, Projekt und Präsentationsvorbereitung 90 h)

17. Prüfungsnummer/n und -name:
44281 Effizient programmieren (LBP), Sonstige, Gewichtung: 1
Benotetes Programmierprojekt mit Bericht (10-20 S.) und Vortrag (20 min.) mit Diskussion

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Aerodynamik und Gasdynamik
Modul: 44320 Ein- und Mehrphasenströmungen und deren Anwendungen in der Industrie

2. Modulkürzel: 060120303
5. Modulduer: Einsemestrig

3. Leistungspunkte: 3 LP

4. SWS: 2

6. Turnus: Wintersemester/ Sommersemester

8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz

9. Dozenten: Uwe Iben

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden
 • wissen, was Mehrphasenströmungen sind,
 • wissen, was Kavitation ist,
 • wissen, was Luftausgasung ist,
 • wissen, wie man Modelle für Phasenübergang und Luftausgasung erstellt und anwendet,
 • verstehen, warum Strömungsmechanik und Thermodynamik so eng miteinander verbunden sind,
 • wissen, was Zustandsgleichungen für Flüssigkeiten sind,
 • wissen, wie man für technische Fragestellungen, bei denen Mehrphasenströmungen zugrunde liegen, Lösungsansätze findet.

 Hierzu gibt es verschiedene Beispiele unterschiedlicher Komplexität.

13. Inhalt:

 Grundlagen der Strömungsmechanik
 Hydrostatik
 Zugspannungen in Flüssigkeiten
 Kräfte auf Wände
 Fliessverhalten
 Strömungsformen
 Kompressibilität, Schallgeschwindigkeit
 Kompression und Expansion von kompressiblen Flüssigkeiten
 Zustandsänderungen
 Grundgleichungen der Strömungsmechanik
 Navier-Stokes-Gleichungen
 Eindimensionale Erhaltungsgleichungen
 Das p-System
 Unstetige Querschnittsänderungen
 Numerische Berechnung des Verlustbeiwertes
 Anwendung der Grundgleichungen
 6 Beispiele aus verschiedenen industriellen Anwendungen
 Zweiphasenströmungen
 Modellierung von kavitierenden Strömungen
 Barotrope Zweiphasenströmungen
Homogene Gleichgewichtszweiphasenströmung
Inhomogene Zweiphasenströmungen
Stoffübergang an der Phasengrenze
Verdampfen und Kondensieren von reinen Flüssigkeiten
Numerische Auswertung
Blasendynamik
Luftgehalt in Flüssigkeiten
Stossfronten im Zweiphasengebiet
Koaliszenz von zwei Luftblasen in Flüssigkeit
Fluid-Partikel-Strömungen
Reibungsmodelle für 1D-Strömungsmodelle
Eigenfrequenz hydraulischer Systeme

Frohn, Roth. Dynamics of Droplets. Springer.

15. Lehrveranstaltungen und -formen: • 443201 Vorlesung Ein- und Mehrphasenströmungen und deren Anwendungen in der Industrie

16. Abschätzung Arbeitsaufwand: 90h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name: 44321 Ein- und Mehrphasenströmungen und deren Anwendungen in der Industrie (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Numerische Methoden der Strömungsmechanik
Modul: 44380 Experimentelle Simulation des Wiedereintritts

2. Modulkürzel: 060500114
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Stefan Löhle

9. Dozenten: Stefan Löhle
Stefanos Fasoulas

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
Am Ende des Moduls haben die Studierenden einen vertieften Überblick über die typischen Messverfahren für hochenergetische Strömungen, wie sie insbesondere für die Charakterisierung von Wiedereintrittströmungen oder auch für elektrische Raumfahrtantriebe eingesetzt werden. Sie kennen das Einsatzpotenzial und die -grenzen, können die eintretenden Messfehler beurteilen und geeignete Verfahren für einen spezifischen Fall bewerten sowie auswählen. Anhand von Laborveranstaltungen und Praktikas besitzen die Studierenden auch grundlegende praktische Erfahrungen einzelner Messverfahren.

13. Inhalt:
- Einleitung, Grundlagen der Messtechnik (Druck, Temperatur, Massenflüsse, Strahlung, etc.)
- Mechanische Sonden für hochenergetische Strömungen (Totaldruck-, Wärmestromdichte-, Enthalpiesonden)
- Massenspektrometrie
- Langmuirsonden
- Aktive und passive spektroskopische Verfahren (Pyrometrie, Radiometrie, Emissionsspektroskopie, Laserdiagnostik, etc.)

14. Literatur:
S. Löhle et al.: Manuskript zur Vorlesung Messverfahren für hochenthalpe Strömungen

15. Lehrveranstaltungen und -formen:
- 443801 Vorlesung Messverfahren für hochenthalpe Strömungen
- 443802 Praktikum Messverfahren für hochenthalpe Strömungen
- 443803 Praktikum Labor Mini-PWK
- 443804 Praktikum Vakuumpraktikum

16. Abschätzung Arbeitsaufwand:
Messverfahren für hochenthalpe Strömungen, Vorlesung: 60 h (Präsenzzeit: 28 h, Selbststudium: 32 h),
Messverfahren für hochenthalpe Strömungen, Praktikum: 30 h (Präsenzzeit: 14 h, Selbststudium: 16 h),
Labor Mini-PWK, Praktikum: 30 h (Präsenzzeit: 14 h, Selbststudium: 16 h),
Vakuumpraktikum: 30 h (Präsenzzeit: 14 h, Selbststudium: 16 h)

17. Prüfungsnummer/n und -name: 44381 Experimentelle Simulation des Wiedereintritts (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Raumfahrtsysteme
Modul: 44510 Grundlagen der Turbulenzmodellierung

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Modulkürzel: 060700192</td>
</tr>
<tr>
<td>3.</td>
<td>Leistungspunkte: 3 LP</td>
</tr>
<tr>
<td>4.</td>
<td>SWS: 3</td>
</tr>
<tr>
<td>5.</td>
<td>Modul: Grundlagen der Turbulenzmodellierung</td>
</tr>
<tr>
<td>6.</td>
<td>Modul: Grundlagen der Turbulenzmodellierung</td>
</tr>
<tr>
<td>7.</td>
<td>Sprache: Englisch</td>
</tr>
<tr>
<td>8.</td>
<td>Modulverantwortlicher: Dr. Grazia Lamanna</td>
</tr>
<tr>
<td>9.</td>
<td>Dozenten: Lamanna, Grazia; Dr. Spring, Sebastian; Dr.-Ing.</td>
</tr>
<tr>
<td>11.</td>
<td>Empfohlene Voraussetzungen: Strömungslehre, Thermodynamik</td>
</tr>
<tr>
<td>12.</td>
<td>Lernziele: Die Studenten kennen:</td>
</tr>
<tr>
<td></td>
<td>• die theoretischen Grundlagen zur Beschreibung turbulenter Strömungen.</td>
</tr>
<tr>
<td></td>
<td>• Modellierungsansätze (Wirbelviskositätsmodelle, Reynolds-Spannungsmodelle).</td>
</tr>
<tr>
<td></td>
<td>• die Hierarchie RANS, URANS, DES, LES, DNS.</td>
</tr>
<tr>
<td></td>
<td>• Anwendungsbeispiele mit CFD.</td>
</tr>
<tr>
<td>13.</td>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Turbulenz</td>
</tr>
<tr>
<td></td>
<td>• Statistische Beschreibung der Turbulenz</td>
</tr>
<tr>
<td></td>
<td>• Schließungsproblem</td>
</tr>
<tr>
<td></td>
<td>• Hierarchie RANS, URANS, DES, LES, DNS</td>
</tr>
<tr>
<td></td>
<td>• Klassische Turbulenzmodelle: Überblick</td>
</tr>
<tr>
<td>14.</td>
<td>Literatur:</td>
</tr>
<tr>
<td></td>
<td>Ferziger, Peric: Computational fluid dynamics</td>
</tr>
<tr>
<td></td>
<td>David C. Wilcox: Turbulence Modeling for CFD</td>
</tr>
<tr>
<td>15.</td>
<td>Lehrveranstaltungen und -formen:</td>
</tr>
<tr>
<td></td>
<td>• 445101 Vorlesung Grundlagen der Turbulenzmodellierung</td>
</tr>
<tr>
<td></td>
<td>• 445102 Tutorium Grundlagen der Turbulenzmodellierung</td>
</tr>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Turbulenzmodellierung, Vorlesung: 84 h (Präsenzzeit 28 h, Selbstdstudium 56 h)</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Turbulenzmodellierung, Seminar: 21 h (Präsenzzeit 7 h, Selbstdstudium 14 h)</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 105 h (Präsenzzeit 35 h, Selbstdstudium 70 h)</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td></td>
<td>44511 Grundlagen der Turbulenzmodellierung (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ...:</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Tafelanschrieb, Overhead-Projektor, PowerPoint, CIP-Pool</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Thermodynamik der Luft- und Raumfahrt</td>
</tr>
</tbody>
</table>
Modul: 44580 Instationäre Gasdynamik und Stoßrohrprobleme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Grazia Lamanna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gaisbauer, Uwe; Dr.-Ing. Lamanna, Grazia; Dr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

Empfohlene Voraussetzungen:

Strömungslehre, Thermodynamik

Lernziele:

- Die Studierenden lernen, wie sich Dichtestörungen in kompressiblen Medien ausbreiten
- Die Studierenden verstehen den Unterschied zwischen akustischen, charakteristischen und Stoß-Wellen
- Die Studierenden verstehen den Unterschied zwischen stationärer und instationärer Wellenausbreitung
- Die Studierenden sind in der Lage Zustandsänderungen infolge instationärer Wellen zu berechnen
- Die Studierenden erhalten Einblick in die Gasdynamik stationär bewegter Wellen
- Die Studierenden lernen, wie ein Stoßrohr funktioniert und betrieben wird
- Die Studierenden können das "Stoßrohr-Problem lösen"

Inhalt:

- Entstehung instationärer Wellen
- Bestimmung der Zustandsgrößen
- Instationäre Wellenausbreitung
- Phänomene am Stoßrohr

Literatur:

Lehrveranstaltungen und -formen:

- 445801 Vorlesung Instationäre Gasdynamik und Stoßrohrprobleme

Abschätzung Arbeitsaufwand:

90 h (Präsenzzeit 28 h, Selbststudium 62 h)

Prüfungsnummer/n und -name:

44581 Instationäre Gasdynamik und Stoßrohrprobleme (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

Tafelanschrieb, Overhead-Projektor, PowerPoint
Die Inhalte der Vorlesung werden zum Teil auf Deutsch und zum Teil auf Englisch vermittelt.

20. Angeboten von: Thermodynamik der Luft- und Raumfahrt
Modul: 44640 Kompressible Strömungen I + II

2. Modulkürzel: 060110101
5. Modulduer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Dr. Uwe Gaisbauer

9. Dozenten:
 Dr. Uwe Gaisbauer
 Dr. Grazia Lamanna

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016,
 ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
 Thermodynamik, Strömungsmechanik

12. Lernziele:
 Die Studierenden kennen die Grundlagen der kompressiblen Strömungen. Sie können eigenständig gasdynamische Grundlagenprobleme lösen und kennen Ansätze zur analytischen und numerischen Modellierung. Sie lernen die abstrakten theoretischen Zusammenhänge in Anwendungsbeispiele zu integrieren.

13. Inhalt:
 - Thermodynamische Grundlagen
 - Stationäre, kompressible, thermische Strömungen
 - Verdichtungs- und Expansionsphänomene
 - Kompressible Strömungen mit Energiezufuhr
 - Beispiele an Düsen- und Turbinenströmungen

14. Literatur:
 Skript, Folien, Pflichtlektüre

15. Lehrveranstaltungen und -formen:
 • 446401 Vorlesung Kompressible Strömungen I
 • 446402 Vorlesung Kompressible Strömungen II

16. Abschätzung Arbeitsaufwand:
 Kompressible Strömungen I+II, jede Vorlesung: 28h (Präsenzzeit 28h, Selbststudium 62h)
 Gesamt: 180h (Präsenzzeit 56h, Selbststudium 124h)

17. Prüfungsnummer/n und -name:
 44641 Kompressible Strömungen I + II (PL), Schriftlich, 60 Min., Gewichtung: 1
 schriftlich, 60 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Thermodynamik der Luft- und Raumfahrt
Modul: 44730 Leichtbau I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060310103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Maged Sorour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Maged Sorour, Peter Middendorf</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule |
| 14. Literatur: | Skript zur Vorlesung
Wiedemann, J.: Leichtbau |
| 15. Lehrveranstaltungen und -formen: | • 447301 Vorlesung und begleitende Übungen Leichtbau I |
| 16. Abschätzung Arbeitsaufwand: | 90 h (Präsenzzeit 28 h, Selbststudium 62 h) |
| 17. Prüfungsnummer/n und -name: | 44731 Leichtbau I (BSL), Schriftlich, 60 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Flugzeugbau |
Modul: 44750 Leichtbau II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060310104</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Maged Sorour</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Maged Sorour, Peter Middendorf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, Wählmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, Zusatzmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2013, Wählmodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leichtbau, Werkstoffe und Fertigungsverfahren (060310101)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druckelemente, Stäbe und Profile, Blechfelder, Versteifte Platten und Blechfelder, Torsionselemente, reine Torsion, Wölbkrafttorsion, Schub- und Zugfelder, Schubstege, Schubwände, Schubfeld-, Zugfeldträger. Überlagerungen bei Festigkeit- und Stabilitätsproblemen, Krafteinleitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skript zur Vorlesung</td>
</tr>
<tr>
<td>Wiedemann, J: Leichtbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 447501 Vorlesung und begleitende Übungen Leichtbau II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>44751 Leichtbau II (BSL), Schriftlich, 60 Min., Gewichtung: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugzeugbau</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 44820 Mathematische Methoden in der Strömungsmechanik

2. Modulkürzel: 060120114
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz
9. Dozenten: Claus-Dieter Munz
Christian Rohde
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:

15. Lehrveranstaltungen und -formen:
• 448201 Vorlesung Mathematische Methoden in der Strömungsmechanik

16. Abschätzung Arbeitsaufwand: 180h (Präsenzzeit 56 h, Selbststudium 124 h)

17. Prüfungsnummer/n und -name: 44821 Mathematische Methoden in der Strömungsmechanik (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Numerische Methoden der Strömungsmechanik
Modul: 44840 Mehrphasenströmungen, Anwendungen und Simulation

2. Modulkürzel: 060120301
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz

9. Dozenten: Uwe Iben
Jan Schlottke

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Vorlesung 1: Ein- und Mehrphasenströmungen in deren Anwendung in der Industrie

 Die Studierenden

 • wissen, was Mehrphasenströmungen sind
 • wissen, was Kavitation ist
 • wissen, was Luftausgasung ist
 • wissen, wie man Modelle für Phasenübergang und Luftausgasung erstellt und anwendet
 • verstehen, warum Strömungsmechanik und Thermodynamik so eng miteinander verbunden sind
 • wissen, was Zustandsgleichungen für Flüssigkeiten sind
 • wissen, wie man für technische Fragestellungen, bei denen Mehrphasenströmungen zugrunde liegen, Lösungsansätze findet.

 Hierzu gibt es verschiedene Beispiele unterschiedlicher Komplexität.

 Vorlesung 2: Numerische Modellierung von Mehrphasenströmungen

 Die Studierenden

 • geben Vorkommen und Relevanz von Mehrphasenströmungen in Wissenschaft und Technik wieder
 • beschreiben die physikalischen Grundlagen von Mehrphasenströmungen und stellen verschiedene Formen von Mehrphasenströmungen gegenüber
 • wählen anhand der zu betrachtenden Strömung das geeignete Simulationsverfahren und passende Modellansätze aus
 • analysieren durch Simulation gewonnene Ergebnisse

13. Inhalt:

 Vorlesung 1: Ein- und Mehrphasenströmungen und deren Anwendungen in der Industrie
 Grundlagen der Strömungsmechanik
 Hydrostatik
Zugspannungen in Flüssigkeiten
Kräfte auf Wände
Fließverhalten
Strömungsformen
Kompressibilität, Schallgeschwindigkeit
Kompression und Expansion von kompressiblen Flüssigkeiten
Zustandsänderungen
Grundgleichungen der Strömungsmechanik
Navier-Stokes-Gleichungen
Eindimensionale Erhaltungsgleichungen
Das p-System
Unstetige Querschnittsänderungen
Numerische Berechnung des Verlustbeiwertes
Anwendung der Grundgleichungen
6 Beispiele aus verschiedenen industriellen Anwendungen
Zweiphasenströmungen
Modellierung von kavitierenden Strömungen
Barotrope Zweiphasenströmungen
Homogene Gleichgewichtszweiphasenströmung
Inhomogene Zweiphasenströmungen
Stoffübergang an der Phasengrenze
Verdampfen und Kondensieren von reinen Flüssigkeiten
Numerische Auswertung
Blasendynamik
Luftgehalt in Flüssigkeiten
Stosströme im Zweiphasengebiet
Koalition von zwei Luftblasen in Flüssigkeit
Fluid-Partikel-Strömungen
Reibungsmodelle für 1D-Strömungsmodelle
Eigenfrequenz hydraulischer Systeme
Vorlesung 2: Numerische Modellierung von
Mehrfachströmungen
Grundlagen von Mehrphasenströmungen, Vorkommen und
Relevanz, Klassifizierung
Numerische Grundlagen für die Simulation von
Mehrfachenströmungen
Euler-Euler Verfahren am Beispiel von Flüssig-Gas-Systemen
Euler-Lagrange Verfahren

14. Literatur:
Vorlesung 1: Ein- und Mehrphasenströmungen und deren
Anwendung in der Industrie
Powerpoint-Folien werden als Skript zur Verfügung gestellt,
weiterhin wird ein Skript auf ILIAS bereitgestellt.
Bücher:
Yeoh und Tu: Computational Techniques for Multiphase Flows, 2009
Prosperetti und Tryggvason: Computational Methods for
Multiphase Flow, 2007
Tryggvason, Scardovelli und Zaleski: Direct Numerical Simulations
Drew und Passman: Theory of Multicomponent Fluids, 1999
Clift, Grace und Weber: Bubbles, Drops, and Particles, 2005

15. Lehrveranstaltungen und -formen:
• 448401 Vorlesung Mehrphasenströmungen, Anwendungen und
 Simulation

16. Abschätzung Arbeitsaufwand:
180h (Präsenzzeit 56 h, Selbststudium 124 h)
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>44841 Mehrphasenströmungen, Anwendungen und Simulation (PL), Mündlich, 30 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Numerische Methoden der Strömungsmechanik</td>
</tr>
</tbody>
</table>
Modul: 44860 Modellierung von Wiedereintrittsströmungen

2. Modulkürzel: 060500113
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefanos Fasoulas
9. Dozenten: Stefanos Fasoulas
Jens Wolfersdorf
Georg Heinrich Herdrich

11. Empfohlene Voraussetzungen:

13. Inhalt:

14. Literatur: Umdrucke, Vorlesungsaufschrieb, Folien
15. Lehrveranstaltungen und -formen:

- 448601 Vorlesung Kinetische Gastheorie
- 448602 Seminar Kinetische Gastheorie
- 448603 Vorlesung Aerothermodynamik

16. Abschätzung Arbeitsaufwand:

Kinetische Gastheorie, Vorlesung: 84 h (Präsenzzeit: 28 h, Selbststudium: 56 h)
Kinetische Gastheorie, Übungen: 21 h (Präsenzzeit: 7 h, Selbststudium: 14 h)
Aerothermodynamik, Vorlesung: 90 h (Präsenzzeit: 28 h, Selbststudium: 62 h)
Gesamt: 195 h (Präsenzzeit: 63 h, Selbststudium: 132 h)

17. Prüfungsnummer/n und -name:

44861 Modellierung von Wiedereintrittsströmungen (PL), Schriftlich, 120 Min., Gewichtung: 1
Prüfung je 60 Minuten "Kinetische Gastheorie" und "Aerothermodynamik"

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Raumfahrtsysteme
Modul: 44910 Numerische Modellierung von Mehrphasenströmungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060120302</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>44910</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bernhard Weigand</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Schlottke, Jan; Dr.-Ing.</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Strömungslehre, Wärmeübertragung</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden • geben Vorkommen und Relevanz von Mehrphasenströmungen in Wissenschaft und Technik wieder. • beschreiben die physikalischen Grundlagen von Mehrphasenströmungen und stellen verschiedene Formen von Mehrphasenströmungen gegenüber. • wählen anhand der zu betrachtenden Strömung das geeignete Simulationsverfahren und passende Modellansätze aus. • analysieren durch Simulation gewonnene Ergebnisse.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen von Mehrphasenströmungen, Vorkommen und Relevanz, Klassifizierung • Numerische Grundlagen für die Simulation von Mehrphasenströmungen • Euler-Euler Verfahren am Beispiel von Flüssig-Gas-Systemen • Euler-Lagrange Verfahren • Simulation von Strömungen mit freier Oberfläche, Verfahren mit Auflösung der Phasengrenzfläche (Volume of Fluid, Level-Set)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 449101 Vorlesung Numerische Modellierung von Mehrphasenströmungen</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90h (Präsenzzeit 28h, Selbststudium 62h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44911 Numerische Modellierung von Mehrphasenströmungen (BSL), Schriftlich, 60 Min., Gewichtung: 1</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 44940 Numerische Verbrennungssimulation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr.-Ing. Peter Gerlinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Gerlinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten kennen: die theoretischen Grundlagen zur numerischen Simulation von Brennkammerströmungen (Verbrennung) Diffusionsprozesse in Flammen und deren Beschreibung Auswirkungen der physikalischen und chemischen Vorgänge bei der Verbrennung auf deren numerische Simulation Schwierigkeiten (und deren Ursachen) bei Verbrennungssimulationen Methoden zur stabilen Simulation von Verbrennung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 449401 Vorlesung Numerische Verbrennungssimulation • 449402 Tutorium/Übung Numerische Verbrennungssimulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44941 Numerische Verbrennungssimulation (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verbrennungstechnik für Luft- und Raumfahrtantriebe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44980 Plasmatechnik

2. Modulkürzel: 060500119
5. Modulduer: Zweisemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester

4. SWS: 7
7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr.-Ing. Georg Heinrich Herdrich

9. Dozenten: Georg Heinrich Herdrich; Stefan Löhle; Christian Sleziona

M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: Nach diesem Modul haben die Studierenden einen Überblick bezüglich der terrestrischen und raumfahrtbezogenen Anwendungsgebiete der Plasmatechnologie. Über das Verständnis der Plasmastromungen hinausgehend, kennen die Studierenden terrestrische Plasmainanwendungen und die hierfür relevanten Plasmasysteme. Mit der Kenntnis der Funktion der Plasmasysteme und von Zweiphasenstromungen erkennen die Studierenden die Komplexität der Plasmainanwendungen und sind in der Lage, Einordnungen und Interpretationen für die technischen Anwendungen sowie den zugehörigen Plasmasystemen zu erbringen. Schließlich haben sie auch einen vertieften Überblick über die typischen Messverfahren, die zur Charakterisierung dieser hochenergetischen Stromungen eingesetzt werden.

13. Inhalt:
 • Messverfahren für hochenthalpe Strömungen: Einleitung, Grundlagen der Messtechnik (Druck, Temperatur, Massenflüsse, Strahlung, etc.), Mechanische Sonden für hochenergetische Strömungen (Totaldruck-, Wärmestromdichte-, Enthalpiesonden), Massenspektrometrie, Langmuirsonden, aktive und passive spektroskopische Verfahren (Pyrometrie, Radiometrie, Emissionsspektroskopie, Laserdiagnostik, etc.).
 • Plasmastromungen für Raumfahrtanwendungen: Grundlagen der Gasentladung, Plasmaeigenschaften, Erhaltungssätze für mehrkomponentiges Plasma, Relaxationszeiten (Reaktionen, Temperatur und Drift), Plasmaschwingungen, Ohmsches Gesetz für Plasmen, Plasmagrenzschicht, Magnetohydrodynamik, Erzeugung von Laborplasmen.

14. Literatur: Umdrucke, Vorlesungsaufschrieb, Folien

15. Lehrveranstaltungen und -formen:
 • 449801 Vorlesung Messverfahren für hochenthalpe Strömungen
 • 449803 Vorlesung Plasmastromungen für Raumfahrtanwendungen
 • 449804 Vorlesung Plasmaverfahren für industrielle Prozesse
16. Abschätzung Arbeitsaufwand: Messverfahren für hochenthalpe Strömungen, Vorlesung: 60 h (Präsenzzeit 28 h, Selbststudium 32 h) Messverfahren für hochenthalpe Strömungen, Praktikum: 30 h (Präsenzzeit 14 h, Selbststudium 16 h) Plasmastromungen für Raumfahrtanwendungen, Vorlesung: 90 h (Präsenzzeit 28 h, Selbststudium 62 h) Plasmaverfahren für industrielle Prozesse, Vorlesung: 90 h (Präsenzzeit 28 h, Selbststudium 62 h) Gesamt: 270 h (Präsenzzeit 98 h, Selbststudium 172 h)

17. Prüfungsnummer/n und -name: 44981 Plasmatechnik (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Raumfahrtsysteme
Modul: 45000 Programmierung von Discontinuous-Galerkin-Verfahren

2. Modulkürzel: 060120132
5. Modulcharakter: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

14. Literatur:
"Nodal Discontinuous Galerkin Methods von Jan Hesthaven und Tim Warburton"
"Implementing Spectral Methods for Partial Differential Equations von David Kopriva"
Weitere Lehrbücher werden in der Vorlesung angegeben

15. Lehrveranstaltungen und -formen:
• 450001 Vorlesung Programmierung von Discontinuous Galerkin Verfahren

16. Abschätzung Arbeitsaufwand: 90h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name: 45001 Programmierung von Discontinuous-Galerkin-Verfahren (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Numerische Methoden der Strömungsmechanik
Modul: 45210 Strömungsmesstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060110162</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Werner Wuerz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Gaisbauer Werner Wuerz</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen die einschlägige Strömungsmesstechnik sowie die Messverfahren und die zugehörigen Versuchsanlagen. Sie sind in der Lage Messaufnehmer und Messsonden sowie digitale Datenerfassung einzusetzen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundlagen der Strömungsmesstechnik und zugehöriger Datenerfassung sowie digitaler Signalaufbereitung, Messverfahren im Hinblick auf Kraftmessungen, Druckmessungen, Temperaturmessungen, Schubspannungsmessung, Geschwindigkeits- und Richtungsmessungen, optische Strömungsmessverfahren, Aufbau und Funktionsweise von subsonischen Windkanälen und Versuchsanlagen, transsonischen, Überschall und Hyperschallwindkanälen</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 452101 Vorlesung Strömungsversuchs- und Messtechnik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>45211 Strömungsmesstechnik (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Aerodynamik von Luft- und Raumfahrzeugen</td>
</tr>
</tbody>
</table>
Modul: 45280 Thermodynamik der Gemische

2. Modulkürzel: 060700305
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bernhard Weigand

9. Dozenten: Meier, Karsten; Univ.-Prof. Dr.-Ing.

M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Grundlagen der Thermodynamik

12. Lernziele:
• Die Studierenden können die Bedingungen für das thermodynamische Gleichgewicht formulieren.
• Die Studierenden können Gemischeigenschaften mit Zustandsgleichungen und Modellen für die freie Exzessenthalpie berechnen.
• Die Studierenden können Phasendiagramme interpretieren.
• Die Studierenden können Phasengleichgewichte berechnen.

13. Inhalt:
• Bedingungen für das thermodynamisches Gleichgewicht
• Chemisches Potenzial
• Mischungsgrößen
• Fugazitätskoeffizientenansatz
• Zustandsgleichungen für Gemische
• Aktivitätskoeffizientenansatz
• GE-Modelle
• Gibbs'sche Phasenregel, Phasendiagramme
• Phasengleichgewichtsberechnung

14. Literatur:

15. Lehrveranstaltungen und -formen: • 452801 Vorlesung Thermodynamik der Gemische

16. Abschätzung Arbeitsaufwand: 84 h (Präsenzzeit 28 h, Selbststudium 56 h)

17. Prüfungsnummer/n und -name: 45281 Thermodynamik der Gemische (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Projektor, Tafel, Präsentation, Blockveranstaltung

20. Angeboten von: Thermodynamik der Luft- und Raumfahrt
Modul: 45320 Turbulenz

2. Modulkürzel: 060110152
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Ulrich Rist

9. Dozenten: Grazia Lamanna
 Sebastian Spring
 Peter Gerlinger
 Ulrich Rist

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
 ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
 ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
 ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
 ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studenten kennen:
die theoretischen Grundlagen zur Beschreibung turbulenter Strömungen
Modellierungsansätze (Wirbelviskositätsmodelle, Reynolds-Spannungsmodelle)
die Hierarchie RANS, URANS, DES, LES, DNS
Anwendungsbeispiele mit CFD
ausgewählte Turbulenzmodelle und Transportgleichungsmodelle
Large-Eddy Simulation und hybride Verfahren
turbulente Mischung und Verbrennung

Fragen der Validierung und Implementierung
typische Anwendungsergebnisse

13. Inhalt:
I.
• Einführung in die Turbulenz
• Statistische Beschreibung der Turbulenz
• Schließungsproblem
• Hierarchie RANS, URANS, DES, LES, DNS
• Klassische Turbulenzmodelle: Überblick
II.
• algebraische Modelle
• Ein- und Zweigleichungsmodelle
• Reynolds-Stress-Modelle
• Wahrscheinlichkeitsdichtefunktion
• Grobstruktursimulation

14. Literatur:
Skript zur Vorlesung
Ferziger, Peric: Computational fluid dynamics
David C. Wilcox: Turbulence Modeling for CFD
John L. Lumley, First Course of Turbulence
Stephen B. Pope, Turbulent Flows
15. Lehrveranstaltungen und -formen:

- 453202 Tutorium Grundlagen der Turbulenzmodellierung
- 453203 Vorlesung Angewandte/ausgewählte Turbulenzmodelle
- 453204 Tutorium Angewandte/ausgewählte Turbulenzmodelle
- 453201 Vorlesung Grundlagen der Turbulenzmodellierung

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Vorlesung</th>
<th>Präsenzzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Turbulenzmodellierung</td>
<td>105 h</td>
<td>35 h</td>
<td>70 h</td>
</tr>
<tr>
<td>Angewandte/ausgewählte Turbulenzmodelle</td>
<td>90 h</td>
<td>35 h</td>
<td>55 h</td>
</tr>
</tbody>
</table>

Gesamt: 195 h (Präsenzzeit 70 h, Selbststudium 125 h)

17. Prüfungsnummer/n und -name:

45321 Turbulenz (PL), Mündlich, 40 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Verbrennungstechnik der Luft- und Raumfahrt
Modul: 45900 Lineare Kontrolltheorie

2. Modulkürzel: 080520803
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Carsten Scherer

9. Dozenten: Carsten Scherer

 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen: Lineare Algebra 1-2 und Analysis 1-3
 oder
 Höhere Mathematik 1-3

12. Lernziele: Die Studenten sollen in der Lage sein:
 1. ein dynamisches System im Zustandsraum, im Frequenzbereich
 oder als Blockdiagramm zu beschreiben
 2. die Lösungsmenge eines Kontrollsystems zu charakterisieren
 3. ein System zu linearisieren und die Stabilität eines
 Gleichgewichtes zu untersuchen
 4. Regelbarkeit, Stabilisierbarkeit, Beobachtbarkeit und
 Entdeckbarkeit von Kontrollsystemen zu analysieren
 5. Zustandsregelungen durch Eigenwertvorgabe, linear-
 quadratische Feedbackregler und Zustandsschätzer zu entwerfen
 6. das Separationsprinzip zu erläutern und anzuwenden
 7. Referenz- und Störungsmodelle zu entwerfen und das Prinzip
 des internen Modells anzuwenden
 8. eine minimale Realisierung eines dynamischen Systems zu
 berechnen und Modellreduction anzuwenden
 9. Formfilter für stochastische Störungssignale zu bestimmen
 10. einen H2-optimalen Regler zu entwerfen

13. Inhalt:
 • Zustandsraumbeschreibung multivariable linearer Systeme,
 Blockdiagramme
 • Linearisierung, Gleichgewichte, Lyapunovfunktionen,
 Lyapunovungleichung
 • Antwort linearer Systeme, Moden, Matrixexponentialfunktion und
 Variation-der-Konstanten
 • Übertragungsfunktionen und Realisationstheorie, Normalformen
 • Regelbarkeit, Stabilisierbarkeit, nicht steuerbare Eigenwerte und
 Polvorgabe
 • Linear-quadratische Optimierung, algebraische Riccatigleichung,
 Robustheit
 • Beobachtbarkeit, Entdeckbarkeit, nicht beobachtbare
 Eigenwerte, Zustandsschätzer
 • Rückkopplungsregler, Separationsprinzip
 • Referenz- und Störungsmodelle und das Internal Model Principle
 • Balancierte Realisierungen und Modellreduktion
 • Unterdrückung stochastischer Störungen und H2-optimale
 Regelung

14. Literatur:
 • Folien
15. Lehrveranstaltungen und -formen:
 - 459001 Vorlesung Lineare Kontrolltheorie
 - 459002 Gruppenübung zur Linearen Kontrolltheorie

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 Stunden
 Selbstdstudium: 207 Stunden
 Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
 - 45901 Lineare Kontrolltheorie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
 - V Vorleistung (USL-V), Sonstige

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mathematische Systemtheorie
Modul: 46310 Materialien für Implantate

2. Modulkürzel: 072200044
3. Leistungspunkte: 3 LP
4. SWS: 2

5. Modul: 46310
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: Prof. Dr. Rainer Gadow, Prof. Dr. Michael Doser, apl. Prof. Dr.-Ing. Michael Seidenfuß

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden
 • sind mit den Grundlagen der Werkstoffkunde vertraut und können die Systematik der Werkstoffgruppen wiederzugeben.
 • können die Grundlagen der chemischen Bindungen und deren Einfluss auf Materialeigenschaften benennen und bewerten.
 • kennen das Anforderungsprofil der Medizintechnikan das Werkstoffverhalten.
 • können für die Medizintechnik geeignete Stoffsysteme bzw. Verbundbauweisen identifizieren und die Herstellungsprozesse hinsichtlich der technischen und wirtschaftlichen Herausforderungen bewerten.
 • sind in der Lage, die Vor- und Nachteile unterschiedlicher Flächengebilde zu beurteilen, geeignete Strukturen für den Weichgewebe- und Organersatz auszuwählen und entsprechende Verfahren zu planen.

13. Inhalt:
 • Innovative Werkstoffe in der Medizin
 • Umgebungseinfluss auf das Werkstoffverhalten
 • Grundlagen der Metalle, keramischer Werkstoffe; Polymere; Verbundwerkstoffe; Bioinerte Konstruktionswerkstoffe; Bioaktive, biokompatible und biotoxische Werkstoffe
 • Herstellungsverfahren für Bauteile in der Endoprothetik, plastischen Chirurgie und Zahnmedizin
 • Spezielle Anforderungen bei der Verwendung von Polymeren in der Medizintechnik
 • Funktion von faserbasierten Strukturen in Implantaten als Funktionssatz von natürlichem Gewebe, Kraftübertragung, Gewebeunterstützung, Hilfsmittel und Kunststoffverstärkung
 • Einsatzzmöglichkeiten unterschiedlicher Flächengebilde aus Fasern bzw. Membranen für Weichgewebe- und Organersatz auszuwählen und entsprechende Verfahren zu planen.

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 463101 Vorlesung Materialien für Implantate
 • 463102 Übung Materialien für Implantate

Stand: 13. Dezember 2018
16. Abschätzung Arbeitsaufwand:

| 17. Prüfungsnummer/n und -name: | 46311 Materialien für Implantate (PL), Schriftlich, 60 Min., Gewichtung: 1 |
| 18. Grundlage für … : |
| 19. Medienform: |
| 20. Angeboten von: | Fertigungstechnologie keramischer Bauteile |
Modul: 46510 Industrielle Aerodynamik

2. Modulkürzel: 060110102
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester/
Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Uwe Gaisbauer
9. Dozenten: Dr. Uwe Gaisbauer

10. Zuordnung zum Curriculum in diesem
Studiengang: M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Strömungsmechanik

12. Lernziele: Die Studierenden haben eine vertiefte Kenntnis über komplexe
Strömungsphänomene aus unterschiedlichen Bereichen der
technischen und industriellen Anwendung erlangt. Sie sind in
der Lage, unterschiedliche technische Strömungsanwendungen
aus dem Bereich der viskosen Innenströmungen bis hin zur
Außenumströmung von Fahrzeugen zu analysieren und zu deuten.

13. Inhalt: -Rohrhydraulik
- Schmiermittelströmung
-Fahrzeugaerodynamik
- Partikelströmung

14. Literatur:

15. Lehrveranstaltungen und -formen: • 465101 Vorlesung Industrielle Aerodynamik

16. Abschätzung Arbeitsaufwand: 90 h (Präsenzzeit 28h, Selbststudium 62h)

17. Prüfungsnummer/n und -name: 46511 Industrielle Aerodynamik (BSL), Schriftlich, 45 Min.,
Gewichtung: 1
schriftlich, 45 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Aerodynamik von Luft- und Raumfahrzeugen
Modul: 46550 Poröse Medien: Modellierung, Analysis und Numerik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Iryna Rybak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

Empfohlene Voraussetzungen:
Grundkenntnisse der partiellen Differentialgleichungen.

Lernziele:
- Kenntnisse der klassischen Modelle für Strömungen und Transportprozesse in porösen Medien und Mittelungsansätze,
- Fähigkeit zur Entwicklung und Analyse numerischer Algorithmen für Problemstellungen in porösen Medien.

Inhalt:
- Modelle für Strömungen und Transportprozesse in porösen Medien: Klassische Modelle und Modelle basierend auf Mittelungsansätzen,
- Numerische Verfahren für Problemstellungen in porösen Medien: Finite Volumen, Finite Elemente, Diskontinuierliche Galerkin Verfahren, Gebietszerlegungsmethoden und Mehrskalenmethoden,
- Analysis numerischer Algorithmen für Problemstellungen in porösen Medien.

Literatur:

Lehrveranstaltungen und -formen:
- 465501 Vorlesung Poröse Medien: Modellierung, Analysis und Numerik
- 465502 Übung Poröse Medien: Modellierung, Analysis und Numerik

Abschätzung Arbeitsaufwand:
- Präsenzezeit: 62 Stunden
- Selbststudium: 118 Stunden
- Summe: 180 Stunden

Prüfungsnr/n und -name:
- 46551 Poröse Medien: Modellierung, Analysis und Numerik (PL), Mündlich, 30 Min., Gewichtung: 1

Grundlage für ...

Medienform:
- Mathematische Methoden für komplexe Simulationen der Naturwissenschaft und Technik
Module: 46760 Theoretical and Methodological Foundations of Visual Computing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Daniel Weiskopf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Ertl, Andrés Bruhn, Daniel Weiskopf, Michael Sedlmair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Modules covering mathematics, numerics, and stochastics from BSc Informatiker BSc Softwaretechnik:

- 10190 Mathematik für Informatiker und Softwaretechniker
- 10240 Numerische und Stochastische Grundlagen
- 41590 Einführung in die Numerik und Stochastik für Softwaretechniker

12. Lernziele:

Students know the mathematical-theoretical foundations of visual computing and are able to apply them in the form of methods for computer graphics, visualization, image processing, and computer vision.

13. Inhalt:

This course covers the following topics:

- Basics of affine and projective geometry, along with their use in computer graphics, especially in the rendering pipeline.
- Differential calculus in 2D and 3D, with applications in image processing and visualization.
- Integral calculus in 2D and 3D, with applications in visualization and rendering.
- Ordinary differential equations, with examples from computer animation and flow visualization.
- Partial differential equations for image processing.
- Interpolation and approximation for geometry processing, visualization, and image processing.
- Fourier analysis, Fourier transform, sampling theorem, and filtering, with examples from imaging.
- Wavelet analysis, applied to image processing.
- Empirical research methods for visual computing.
- Statistical analysis for scientific experiments.

Exercises deepen the understanding of the mathematical and theoretical foundations. Furthermore, they complement the lecture with hands-on practical applications and implementations. Practical exercises are partially with OpenGL, Matlab, and R.

14. Literatur:

• S. Lynch. Dynamical Systems with Applications using Matlab, Birkhäuser, 2004

Optional German literature:
• B. Jähne. Digitale Bildverarbeitung. Springer, 2005
• H. Fischer, H. Kaul. Mathematik für Physiker - Band 1: Grundkurs. 5. Auflage, Teubner, 2005

15. Lehrveranstaltungen und -formen: • 467601 Vorlesung Theoretische und Methodische Grundlagen des Visual Computing

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 46761 Theoretical and Methodological Foundations of Visual Computing (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Visualisierung
Modul: 47130 Modellierung und Simulation in der Biomechanik

2. Modulkürzel: 021021041
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Oliver Röhrle
9. Dozenten: Oliver Röhrle

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Technische Mechanik 1, Biomechanik

12. Lernziele:

13. Inhalt:
- Motivation und Einführung in die Problematik
- Struktur und Funktion von Skelettmuskeln: Grundlegendes Verständnis von Anatomie und Physiologie eines Sarkomers, einer Zelle, einer Muskelfaser, eines ganzen Muskels und dessen Rekrutierungseigenschaften
- Modellierung von Elektrophysiologie: Modellierung von zellulären Vorgängen, Ausbreitung von Aktionspotentialen, Bidomain Gleichungen
- Modellierung und Charakterisierung von Skelettmuskulaturgewebe: passives und aktives Muskelgewebe, kontinuumsmechanische Modellierungsansätze, Materialgesetze

Numerische Methoden: Einführung einfacher numerischer Methoden zur Lösung von gewöhnlichen und partiellen Differentialgleichungen, insbesondere Zeitintegrationsmethoden, die Finite Element Methode und lineare Löser

14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungs- und Übungsunterlagen
15. Lehrveranstaltungen und -formen:
- 471301 Vorlesung Modellierung und Simulation in der Biomechanik
- 471302 Übung Modellierung und Simulation in der Biomechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 44 Stunden
Selbststudium: 136 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
47131 Modellierung und Simulation in der Biomechanik (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

19. Medienform:

20. Angeboten von:
Kontinuumsbiomechanik und Mechanobiologie
Modul: 47160 Biomaterialien - Biokompatible Materialien

2. Modulkürzel: 041400054
5. Moduldaumer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Günter Tovar
9. Dozenten: Günter Tovar
Kirsten Borchers

11. Empfohlene Voraussetzungen: Grundlagen der Natur- und Ingenieurwissenschaften

12. Lernziele: Die Studierenden

• wissen was der Begriff "biokompatibel bedeutet
• kennen die Verfahren zur Herstellung von biokompatiblen Materialien (Metalle, Keramiken, Polymere und Verbundwerkstoffe), insbesondere für die Anwendungen als Implantate und können diese erläutern
• kennen die physikalisch-chemischen Eigenschaften von biokompatiblen Materialien sowie ihre Analysemethoden und können diese beschreiben
• wissen wie die Biokompatibilität untersucht werden kann
• kennen die Mechanismen der Zell-Material-Interaktionen
• kennen die Methoden zur Evaluierung der Biokompatibilität und können sie beschreiben

13. Inhalt:
Grundlagen zum Aufbau und Struktur von biokompatiblen Materialien
Grundlagen zur Herstellung und Verarbeitung von biokompatiblen Materialien
Mechanische, chemische und biologische Eigenschaften von biokompatiblen Materialien
Anwendung von biokompatiblen Materialien als Implantatmaterialien
Mechanismen der Zell-Material-Interaktionen und Biokompatibilität

15. Lehrveranstaltungen und -formen: • 471601 Vorlesung Biomaterialien - Biokompatible Materialien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 21 h
Selbststudium 69 h
Gesamt 90 h

17. Prüfungsnummer/n und -name: 47161 Biomaterialien - Biokompatible Materialien (BSL), Schriftlich, 30 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Grenzflächenverfahrenstechnik
Modul: 47180 Biomaterialien - Herstellung, Struktur und Eigenschaften

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041400057</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Günter Tovar</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Natur- und Ingenieurwissenschaften |
| 15. Lehrveranstaltungen und -formen: | • 471801 Vorlesung Biomaterialien - Anwendungen und Technische Prozesse |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 21 h
Selbststudium 69 h
Gesamt 90 h |
| 17. Prüfungsnr/n und -name: | 47181 Biomaterialien - Herstellung, Struktur und Eigenschaften (BSL), Schriftlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Grenzflächenverfahrenstechnik |
Modul: 47290 Neurale Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Wolfgang Hauber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Hauber, Alexandra Münster</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Die Studierenden kennen die Struktur und Funktion komplexer neuronaler Netzwerke zur Verarbeitung sensorischer Informationen, zur Steuerung von Bewegungsabläufen, Lern- und Gedächtnisprozessen, Schlaf sowie Verhaltensreaktionen. Sie können Originalliteratur lesen und referieren und beherrschen grundlegende Prinzipien der Vortragstechnik.

12. Lernziele:

Neurobiologie des Verhaltens, Neuroanatomische Grundlagen, Methoden der Neurowissenschaften, Sensorische und motorische Systeme, Lernen und Gedächtnis; Gehirn und Verhalten Neuroprothesen Literaturseminar - Präsentation ausgewählter Themen aus dem Bereich Neuroprothesen

13. Inhalt:

Carlson: Physiology of Behavior
Bear: Neurowissenschaften
Purves: Neuroscience

14. Literatur:

• 472901 Vorlesung Neurobiologie
• 472903 Seminar Neurale Systeme und Neuroprothesen

15. Lehrveranstaltungen und -formen:

Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

47291 Neurale Systeme (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Neurobiologie
Modul: 47300 Biorobotik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100312100</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Syn Schmitt</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Syn Schmitt \nDaniel Häufle</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>M.Sc. Simulation Technology, PO 972-2013, \nWahlmodule \nM.Sc. Simulation Technology, PO 972-2016, \nWahlmodule</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Mechanik \n- Biologische und technische Muskel-Skelett-Systeme \n- Biologischer und technischer Antrieb \n- Biologische und technische Fortbewegung \nKontrolle \n- Biologische und technische Sensoren \n- Biologische und technische Ansteuerungskonzepte</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsmitschrieb, Übungsaufgaben, weiteres Begleitmaterial wird in Vorlesung und Übung bekanntgegeben</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 473001 Vorlesung Biorobotik \n• 473002 Übung Biorobotik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Vorlesung \nPräsenzstunden. 1,5h (2 SWS)*14 Wochen 21h \nVor- und Nachbereitung: 1,5h/Präsenzstunde 30h \nÜbungen \nPräsenzstunden. 1,5h (2 SWS)*14 Wochen 21h \nVor- und Nachbereitung: 3h/Präsenzstunde 61h \nPrüfung inkl. Vorbereitung 47h \nGesamt: 180h</td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>47301 Biorobotik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Modellierung und Simulation im Sport</td>
</tr>
</tbody>
</table>
Modul: 47320 Biomechanik der Zelle

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Stephan Nußberger
9. Dozenten: Stephan Nußberger

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden
 • haben Kenntnis von den wesentlichen mechanisch relevanten Bausteinen zellulärer Systeme und deren Polymerisation und können deren Aufbau und Kenngrößen benennen.
 • haben Kenntnis von der molekularen Struktur und Funktion biologischer Membranen als semiflexible elastische Schalen.
 • sind in der Lage die Prinzipien der Selbstorganisation, Phasenumwandlungen und Dynamik biologischer Membranen zu beschreiben.
 • haben Kenntnis von den Grundlagen der Elastizität weicher Schalen
 • kennen die Methoden der Messung elastischer Konstanten von zellulären Filamenten, Filamentnetzwerken und Membranen.
 • kennen die Physik flexibler Makromoleküle und Filamente in der Zelle.
 • kennen die Grundprinzipien und Eigenschaften von zellulären Netzwerke und Gelen.

13. Inhalt:
 1) Aufbau, Struktur, Funktion und Mechanik biologischer Membranen
 (Beispiele: Form einfacher Lipidsysteme, Form und mechanische Eigenschaften von Vesikeln und Erythrozyten)
 • Thermomechanische Prinzipien der Feinstruktur und Funktion biologischer Membranen (Prinzipien der Selbstorganisation, Phasenumwandlungen, selektive Lipid-Protein Wechselwirkung, Sortierung von Lipiden und Proteinen durch Längenadaptation)
 • Membranen als semiflexible elastische Schalen (Formenvielfalt, Elastizität, Stabilisierung durch Zytoskelett-Membran-Kopplung, Persitenzlänge semiflexibler Membranen)
 2) Aufbau, Struktur, Funktion und Mechanik zellulärer Filamente
 (Beispiele: Struktur des Zytoskeletts, Aktin, Tubulin, Intermediär-Filamente, Pseudopodienbildung)
 • Polymerisation und Elastizität zellulärer Filamente
 • Elastizität zwei-dimensionaler Filamentnetzwerke
 • Elastizität drei-dimensionaler Filamentnetzwerke
14. Literatur:

15. Lehrveranstaltungen und -formen:
- 473201 Vorlesung mit integrierter Übung Biomechanik der Zelle

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit in Stunden: 29
- Selbststudiumszeit in Stunden: 61
SUMME: 90 Stunden

17. Prüfungsnummer/n und -name:
47321 Biomechanik der Zelle (BSL), Sonstige, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Biophysik
Modul: 48460 Advanced Seminar Computer Science

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Daniel Weiskopf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students learn how to work with scientific literature for getting acquainted with a certain subject. They are able to extract the central statements from such publications, to collect and interpret additional data and to present their results to an audience.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>reading scientific literature &; present the contents to an audience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Will be announced at the beginning of the seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>484601 Advanced Seminar Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>48461 Advanced Seminar Computer Science (BSL), Sonstige, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[48461] Advanced Seminar Computer Science (BSL), Vortrag zu einem Thema und schriftliche Ausarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Formale Methoden der Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 48600 Robotics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051200999</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Robotics I</td>
</tr>
<tr>
<td>6. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>7. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Marc Toussaint</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Marc Toussaint</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Duy Nguyen-Tuong</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Solid knowledge in linear algebra, probability theory and optimization. Fluency in at least one programming language.</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students will acquire the basic methodologies to model, control and navigate robots, including trajectory planning, control of dynamic systems and object manipulation.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>The lecture will give an introduction to robotics, focusing on essential theoretical foundations of planning and controlling motion, state estimation and eventually object manipulation. Exercises in simulations and on a real robot are a core element of this lecture to gain practical experience.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 486001 Lecture Robotics I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>48601 Robotics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Maschinelles Lernen und Robotik</td>
</tr>
</tbody>
</table>
Modul: 48640 Theoretical and Methodological Foundations of Autonomous Systems

2. Modulkürzel: 051200987
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint

9. Dozenten: Marc Toussaint

11. Empfohlene Voraussetzungen: Solid knowledge in linear algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele: Students will acquire a conceptual overview of the challenges and research in intelligent autonomous systems. The course will emphasize the necessity of combining theory with integrated systems, namely the theoretical and computational foundations modeling and solving decision and behavioral problems and the integration in real-world autonomous systems that integrate perception, action and (on-board) computation. The course reflects the conceptual structure of the Major in Autonomous Systems by addressing the methodological foundations of (i) Computational Intelligence and Learning, (ii) Perception and Action, and (iii) System Integration.

13. Inhalt: This course discusses the challenges and research in intelligent autonomous systems. It introduces to the basic foundations in the relevant disciplines to enable a holistic view on autonomous systems. This is done using a coherent formalization for concepts which are usually introduced separately.
• motivation and history
• challenges in autonomous systems
• frameworks for modeling decision and behavioral problems
• computational methods for solving such problems: planning, decision making
• system integration
• classical Artificial Intelligence and modern probabilistic AI
• perception and image processing
• learning from data (basic regression and classification)
• learning applied in autonomous systems (Reinforcement Learning, adaptive control, system identification)

14. Literatur:

15. Lehrveranstaltungen und -formen: • 486401 Lecture Theoretical and Methodological Foundations of Autonomous Systems
• 486402 Exercise Theoretical and Methodological Foundations of Autonomous Systems

16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 48641 Theoretical and Methodological Foundations of Autonomous Systems (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Maschinelles Lernen und Robotik
Modul: 48660 Funktionalanalysis 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080210003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Wolf-Patrick Düll</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule
M.Sc. Simulation Technology, PO 972EiO2016, → Wahlmodule |
| 11. Empfohlene Voraussetzungen: | Analysis 1-3, Funktionalanalysis |
| 13. Inhalt: | Regularitätstheorie, Spektraltheorie, Operatorentheorie |
D. Werner: Funktionalanalysis, Springer, weitere Literatur wird in der Vorlesung bekannt gegeben. |
| 15. Lehrveranstaltungen und -formen: | • 486602 Übung Funktionalanalysis 2
• 486601 Vorlesung Funktionalanalysis 2 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63 h
Selbststudium: 187h
Prüfungsvorbereitung: 20h
Gesamt: 270h |
| 17. Prüfungsnummer/n und -name: | • 48661 Funktionalanalysis 2 (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Analysis und Modellierung |
Modul: 48840 Stochastic and Statistical Topics in Modeling and Simulation

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester/Sommersemester
4. SWS: 2 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Wolfgang Nowak
9. Dozenten: Wolfgang Nowak
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
11. Empfohlene Voraussetzungen: Grundlagenkenntnisse in Statistik und Mathematik
13. Inhalt: In dieser Seminarreihe sollen Studierende und Promovierende sich selbst einen Überblick über fortgeschrittene Themen aus den folgenden Bereichen aneignen und in Form von Referaten vortragen:
 • Multivariate Statistik, Bayes'sche Statistik, fortgeschrittene Geostatistik, Unsicherheitsquantifizierung (stochastisch-numerische Methoden),
 • Modellunsicherheit, Modellbewertung und Validierung, Visualisierung und Kommunikation von Unsicherheiten,
 • Homogenisierungs- und Mittelungsmethoden, mehrskalenmethoden in heterogenen unsicheren Systemen,
 • Risikoanalyse und robuste Optimierung unter Unsicherheit, Optimales Monitoring zur Reduktion von Unsicherheiten
 • Nutzwerttheorie, Entscheidungstheorie, Informationstheorie
 Die Themenbereiche werden Semesterweise gegliedert und wiederholen sich alle 2 Jahre. Die Teilnehmer können entweder Übersichtsvorträge gestalten, über entsprechende Key Papers referieren, oder (für Promovierende) exemplarische Probleme aus ihren Projekten vortragen.
14. Literatur:
15. Lehrveranstaltungen und -formen: 488401 Seminar Stochastic and Statistical Topics in Modeling and Simulation
16. Abschätzung Arbeitsaufwand: Präsenz: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name: 48841 Stochastic and Statistical Topics in Modeling and Simulation (BSL), Sonstige, Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>Die Teilnehmer bereiten und tragen Präsentationen vor (ca. 30-45 Minuten), durchsetzt</td>
</tr>
<tr>
<td>von offener Diskussion.</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td>Hydromechanik und Hydrosystemmodellierung</td>
</tr>
</tbody>
</table>
Modul: 49010 Einführung in die Biomechanik biologischer Bewegung

2. Modulkürzel: 100300901
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Syn Schmitt
9. Dozenten: Syn Schmitt
 Daniel Häufle
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
 Das Modul gibt eine Einführung in die Bewegungswissenschaft aus einer naturwissenschaftlichen Perspektive. Es werden bedeutende Phänomene biologischer Bewegung vermittelt. Es werden die Grundlagen in folgenden Bereichen vermittelt: Muskelmechanik und -thermodynamik, Mechanik der Fortbewegung, Skalierung in der Biologie, Überblick über die Methoden der Bewegungswissenschaft, Biomechanik menschlicher Höchstleistung
14. Literatur:
 Vorlesungsmitschrieb, weiteres Begleitmaterial wird in Vorlesung und Übung bekanntgegeben
15. Lehrveranstaltungen und -formen:
 • 490101 Vorlesung Biomechanik menschlicher Bewegung
 • 490102 Übung Biomechanik menschlicher Bewegung
16. Abschätzung Arbeitsaufwand:
 Vorlesung
 Präsenzstunden. 1,5h (2 SWS)*14 Wochen 21h
 Vor- und Nachbereitung: 1,5h/Präsenzstunde 30h
 Seminar
 Präsenzstunden. 1,5h (2 SWS)*14 Wochen 21h
 Vor- und Nachbereitung: 3h/Präsenzstunde 61h
 Prüfung inkl. Vorbereitung 47h
 Gesamt: 180h
17. Prüfungsnummer/n und -name: 49011 Einführung in die Biomechanik biologischer Bewegung (PL), Schriftlich, Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Modellierung und Simulation im Sport
Modul: 49640 Finite Elemente II (Diskretisierung II)

2. Modulkürzel: 060600123
3. Leistungspunkte: 3 LP
4. SWS: 2
8. Modulverantwortlicher: Dr.-Ing. Michael Reck
9. Dozenten: Markus Pagitz
11. Empfohlene Voraussetzungen: Einführung in die Finite-Elemente-Methode
13. Inhalt: Zeitintegrationsverfahren bei der FEM:
• Semidiskrete Formen
• Stabilität eines Zeitintegrationsverfahrens
• Zeitintegrationsverfahren für Differentialgleichungen erster Ordnung (am Beispiel der Thermodynamik)
• Zeitintegrationsverfahren für Differentialgleichungen zweiter Ordnung (am Beispiel der Dynamik)
• Modalanalyse und dynamische Substrukturtechnik

(gemischte Variation und Elemente für inkompressible Materialien)

14. Literatur:
Manuskript zur Vorlesung
J. Betten, Finite Elemente für Ingenieure 1, Grundlagen, Matrixmethoden, elastisches Kontinuum, Springer Verlag Berlin, zweite Auflage, 2003
J. Betten, Finite Elemente für Ingenieure 2, Variationsrechnung, Energiemethoden, Näherungslösungen, Nichtlinearitäten, numerische Integration, Springer Verlag Berlin, zweite Auflage, 2004

15. Lehrveranstaltungen und -formen:
• 496401 Vorlesung Finite Elemente II (Diskretisierung II)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 49641 Finite Elemente II (Diskretisierung II) (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Statik und Dynamik der Luft- und Raumfahrtkonstruktionen
Modul: 50090 Environmental Fluid Mechanics I

2. Modulkürzel: 021420012
3. Leistungspunkte: 6 LP
4. SWS: 5
5. Modulduauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Englisch
8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Holger Class
9. Dozenten: Holger Class
 Jürgen Braun
 Sergey Oladyshkin
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972EiI2013, 3. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, 3. Semester
 ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, 3. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, 3. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972EiI2016, 3. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972EiO2013, 1. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972EiO2016, 1. Semester
 ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, 1. Semester
 ➞ Zusatzmodule
11. Empfohlene Voraussetzungen:
 Technical Mechanics
 • Introduction to the statics of rigid bodies
 • Introduction to elastostatics
 • Introduction to the mechanics of incompressible fluids
 Higher Mathematics
 • Partial differential equations
 • Vector analysis
 • Numerical integration
 Fundamentals of Flow Mechanics
 • Conservation equations for mass, momentum, energy
 • Navier-Stokes, Euler, Reynolds, Bernoulli equation
12. Lernziele:
 Students have fundamental knowledge of flow in various natural hydrosystems and its application in civil and environmental engineering.
13. Inhalt:
 The lecture deals with flow in natural hydrosystems with particular emphasis on groundwater / seepage flow and on flow in surface water / open channels. Groundwater hydraulics includes flow in confined, semi-confined and unconfined groundwater aquifers, wells, pumping tests and other hydraulic investigation methods for exploring groundwater aquifers. In addition, questions concerning regional groundwater management (e.g., recharge, unsaturated zone, saltwater intrusion) are discussed. Using the example of groundwater flow, fundamentals of CFD (Computational Fluid Dynamics) are explained, particularly the numerical discretisation techniques finite volume and finite difference. The hydraulics of surface water deals with shallow water equations / Saint
Venant equations, unstationary channel flow, turbulence und layered systems. Calculation methods such as the methods of characteristics are explained. The contents are:
- Potential flow and groundwater flow
- Computational Fluid Dynamics
- Shallow water equations for surface water
- Characteristikenmethode
- Examples from civil and environmental engineering

| 14. Literatur: | Lecture notes: Hydromechanics, Helmig and Class
Lecture notes: Ausbreitungs- und Transportvorgänge in Strömungen, Cirpka
|---------------|---|

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>500901 Lecture and Excercise Environmental Fluid Mechanics I</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Sum 180 h</th>
</tr>
</thead>
</table>

| 17. Prüfungsnummer/n und -name: | 50091 Environmental Fluid Mechanics I (PL), Schriftlich, 120 Min., Gewichtung: 1
V Vorleistung (USL-V), Schriftlich |
|--------------------------------|---|

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Environmental Fluid Mechanics II</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Fundamentals will be developed using the blackboard and presentation tools.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Hydromechanik und Hydrosystemmodellierung</th>
</tr>
</thead>
</table>
Modul: 50140 Modeling of Hydrosystems

2. Modulkürzel: 021420011
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 5
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Rainer Helmig

9. Dozenten: Bernd Flemisch
Rainer Helmig

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013,
→ Zusatzmodule
M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester
→ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, 2. Semester
→ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, 2. Semester
→ Zusatzmodule
M.Sc. Simulation Technology, PO 972EiO2016, 2. Semester
→ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, 2. Semester
→ Wahlmodule

11. Empfohlene Voraussetzungen:
Recommended background knowledge:
Higher Mathematics:
• Partial differential equations
• Numerical integration

Fundamentals of fluid mechanics:
• Conservation equations for mass, momentum, energy
• Mathematical descr

12. Lernziele:
Students can select suitable numerical methods for solving problems from fluid mechanics and have basic knowledge of implementing a numerical model in C.

13. Inhalt:
Discretisation methods:
• Knowledge of the common methods (finite differences, finite elements, finite volume) and the differences between them
• Advantages and disadvantages and of the methods and thus of their applicability
• Derivation of the various methods
• Use and choice of the correct boundary conditions for the various methods

Time discretisation:
• Knowledge of the various possibilities
• Assessment of stability, computational effort, precision
• Courant number, CFL criterion

Transport equation:
• Various discretisation possibilities
• Physical background
• Stability criteria of the methods (Peclet number)

Clarification of concepts: model, simulation
Application of the finite element method to the stationary groundwater equation Setting-up of a simulation programme for modeling groundwater:
- Programme requirements
- Programming individual routines

Fundamentals of programming in C:
- Control structures
- Functions
- Arrays
- Debugging

Visualisation of the simulation results

14. Literatur:
Lecture notes: Modeling of Hydrosystems, Helmig

15. Lehrveranstaltungen und -formen:
- 501403 Lecture and Exercise Modeling of Hydrosystems 2, Applications
- 501401 Lecture and Exercise Modeling of Hydrosystems 1, Fundamentals

16. Abschätzung Arbeitsaufwand:
Sum: 180h

17. Prüfungsnummer/n und -name:
50141 Modeling of Hydrosystems (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Fundamentals will be developed using the blackboard and presentation tools. Group exercises help in understanding the obtained theoretical basis.

20. Angeboten von:
Hydromechanik und Hydrosystemmodellierung
Modul: 50150 Stochastical Modeling and Geostatistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr. Jochen Seidel

9. Dozenten: Wolfgang Nowak, András Bárdossy

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
- M.Sc. Simulation Technology , PO 972EIO2016, 2. Semester ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972EIO2013, 2. Semester ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, 2. Semester ➔ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, 2. Semester ➔ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, 2. Semester ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Recommended background knowledge: Basic knowledge of statistics
Prerequisite module: none

12. Lernziele:
- **Concepts of Geostatistics:** Knowledge of the basic geostatistical concepts, difference between Kriging and simulation, advantages and disadvantages of the discussed methods, application of Kriging and simulation
- **Stochastical Modeling:** The participants have skills in basic statistical methods used in hydrology, like time series analysis, extreme value statistics, parameter estimation methods and statistical tests.

13. Inhalt:
- **Concepts of Geostatistics:** Geostatistical procedures for the interpolation of measured values, assessment of model parameters and planning of Measuring networks are dealt with.
 - Contents:
 - Introduction
 - Statistical hypotheses: Basic concepts, Regionalized variables, Second order stationarity. Intrinsic hypothesis. Comparison of the two hypotheses. Selection of the regionalized variable
 - The variogram: The experimental variogram, The theoretical variogram, Variogram models, Variogram fitting, Isotropy -, anisotropy
 - Ordinary Kriging: Point kriging, Block kriging, Properties of ordinary kr., Kr. as an interpolator, Kr. and the variogram. Practice of kr., Selection of the neighbourhood, Kr. with a "false" variogram, Cross validation, Kr. with uncertain data, Simple Kr.
 - Non stationary methods: Universal kr., Intrinsic random functions of order k, External-Drift-Kr.
 - Indicator Kriging: Indicator Kriging, Applications
 - Kriging with arbitrary additional information: Markov-Bayes-Kriging, Simple Updating (SU)
 - Time dependent variables
• Exercises

Stochastical Modeling:
The lecture part stochastic modeling is primarily concerned with the stochastic analysis of temporal and areal arrays, their generation and their use in the hydrological modeling. Calculation and analysis of hydrological data, descriptive statistic and their parameters, possibility analysis, correlation and regression, time series analysis and simulation.

Content:
• Univariate Statistics and multivariate Statistics (e.g. regression analysis)
• theory of probabilities
• random variables and probability functions (e.g. Poission distribution)
• estimation of parameters (e.g. Maximum Likelihood Method)
• statistical tests (e.g. Kolmogorov-Smirnov test)
• extreme value statistics (analysis of the frequency of occurrence of floods)
• time series analysis (e.g. ARMA Models)
• stochastic simulations (Monte-Carlo Methods)

14. Literatur:
Geostatistics:
Introduction to Geostatistics (Lecture notes, English)
Kitanidis, P. K (1997): Introduction to geostatistics: applications to hydrogeology
Armstrong, Margaret (1998): Basic linear geostatistics

Stochastical Modeling:

15. Lehrveranstaltungen und -formen:
• 501501 Lecture Concepts of Geostatistics
• 501502 Lecture and Exercise Stochastical Modeling

16. Abschätzung Arbeitsaufwand:
Sum: 180h

17. Prüfungsnummer/n und -name:
50151 Stochastical Modeling and Geostatistics (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angebot von:
Hydrologie und Geohydrologie
Modul: 50170 Environmental Fluid Mechanics II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Rainer Helmig</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Nowak</td>
</tr>
<tr>
<td></td>
<td>Rainer Helmig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972EI02016, 2. Semester → Wahlmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2013, 2. Semester → Wahlmodule</td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972EI02013, 2. Semester → Wahlmodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended background knowledge:</td>
</tr>
<tr>
<td>Mechanics of incompressible and compressible fluids,</td>
</tr>
<tr>
<td>fundamentals of numerical methods in fluid mechanics,</td>
</tr>
<tr>
<td>fundamentals of exchange and transport processes in</td>
</tr>
<tr>
<td>technical and natural systems (e.g. groundwater and</td>
</tr>
<tr>
<td>surface water, pipelines).</td>
</tr>
<tr>
<td>Contents of Environmental Fluid Mechanics I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students have the necessary grasp of hydrodynamic, physical</td>
</tr>
<tr>
<td>and chemical processes and systems to be able to answer</td>
</tr>
<tr>
<td>environmentally relevant questions concerning water and air</td>
</tr>
<tr>
<td>quality in natural and technical systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture deals with the heat and mass budget of natural and</td>
</tr>
<tr>
<td>technical systems. This includes transport processes in lakes,</td>
</tr>
<tr>
<td>rivers and groundwater, heat and mass transfer processes</td>
</tr>
<tr>
<td>between compartments as well as between various phases</td>
</tr>
<tr>
<td>(sorption, dissolution), conversion of matter in aquatic systems</td>
</tr>
<tr>
<td>and the quantitative description of these processes. In addition to</td>
</tr>
<tr>
<td>classical single fluid phase systems, multiphase flow and transport</td>
</tr>
<tr>
<td>processes in porous media will be considered. On the basis of a</td>
</tr>
<tr>
<td>comparison of single- and multiphase flow systems, the various</td>
</tr>
<tr>
<td>model concepts will be discussed and assessed.</td>
</tr>
<tr>
<td>In the accompanying exercises, example problems present</td>
</tr>
<tr>
<td>applications, extend the lecture material and help prepare for the</td>
</tr>
<tr>
<td>exam. Computer exercises improve the grasp of the problems and</td>
</tr>
<tr>
<td>give insight into the practical application of what has been learned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture notes: Fluidmechanics II, Helmig</td>
</tr>
<tr>
<td>Helmig, R.: Multiphase Flow and Transport Processes in the</td>
</tr>
<tr>
<td>Subsurface. Springer, 1997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 501701 Lecture and Excercise Environmental Fluid Mechanics II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum: 180h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
</tr>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 50270 Modellreduktion in der Mechanik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Christoph Fehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>basics in applied mechanics and mathematics, numerics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students know about the different technologies available for model reduction of mechanical systems. They are able to select the appropriate solution technique according to the given framework. They have the competence for the first implementation of model reduction algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>The course teaches the basics of model reduction of mechanical systems with the following syllabus: - basic concept and description forms of dynamical system - mathematical foundations of model reduction - modal reduction techniques - SVD-based reduction techniques - Krylov-based reduction techniques - numerical analysis - error analysis - nonlinear model reduction techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>lecture notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lecture materials of the ITM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 62 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>50271 Modellreduktion in der Mechanik (BSL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1 schriftlich 40 min oder mündlich 20 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von: Technische Mechanik
Modul: 50280 Multiphase Modeling in Porous Media

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr.-Ing. Holger Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Holger Class, Rainer Helmig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, 3. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, 3. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Theory of multiphase systems in porous media:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Phases / components</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Capillary pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Relative permeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contents of Environmental Fluid Mechanics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students have the basic theoretical and numerical knowledge to model multiphase systems in porous media. Furthermore, they have basic skills to practically work with numerical software, programming languages, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Using complex models in engineering practice requires well-founded knowledge of the characteristics of discretisation techniques as well as of the capabilities and limitations of numerical models, taking into account the respective concepts implemented and the underlying model assumptions. The contents are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory of multiphase flow in porous media</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Derivation of the differential equations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• constitutive relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical solution of the multiphase flow equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Box method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Linearisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Time discretisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multicomponent systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thermodynamic fundamentals and non-isothermal processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application examples:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thermal remediation techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CO2 storage in geological formations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Water / oxygen transport in gas diffusion layers of fuel cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Freshwater / saltwater interaction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14. Literatur:

Lecture notes: Multiphase Modeling, Class

15. Lehrveranstaltungen und -formen:

• 502801 Lecture Multiphase Modeling in Porous Media
• 502802 Exercise Multiphase Modeling in Porous Media

16. Abschätzung Arbeitsaufwand:

Lectures: 55 h
Self-study: 125 h
Total: 180 h

17. Prüfungsnummer/n und -name:

50281 Multiphase Modeling in Porous Media (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für … :

19. Medienform:

Fundamentals will be developed using the blackboard and presentation tools. Group exercises help in understanding the obtained theoretical basis. Practical computer exercises for different problems are carried out with the help of an interactive multi-media system.

20. Angeboten von:

Hydromechanik und Hydrosystemmodellierung
Modul: 50400 Robust Control

3. Leistungspunkte: 9 LP 6. Turnus: Sommersemester
4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Carsten Scherer
9. Dozenten: Carsten Scherer
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
11. Empfohlene Voraussetzungen: Vorlesung: Lineare Kontrolltheorie
12. Lernziele:
The students are able to mathematically describe uncertainties in dynamical systems and to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge to a specified project.
13. Inhalt:
 • Selected mathematical background for robust control
 • Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties and uncertainties, ...)
 • The generalized plant framework
 • Robust stability and performance analysis of uncertain dynamical systems
 • Structured singular value theory
 • Theory of optimal H-infinity controller design
 • Application of modern controller design methods (H-infinity control and mu-synthesis) to concrete examples
 • Algebraic approach to robust control
 • Youla parameterization
 • Structured controller synthesis
14. Literatur:
wird in der Vorlesung bekannt gegeben
15. Lehrveranstaltungen und -formen:
 • 504001 Vorlesung Robust Control
 • 504002 Übung Robust Control
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 h Selbststudiumszeit / Nacharbeit: 207 h
 Summe: 270 h
17. Prüfungsnummer/n und -name: 50401 Robust Control (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
 Mathematische Systemtheorie
Modul: 51540 Implementierung Finiter Elemente

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080803884</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>51540</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Claus-Justus Heine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Claus-Justus Heine</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2016, ➞ Wahlmodule |
| 11. Empfohlene Voraussetzungen: | empfohlen: "Einführung in die Numerik partieller Differentialgleichungen" oder "Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)" |
| 12. Lernziele: | • Umgang mit gebräuchlichen Finite-Elemente ToolboxenPraktische Umsetzung von Finite-Elemente Toolboxes
• Methoden am ComputerValidierung der Implementierung anhand der theoretischen
• VorhersagenDarstellung und Visualisierung von Simulationsergebnissen |
Springer, 2005, 42, XII.
Weitere Titel nach Bekanntgabe in der Vorlesung |
| 15. Lehrveranstaltungen und -formen: | • 515401 Vorlesung und Übung Implementierung Finiter Elemente |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42h
Selbststudium/Nacharbeitszeit: 118h |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>51541</th>
<th>Implementierung Finiter Elemente (BSL), Schriftlich, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von</td>
<td></td>
<td>Angewandte Mathematik/Numerik für Höchstleistungsrechner</td>
</tr>
</tbody>
</table>
Modul: 51630 Umweltaerodynamik

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester/
 Sommersemester

4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Bernd Peters

9. Dozenten: Bernd Peters

11. Empfohlene Voraussetzungen: Strömungslehre

12. Lernziele:

 Die Studenten sind vertraut mit:
 • der Entstehung der atmosphärischen Luftströmung
 • der statistischen Beschreibung der atmosphärischen
 Grenzschicht
 • der Strömungstopologie um komplexe Strukturen (Brücken,
 Gebäude, etc.) in turbulenter Anströmung
 • der Ermittlung statischer und dynamischer Windlasten an
 Bauwerken

 Anhand dieser Kenntnisse können die Studierenden:
 • unerwünschte Strömungsphänomene in der
 Gebäudeaerodynamik, wie z.B. windregte Schwingungen an
 Baustrukturen, detektieren
 • beurteilen, wo an Gebäuden oder stumpfen Körpren die
 maximalen Windlasten auftreten und wie groß diese in etwa
 ausfallen
 • Lösungsvorschläge zur Minimierung von Windlasten oder
 Verhinderung unerwünschter Strömungseffekte unterbreiten

13. Inhalt:

 • Einführung in die Grundbegriffe der Meteorologie
 • statistische Beschreibung der Turbulenz
 • Begriff der Korrelation
 • Umströmung von starren und elastischen Bauwerken und
 strukturen mit abgelöster Strömung
 • Schadstoffausbreitung in der Atmosphäre durch turbulente
 Dispersion
 • Einführung in experimentelle Simulation und Messverfahren

14. Literatur:

 • Sockel, H.: Aerodynamik der Bauwerke, 1984
 • Ruscheweyh, H.: Dynamische Windwirkung an Bauwerken,
 1982
 • Simiu, E.: Wind Effects on Structures, 1996
 • Holmes, J.: Wind Loading of Structures, 2007
 • Etling, D.: Theoretische Meteorologie, 2008
 • Blackadar, A.: Turbulence and Diffusion in the Atmosphere,
 1997

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Gesamt: 90 h (Präsenzzeit 28, Selbststudium 62 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>51631 Umweltaerodynamik (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, Overhead-Projektor, PowerPoint</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Aerodynamik von Luft- und Raumfahrzeugen</td>
</tr>
</tbody>
</table>
Modul: 51850 Networked Control Systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Mathias Bürger Daniel Zelazo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students know a formalism and a set of tools for the analysis and synthesis of networked dynamical systems, based on rigorous mathematical principles. They are able to analyze and construct networked dynamical systems in a systematic way. Furthermore, they can understand, evaluate, and present scientific literature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 518501 Vorlesung und Übung Networked Control Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>51851 Networked Control Systems (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemtheorie und Regelungstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 51940 Systems Theory in Systems Biology

2. Modulkürzel: 074710015
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Dr. Ronny Feuer
9. Dozenten: Ronny Feuer
Nicole Radde
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
11. Empfohlene Voraussetzungen:
English: Prerequisites for the module are a basic knowledge in the area of mathematical modeling, simulation and systems analysis, as well as basic theoretical knowledge in the area of molecular biology.
Deutsch: Vorausgesetzt werden Grundlagen in der mathematischen Modellierung, Simulation und Systemanalyse, sowie theoretische Grundkenntnisse aus der Molekularbiologie.
12. Lernziele:
English: After participating in the module, the students are able to name and explain advanced methods for the mathematical modeling and the model analysis of biochemical reaction networks. They are able to apply these methods to predefined systems.
13. Inhalt:
The students learn about the following topics:
- Feedback in biochemical (regulatory) networks
- Biological oscillators, switches, and rhythm
- Statistical approaches for parameter and structure identification
- Model reduction
- Boolean and structural modeling
14. Literatur:
Skript auf ILIAS und weiterführende Literatur
15. Lehrveranstaltungen und -formen:
- 519401 Vorlesung Systems Theory in Systems Biology
- 519402 Übung Systems Theory in Systems Biology
- 519403 Seminar Systems Theory in Systems Biology
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56h Selbststudium: 124 h Summe: 180 Stunden

Stand: 13. Dezember 2018
17. Prüfungsnummer/n und -name: 51941 Systems Theory in Systems Biology (PL), Mündlich, 40 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 55600 Advanced Information Management

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051200099</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr. Holger Schwarz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Holger Schwarz, Bernhard Mitschang</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>In dieser Veranstaltung werden insbesondere folgende Themen besprochen:</td>
</tr>
<tr>
<td></td>
<td>• XML und Datenbanktechnologie (XML-Modellierung, XML-Speicherung, XML-Anfragesprachen, XML-Verarbeitung)</td>
</tr>
<tr>
<td></td>
<td>• NoSQL Datenmanagement (Key value stores, MapReduce, triple stores, document stores, graph stores)</td>
</tr>
<tr>
<td></td>
<td>• Content Management (Enterprise Content Management, Information Retrieval, Suchtechnologien)</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Will be announced at the beginning of the lecture.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 556001 Vorlesung Advanced Information Management</td>
</tr>
<tr>
<td></td>
<td>• 556002 Übung Advanced Information Management</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 55601 Advanced Information Management (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich, 90 Min.</td>
</tr>
<tr>
<td></td>
<td>• Schriftliche (90 min) oder mündliche (30 min) Prüfungsleistung</td>
</tr>
<tr>
<td></td>
<td>• Prüfungsvorleistung: schriftlich, eventuell mündlich. Details werden zu Beginn der Veranstaltung bekanntgegeben.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 55630 Information Visualization and Visual Analytics

2. Modulkürzel: 051900099
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr. Daniel Weiskopf
9. Dozenten: Thomas Ertl
 Daniel Weiskopf
 Steffen Koch
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
11. Empfohlene Voraussetzungen: Basic Human Computer Interaction
12. Lernziele:
 Student gains expertise about fundamental concepts and techniques of information visualization and visual analytics. This includes algorithms and mathematical background, data structures and implementation aspects as well as practical experience with widely available visualization tools.
13. Inhalt:
 Topics covered in this course:
 - Perception and Cognition
 - Graphs and Networks
 - Hierarchies and Trees
 - Multi-dimensional and high-dimensional data visualization
 - Time series visualization
 - Visual Analytics
 - Software Visualization
 - Geospatial visualization
14. Literatur:
 • Colin Ware. Visual Thinking for Design
 • Colin Ware. Information Visualization. Perception for Design
 • Edward Tufte. The Visual Display of Quantitative Infomation
 • Robert Spence. Design for Interaction
 • Jim Thomas. Illuminating the Path
15. Lehrveranstaltungen und -formen:
 • 556301 Vorlesung und Übung Informationsvisualisierung
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name:
 • 55631 Information Visualization and Visual Analytics (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Schriftlich oder Mündlich Erfolgreiche Übungsteilnahmen / exercises passed
18. Grundlage für ...
19. Medienform: Video projector, blackboard, exercises using PCs
20. Angeboten von: Visualisierung
Modul: 55640 Correspondence Problems in Computer Vision

2. Modulkürzel: 051900211
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 6
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andrés Bruhn

9. Dozenten: Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule

11. Empfohlene Voraussetzungen:
• Modul 10190 Mathematik für Informatiker und Softwaretechniker
• Modul 10170 Imaging Science - Modul 29430 Computer Vision

12. Lernziele:
Der Student kann Korrespondenzprobleme im Computer-Vision-Bereich selbständig einordnen, Lösungsstrategien mathematisch modellieren und diese dann geeignet algorithmisch umsetzen.

13. Inhalt:
• Basisverfahren: Block Matching, Detektion von Verdeckungen, Merkmalsfindung, Feature Matching
• Optischer Fluss: Lokale und Globale differentielle Verfahren, Parametrisierungsmode, Konstanzannahmem, Daten- und Glattheitsterme, Numerik, Große Verschiebungen, Hochgenaue Verfahren
• Stereorekonstruktion: Projektive Geometrie, Epipolaregeometrie, Schätzung der Fundamentalmatrix
• Szenenfluss: Gemeinsame Schätzung von Struktur, Bewegung und Geometrie
• Medizinische Bildregistrierung: Mutual Information, Elastische und krümmungsbasierte Regularisierung, Landmarks
• Particle Image Velocimetry: Div-Curl-Regularisierung, Inkompressibler Nover Stokes Prior

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 556401 Vorlesung Correspondence Problems in Computer Vision
• 556402 Übung Correspondence Problems in Computer Vision

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 55641 Correspondence Problems in Computer Vision (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...:

19. Medienform:
20. Angeboten von: Intelligente Systeme
Modul: 55650 Multimodal Interaction for Ubiquitous Computers

2. Modulkürzel: 051900033
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Bulling
9. Dozenten: Andrea Bulling, Pawel Wozniak

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen: Basics of human computer interaction
12. Lernziele: Broad understanding for methods and concepts of multimodal interactions of personal computers, in particular for mobile systems, vehicles, tedious devices and environments.

13. Inhalt:
• Interaction with mobile phones
• User interfaces for vehicles
• Interaction with intelligent environments
• Interactive interfaces and gestures
• Tangible user interfaces
• Speech input and output
• Camera-based interaction
• Physiological sensors as interfaces between human and computer
• Activities, context and emotions as input
• Methods and techniques for designing user interfaces
• Approaches for evaluating user interfaces

14. Literatur:
15. Lehrveranstaltungen und -formen:
• 556501 Lecture Multimodal Interaction for Ubiquitous Computers
• 556502 Exercise Multimodal Interaction for Ubiquitous Computers

16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name:
55651 Multimodal Interaction for Ubiquitous Computers (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Prüfungsleistung(PL), Schriftlich oder Mündlich, 90Min

18. Grundlage für ...
19. Medienform:
20. Angeboten von: Mensch-Computer Interaktion und Kognitive Systeme
Modul: 55730 Statistik und Optimierung für Simulationswissenschaften

2. Modulkürzel: 021421001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 3
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Wolfgang Nowak
9. Dozenten: Wolfgang Nowak

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Inhalte im Bereich Simulation: lineare Fehlerfortpflanzung, Monte-Carlo-Simulation, konditionelle Verteilungen und Bayes Theorem, Modellkalibrierung und Parameterschätzung, Visualisierung von Unsicherheit.

14. Literatur:
Vorlesungsskript und Tafelaufschrieb, außerdem:

15. Lehrveranstaltungen und -formen:
- 557301 Vorlesung mit Übung Statistik und Optimierung für Simulationswissenschaften

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudium: 138 h
Insgesamt: 180 h

17. Prüfungsnummer/n und -name:
55731 Statistik und Optimierung für Simulationswissenschaften (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

Stand: 13. Dezember 2018
19. Medienform:

20. Angeboten von: Stochastische Simulation und Sicherheitsforschung für Hydrosysteme
Modul: 55870 Dynamische Systeme

4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Carsten Scherer
9. Dozenten: Carsten Scherer
 Guido Schneider
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
11. Empfohlene Voraussetzungen: Analysis I und II, Lineare Algebra I und II
12. Lernziele:
 • Anwendung einfacher Methoden zur expliziten Lösung
ermelnter Differentialgleichungen
 • Aufstellen von Modellen zur Beschreibung einfacher Vorgänge in
den Naturwissenschaften und der Ökonomie
 • Reproduktion wesentlicher Existenz-, Eindeutigkeits- und
Stetigkeitssätze (autonome und nichtautonome Systeme)
 • Fundierte Kenntnis zur Analyse des asymptotischen Verhaltens
(Stabilitätsdefinitionen, Techniken, Anwendungen)
 • Beherrschung des Konzepts der Invarianz und ihrer Verifikation
(invariante Mengen und Mannigfaltigkeiten)
 • Einsicht in die Erweiterung auf offene Systeme mit Ein- und
Ausgängen und deren Kopplung
13. Inhalt:
 Einführung in die Theorie gewöhnlicher Differentialgleichungen:
 Explizite Lösungsmethoden, Existenz- und Eindeutigkeit von
Lösungen, Abhängigkeit der Lösung von Parametern und
Anfangswerten, Linearisierung
 und Theorie linearer Differentialgleichungen, Periodische
Differentialgleichungen, Stabilität von Lösungen,
Lyapunovfunktionen und Sätze von Lyapunov und Lasalle,
Invariante Mannigfaltigkeiten, Bifurkationstheorie, Normalformen
nichtlinearer Systeme, Ebene Systeme, Kontrollsysteme
14. Literatur:
15. Lehrveranstaltungen und -formen: • 558701 Vorlesung und Übungen Dynamische Systeme
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 63 h
 Selbststudium: 207 h
 Summe: 270 h
17. Prüfungsnummer/n und -name: • 55871 Dynamische Systeme (PL), Schriftlich oder Mündlich, 120
 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Sonstige
 schriftlich, 120min oder mündlich, 40min
18. Grundlage für ...
19. Medienform:
20. Angeboten von: Mathematische Systemtheorie
Modul: 55880 Continuum Mechanics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Holger Steeb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Ehlers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, 3. Semester ➞ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, 1. Semester ➞ Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, 1. Semester ➞ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, 1. Semester ➞ Wahlmodule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele: The students are able to apply continuum-mechanical methods to the description of solid mechanical problems.

13. Inhalt: Continuum-mechanical knowledge is the fundamental basis for the computation of deformation processes of solid materials. Based on the methods of tensor calculus, the lecture offers the following content:

Vector and Tensor Algebra: symbols, spaces, products, specific tensors and definitions

Vector and Tensor Analysis: functions of scalar-, vector- and tensor-valued variables, integral theorem (e.g., after Gauss or Stokes)

Fundamental Balance Laws: master balance, axiomatic balance relations of mechanics (mass balance, momentum and angular momentum balances)

Related Balance Laws and Concepts: balance of mechanical energy, stress power and the concept of conjugate variables, d'Alembert's principle and the principle of virtual work

Numerical Aspects of Continuum Mechanics: strong and weak formulation of the boundary-value problem

The Closure Problem of Mechanics: finite elasticity of solid mechanics (as an example), linearization of the field equations

15. Lehrveranstaltungen und -formen:
- 558801 Vorlesung Continuum Mechanics
- 558802 Übung Continuum Mechanics

16. Abschätzung Arbeitsaufwand:
- Time of Attendance: ca. 52 h
- Private Study: ca. 128 h

17. Prüfungsnummer/n und -name:
- 55881 Continuum Mechanics (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 55900 Computational Mechanics of Materials

2. Modulkürzel: Commas

5. Moduldauber: Einsemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Wintersemester

4. SWS: 5

7. Sprache: Englisch

8. Modulverantwortlicher: Jun.-Prof. Dr.-Ing. Marc-André Keip

9. Dozenten: Christian Miehe

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Simulation Technology, PO 972EiO2013, 1. Semester ➔ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, 3. Semester ➔ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, 3. Semester ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

 The students have a working knowledge of the behavior and modeling of elastic and inelastic materials in the one dimensional context. The students are further capable of performing numerical implementations of the classical material models of elasticity and inelasticity in the framework of the finite element method by using canonical algorithmic schemes.

13. Inhalt:

 Introduction to discrete and continuous modeling of materials (microstructures, homogenization techniques and multi-scale approaches), fundamental theoretical concepts (basic rheology, classification of the phenomenological material response, elements of continuum thermodynamics), fundamental numerical concepts (discretization techniques for evolution systems, linearization techniques and iterative solution of nonlinear systems), linear and nonlinear elasticity, damage mechanics, viscoelasticity (linear and nonlinear models, stress update algorithms and consistent linearization), rate-independent plasticity (theoretical formulations, return mapping)
schemes, incremental variational formulations, consistent elastic-plastic tangent moduli), viscoplasticity (classical approaches and overstress models).

14. Literatur: Complete notes on black board, exercise material will be handed out in the exercises.

16. Abschätzung Arbeitsaufwand: Time of Attendance: approx. 52 h Self-study: approx. 128h

17. Prüfungsnummer/n und -name: 55901 Computational Mechanics of Materials (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mechanik I
Modul: 55910 Introduction to Scientific Programming

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Martin Bernreuther
9. Dozenten: Martin Bernreuther

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2013, 1. Semester ➞ Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, 1. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
The students have a thorough knowledge of the Programming Python. They know different Programming Paradigms (Procedural/Object-oriented Programming) and how to apply them to solve numerical Problems

12. Lernziele:
The aim of the lecture is to give the students the ability to write software for the solution of numerical problems with a state-of-the-art programming language.
Topics covered are:
- Variables, Conditional Execution, Loops
- Functions
- Object-oriented Programming
- Inheritance, Virtual Functions, Abstract Base Classes
- Templates, Containers
- File I/O Floating Point Numbers, Error Propagation/Analysis
- Direct Solution of Linear Equation System
- Interpolation
- Numerical Differentiation
- Numerical Integration
In the exercise meetings the students have the possibility to ask questions to the material presented in the lecture and to program under supervision.

13. Inhalt:
The students have a thorough knowledge of the Programming Python. They know different Programming Paradigms (Procedural/Object-oriented Programming) and how to apply them to solve numerical Problems

14. Literatur:
Lecture Slides

15. Lehrveranstaltungen und -formen:
- 559101 Vorlesung Introduction to Scientific Programming
- 559102 Übung Introduction to Scientific Programming

16. Abschätzung Arbeitsaufwand:
- Time of Attendance: 31 h
- Private Study: ca. 59 h

17. Prüfungsnummer/n und -name:
55911 Introduction to Scientific Programming (BSL), Schriftlich, 90 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 55920 Computational Mechanics of Structures

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Bischoff</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Bischoff</td>
</tr>
</tbody>
</table>
 | M.Sc. Simulation Technology, PO 972-2016, 1. Semester ↙ Zusatzmodule
 | M.Sc. Simulation Technology, PO 972EiO2013, 1. Semester ↙ Wahlmodule
 | M.Sc. Simulation Technology, PO 972-2013, 3. Semester ↙ Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | The students know the fundamental theories and models in linear structural mechanics, in particular trusses, beams, plates and solids. They understand the basic concepts, algorithms and mathematical elements of the finite element method within the context of elasticity problems. In view of practical application of computational methods in structural mechanics the students are aware of their character as an approximation method and their convergence properties. They are able to critically check and interpret numerical results. The students have the theoretical background for the skilful modelling of structures with finite elements and other computational methods. They have learned the fundamentals for advanced courses on structural mechanics and finite elements. |
| 12. Lernziele: | The module combines fundamental topics of structural mechanics and finite element theory in their respective context.
 | - direct stiffness method
 | - isoparametric concept
 | - variational formulation of finite elements, mixed variational principles, shape functions, approximation spaces and mathematical convergence requirements
 | - finite elements for trusses, beams, plates and solids
 | - locking, reduced integration, mixed and hybrid finite element methods
 | - modelling in structural mechanic, mathematical model and numerical model (discretization)
 | - interpretation of numerical results |
| 13. Inhalt: | lecture notes „Computational Mechanics of Structures“, Institut für Baustatik und Baudynamik |
| 14. Literatur: | |

Stand: 13. Dezember 2018
15. Lehrveranstaltungen und -formen:
• 559201 Vorlesung Computational Mechanics of Structures
• 559202 Übung Computational Mechanics of Structures

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 55921 Computational Mechanics of Structures (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prerequisites: 3 approved, not graded assignments

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 55930 Seminar on Mathematical Modelling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Maren Paul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology , PO 972Ei2016, 3. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972EiI2013, 3. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, 3. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972EiO2016, 2. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, 2. Semester
 → Zusatzmodule
- M.Sc. Simulation Technology, PO 972-2016, 2. Semester
 → Wahlmodule
- M.Sc. Simulation Technology, PO 972-2016, 2. Semester
 → Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 559302 Seminar on Mathematical Modelling 3 LP
- 559301 Vorlesung on Mathematical Modelling 3 LP

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 55931 Seminar in Mathematical Modelling (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Stuttgarter Zentrum für Simulationswissenschaften
Modul: 55940 Seminar on Mathematical Modelling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Maren Paul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiI2013, 3. Semester Wählmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester Wählmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiI2013, 2. Semester Wählmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, 2. Semester Wählmodule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:

- 559401 Vorlesung on Mathematical Modelling 6 LP
- 559402 Seminar on Mathematical Modelling 6 LP

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

55941 Seminar in Mathematical Modelling (PL), Schriftlich, 90 Min., Gewichtung: 1

Grundlage für ...

Medienform:

Angeboten von:

Stuttgarter Zentrum für Simulationswissenschaften
Modul: 56070 Simulation Methods in Physics for SimTech III

4. SWS: 4 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Ph.D. Christian Holm
9. Dozenten: Christian Holm
 Maria Fyta
 Jens Smiatek
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 → Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 → Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013,
 → Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016,
 → Wahlmodule
11. Empfohlene Voraussetzungen:
 Contents of the Modules "Simulation Methods in Physics for SimTech I and " Simulation Methods in Physics for SimTech II
12. Lernziele:
 • Thorough understanding of some advanced methods for the simulation of physical phenomena of classical or quantum-mechanical systems
 • Competence to autonomously use the simulation software ESPResSo
13. Inhalt:
 Block course ESPResSo Summer School (Winter Term, one week in October)
 • Additional Course Advanced Simulation Methods (2 SWS in Winter or Summer Term)

 The contents depend on the actual course. Possible contents:
 • Simulations on GPUParallelization strategies for many-particle simulations
 • Efficient methods for long-range interactions
 • Rare event sampling
 • Hybrid MD/MC methods
 • Event-driven simulations
 • Smooth Particle Dynamics
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 560702 Lecture/Seminar Advanced Simulation Methods
 • 560701 Block course ESPResSo Tutorial
16. Abschätzung Arbeitsaufwand:
 • Block Course ESPResSo Summer School: 36h Attendance, 54h Home work
 • Additional Course Advanced Simulation Methods: depends on the actual course, typical: 28h Attendance, 62h Home work
 Total: 180h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>56071 Simulation Methods in Physics for SimTech III (BSL), Mündlich, 40 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Computerphysik</td>
</tr>
</tbody>
</table>
Modul: 56160 Advanced Simulation Methods

4. SWS: 3 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Ph.D. Christian Holm
9. Dozenten: Christian Holm
 Maria Fyta
 Jens Smiatek

11. Empfohlene Voraussetzungen:
• Fundamental Knowledge of theoretical and experimental physics, in particular Thermodynamics and Statistical Physics.
• Unix basics
• Basic Programming skills in C and Python
• Basics of Numerical Mathematics
• Fundamental Knowledge of different Simulation Methods, in particular Molecular Dynamics and Monte-Carlo

12. Lernziele:
The aim is to obtain a deepened understanding of advanced numerical methods for simulating classical many-particle systems in soft matter research. Afterward, the participants shall be able to autonomously apply and implement these methods and to use simulation software. Fundamental knowledge of a field of application of simulational methods. The lab course also supports media- and methodological skills.

13. Inhalt:
Block course Particle-based Simulations for Hard and Soft Matter (Winter Term, one week in October)
- Learning how to apply the simulation software ESPResSo and its algorithms and methods.

Simulation Methods in Practice (2 SWS Lab Course in Summer Term)
- Homepage (SS 2016): http://www.icp.uni-stuttgart.de/~icp/Simulation_Methods_in_Practice_SS_2017
- The course can already be attended to during the BSc studies in parallel to the lecture Simulation Methods in Physics 2.
- Application and Implementation of advanced methods for many-particle simulations
- Methods for electrostatic and magnetostatic interactions (P3M, dipolar P3M, FMM, MMM*D, ...)
- Methods for hydrodynamic interactions (Lattice-Boltzmann, DPD, ...)
- Applying various simulation software

Additional Course Advanced Simulation Methods (2 SWS in Winter or Summer Term)
Homepage of the lecture (SS 2016): http://www.icp.uni-stuttgart.de/~icp/Advanced_Simulation_Methods_SS_2017
The contents depend on the actual course. Possible contents:
• Simulations on GPU
• Parallelization strategies for many-particle simulations
• Efficient methods for long-range interactions
• Rare event sampling
• Hybrid MD/MC methods
• Event-driven simulations
• Smooth Particle Dynamics

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 561601 Praktikum Simulation Methods in Practice
• 561603 Vorlesung/Seminar Advanced Simulation Methods
• 561602 Tutorial Blockkurs

16. Abschätzung Arbeitsaufwand:
Block Course ESPResSo Summer School: 36h Attendance, 54h Home work
Lab Course Simulation Methods in Practice: 28h Attendance, 70h Doing the excercises
Additional Course Advanced Simulation Methods: depends on the actual course, typical: 28h Attendance, 54h Home work
Total: 270h

17. Prüfungsnummer/n und -name:
• 56161 Advanced Simulation Methods (PL), Mündlich, 60 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computerphysik
Modul: 56390 Computer Science Selection VI: Concepts of Programming Languages, Operating Systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Kurt Rothermel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Erhard Plödereder, Ruben Mayer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Some exposure to and initial experience in programming from any source is highly advisable to be able to understand and correlate the contents of this course. The course is not a programming course, it is assumed that some introductory programming course has been successfully passed as part of a Bachelor program.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | **Part A:** Students will have acquired an understanding of the major concepts that underlie prevalent programming languages of today. They are enabled to build their understanding of a new language on these concepts rather than on unreliable case experience. They will know about the security and safety issues of these constructs as well as some of the performance issues relating to the use of certain concepts. Students are thus enabled to make informed technical decisions about when and when not to apply particular concepts or paradigms.
Part B: This module enables the student to understand the concepts and principles of modern operating systems. The accompanying exercises enable the student to apply the methods in practical application cases. |
| 13. Inhalt: | **Part A:** The course presents concepts shared by many of the most-used programming languages today and illustrates these concepts in the syntax of several languages, notably Java, C++, and Ada. Among others the following concepts are covered:
• rich type models type enforcement systems
• stack and heap regimes for memory management
• exception handling
• abstraction, encapsulation, composition
• various binding concepts, e.g, name and type binding
• core concepts of object-oriented programming
The course contents and level may be adjusted annually in accordance with the average pre-existing qualifications of the students.
Part B:
• System structures and organization,
• Process Management and Interprocess communication,
• Process Scheduling, |
• Synchronization and Deadlocks,
• Virtual and Physical Memory Management,
• Security and Protection

14. Literatur:
Part A:
• Sebesta, Robert, Concepts of Programming Languages, Pearson (2010)
• language reference manuals international standards where in existence
• qualified introductory text books to programming in the respective programming languages (students' choice)

Part B:
• Silberschatz, Galvin, Gagne: Operating System Concepts Wiley und Sons (2005)

15. Lehrveranstaltungen und -formen:
• 563901 Vorlesung A Concepts of Programming Languages
• 563902 Übung A Concepts of Programming Languages
• 563903 Vorlesung B Operating Systems
• 563904 Übung B Operating Systems

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
56391 Computer Science Selection VI: Concepts of Programming Languages, Operating Systems (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Softwaretechnologie
Modul: 56670 Discretization Methods

2. Modulkürzel: 074040610
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modulsdauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Englisch
8. Modulverantwortlicher: Dr. Andre Schmidt
9. Dozenten: Andre Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
11. Empfohlene Voraussetzungen:
 B.Sc degree in Civil Engineering, in Mechanical Engineering, in Environmental Engineering or in related subject, as well as knowledge of basic concepts in differential and integral calculus, vector analysis and matrix algebra, and knowledge of basic concepts in applied mechanics and thermodynamics.
12. Lernziele:
 The students understand different concepts how partial differential equations in time and in space can be solved numerically. They are familiar with the strengths and weaknesses of the different methods and have a deeper understanding of selected aspects.
13. Inhalt:
 The lecture deals with the numerical treatment of differential equations which arise from different mechanical and thermodynamical problems. Contents are:
 Deduction of differential equations based on the principles of mechanics and thermodynamics and their classification
 The Finite Difference Method
 The method of weighted residuals: method of subdomains, collocation method, least squares, and Galerkin's method
 The Finite Element Method
 Different time integration schemes
 Convergence and stability
14. Literatur:
 Complete lecture notes, notes on blackboard, exercise material will be handed out in the exercise, all the examples in the lecture notes and exercises will be provided online as Matlab-Files, additional literature will be indicated in the lecture notes.
15. Lehrveranstaltungen und -formen:
 • 566701 Vorlesung Discretization Methods
 • 566702 Übung Discretization Methods
16. Abschätzung Arbeitsaufwand:
 Time of Attendance: 21h
 Private Study: 69h
17. Prüfungsnummer/n und -name:
 • 56671 Discretization Methods (BSL), Schriftlich, 120 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Sonstige Teilnahme an einer Übung
18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Angewandte und Experimentelle Mechanik
Modul: 56790 Parallele Numerik

2. Modulkürzel: 051240080
5. Moduldauler: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Miriam Mehl

9. Dozenten: Miriam Mehl
Dirk Pflüger
Stefan Zimmer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
• Modul 78670 Numerische Grundlagen bzw. eines der früheren Module

12. Lernziele:
Die Studenten kennen die wesentlichen parallelisierbaren Algorithmen für zentrale numerische Problemstellungen. Sie erkennen Parallelisierungshindernisse in bekannten und neuen numerischen Algorithmen, können die zu erwartende Skalierbarkeit abschätzen und sind in der Lage, Algorithmen so zu modifizieren, dass die parallele Effizienz erhöht wird ohne wichtige numerische Eigenschaften wie Stabilität und Komplexität zu verlieren.

13. Inhalt:
• Parallelitätslevel
• Performanz- und Skalierbarkeitsmetriken
• parallele Matrix- und Vektoroperationen
• Datenabhängigkeitsgraphen
• parallele direkte Löser für lineare Gleichungssysteme
• parallele QR Zerlegung und Least Squares Probleme
• dünnbesetzte Matrizen
• parallele iterative Gleichungssystemlöser
• Gebietszerlegung
• parallele Zeitschrittverfahren

14. Literatur:
• Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
• Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
• A User's Guide to MPI (Pacheco)
• Iterative Methods for Sparse Linear Systems (Saad)
• Lösung linearer Gleichungssysteme auf Parallelrechnern (Frommer)

15. Lehrveranstaltungen und -formen:
• 567901 Vorlesung Parallele Numerik
• 567902 Übung Parallele Numerik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 56791 Parallel Numerik (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für … :

19. Medienform:

20. Angeboten von: Simulation großer Systeme
Modul: 56960 Stochastische Prozesse II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Ingo Steinwart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Dippon, Uta Renata Freiberg, Ingo Steinwart, Andrea Barth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Wahrscheinlichkeitstheorie, Stochastische Prozesse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Vertiefte Betrachtungen des Wienerprozesses, Ito-Integral, Levy-Prozesse, Stationäre Prozesse, Spezielle Klassen und Beispiele stochastischer Prozesse, weiterführende Themen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 569601 Vorlesung Stochastische Prozesse II, • 569602 Übung Stochastische Prozesse II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 56961 Stochastische Prozesse II (PL), Schriftlich, Gewichtung: 1, • V Vorleistung (USL-V), Schriftlich, 90 Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Stochastik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 57050 Compilerbau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Erhard Plödereder</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Erhard Plödereder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
</tr>
</tbody>
</table>

• Niklaus Wirth: Compilerbau: Eine Einführung, Teubner Verlag (1986)
• Andrew W. Appel: Modern Compiler Implementation In Java, Cambridge University Press (2002)
• Uwe Kastens: Übersetzerbau, Oldenbourg Verlag (1990) |
15. Lehrveranstaltungen und -formen:

- 570501 Vorlesung Compilerbau
- 570502 Übung Compilerbau

16. Abschätzung Arbeitsaufwand:

Präsenzstunden: 42 h
Eigenstudiumstunden: 138 h
Gesamtstunden: 180 h

17. Prüfungsnummer/­n und -name:

57051 Compilerbau (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
57051 Compilerbau (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0

18. Grundlage für … :

Programmanalysen und Compilerbau

19. Medienform:

20. Angeboten von:

Programmiersprachen und Übersetzerbau
Modul: 57240 Seminar zur Stochastischen Analysis

2. Modulkürzel: 080806883
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Jürgen Dippon

9. Dozenten:

M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2016, → Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: • 572401 Seminar zur Stochastischen Analysis

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 57241 Seminar zur Stochastischen Analysis (LBP), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Stochastik
Modul: 57250 Stochastische Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>80300016</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Andrea Barth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andrea Barth</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Partiellen Differentialgleichungen und Wahrscheinlichkeitsrechthorie/Stochastischer Analysis</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Existenz- und Lösungstheorie unendlich-dimensionaler stochastischer Gleichungen und deren numerische Diskretisierung</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>• 572501 Vorlesung Stochastische Modellierung</td>
<td></td>
</tr>
<tr>
<td>• 572502 Übung Stochastische Modellierung</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name: 57251 Stochastische Modellierung (PL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von: Computational Methods for Uncertainty Quantification</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 57680 Einführung in die Chaostheorie

2. Modulkürzel: 074810350
5. Moduldaauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer

9. Dozenten: Viktor Avrutin

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
1. Problemstellungen und Grundbegriffe
2. Qualitative Analyse: Attraktoren (periodische, aperiodische, chaotische Trajektorien), Bifurkationen (lokale und globale Bifurkationen, Bifurkationen in stückweise-glatten Systemen), Bifurkations-szenarien (in glatten und stückweise-glatten Systemen)
3. Quantitative Analyse: Lyapunov Exponenten, fraktale Dimensionen, weitere Maße. Symbolische Dynamik
4. Fraktale

15. Lehrveranstaltungen und -formen: • 576801 Vorlesung Einführung in die Chaostheorie

17. Prüfungsnummer/n und -name: 57681 Einführung in die Chaostheorie (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 57950 Spezielle Probleme der Wärmeübertragung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Grazia Lamanna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Lamanna, Grazia; Dr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Thermodynamik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Die Studierenden verstehen die Methoden zur Kühlung von Turbomaschinen und Antriebssystemen.
• Die Studierenden können die verschiedenen Wärmeübertragungseffekte bewerten.
• Die Studierenden kennen Ansätze zur analytischen und numerischen Modellierung. |
| 13. Inhalt: | • Erhaltungsgleichungen und Grenzschichtapproximationen
• Strömung und Wärmeübertragung in internen Strömungen
• Wärmeübertragung in kompressiblen Strömungen
• Grundlagen der Turbulenzmodellierung
• Methoden zur Steigerung des Wärmetransports |
| 14. Literatur: | Manuskripte, Folien
Malvern, Introduction to the mechanics of a continuous medium, Prentice Hall, 1969
| 15. Lehrveranstaltungen und -formen: | • 579501 Vorlesung Spezielle Probleme der Wärmeübertragung
• 579503 Seminar Spezielle Probleme der Wärmeübertragung |
| 16. Abschätzung Arbeitsaufwand: | Spezielle Probleme der Wärmeübertragung, Vorlesung: 73 h (Präsenzzeit 28 h, Selbststudium 45 h)
Spezielle Probleme der Wärmeübertragung, Übungen: 17 h (Präsenzzeit 7 h, Selbststudium 10 h)
freiwilliges Seminar im Rahmen des angeleiteten Selbststudiums: 17 h
Gesamt: 90 h (Präsenzzeit 35 h, Selbststudium 55 h) |
| 17. Prüfungsnummer/n und -name: | 57951 Spezielle Probleme der Wärmeübertragung (BSL), Schriftlich, 60 Min., Gewichtung: 1 |
| 19. Medienform: | Sprache der Lehrveranstaltung:
• Deutsch (Wintersemester)
• Englisch (Sommersemester) |
| 20. Angeboten von: | Thermodynamik der Luft- und Raumfahrt |
Modul: 58190 Entwurf und Implementierung eines Compilers

2. Modulkürzel: 05151313
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Erhard Plödereder

9. Dozenten: Erhard Plödereder
Timm Felden

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule

14. Literatur:

15. Lehrveranstaltungen und -formen: • 581901 Vorlesung Entwurf und Implementierung eines Compilers

16. Abschätzung Arbeitsaufwand: Präsenztstunden: 42 h
Eigenstudiumstunden: 138 h
Gesamtstunden: 180 h

17. Prüfungsnummer/n und -name: • 58191 Entwurf und Implementierung eines Compilers (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich [58191] Entwurf und Implementierung eines Compilers (PL), mündliche Prüfung, 30 Min., Gewicht: 1.0 [Prüfungsvorleistung] Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Programmiersprachen und Übersetzerbau
Modul: 58270 Dynamik mechanischer Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Remco Ingmar Leine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Remco I. Leine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simon R. Eugster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Technische Mechanik II+III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Variationsrechnung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brachistochronenproblem, Eulersche Gleichungen der Variationsrechnung für eine und mehrere Variablen, für erste und höhere Ableitungen, für skalare- und vektorwertige Funktionen, natürliche Randbedingungen, freie Ränder und Transversalität, Hamiltonsches Prinzip der stationären Wirkung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projizierte Newton-Euler-Gleichungen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virtuelle Verschiebungen, Starrkörper-Kinematik und -Kinetik, Prinzipien der Mechanik, Minimalkoordinaten, Kinematik starrer Mehrkörpersysteme, Projizierte Newton-Euler-Gleichungen, Linearisierung nichtlinearer Bewegungsgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagrange'sche Dynamik:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagrange'sche Gleichungen 2. Art, Hamel-Boltzmann Gleichung, Anwendung auf starre Mehrkörpersysteme, Konservative Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ideale Bilaterale Bindungen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einfache generalisierte Kräfte, Klassifizierung von Bindungen, Prinzip von d'Alembert-Lagrange, Übergang auf neue Minimal-Koordinaten und -Geschwindigkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• H. Bremer, Dynamik und Regelung mechanischer Systeme, Teubner, 1988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 582701 Vorlesung Dynamik mechanischer Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 582702 Übung Dynamik mechanischer Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenz: (2 x 1,5 Stunden pro Woche) x 14 Wochen = 42 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nacharbeit: (4 Stunden pro Woche) x 14 Wochen = 56 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 82 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>58271 Dynamik mechanischer Systeme (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Wandtafel, Laptop, Beamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Angewandte und Experimentelle Mechanik</td>
</tr>
</tbody>
</table>
Modul: 59740 Ausgewählte Kapitel der Strömungsmechanik

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Holger Steeb
9. Dozenten: Wolfgang Ehlers

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016,
 → Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013,
 → Wahlmodule

11. Empfohlene Voraussetzungen: Kenntnisse der Technischen Mechanik und Grundkenntnisse der Kontinuumsmechanik

12. Lernziele:
 Durch die Vorlesung beherrschen die Studierenden die Theorie der Strömungsmechanik im Rahmen einer kontinuumsmechanischen Betrachtungsweise. Darüber hinaus verstehen sie ausgewählte Sonderfälle der Strömungsmechanik.

13. Inhalt:
 Die Vorlesung gibt eine Einführung in die Strömungsmechanik und behandelt ausgewählte Sonderfälle der Strömungsmechanik. Der Inhalt der Veranstaltung gliedert sich hierbei wie folgt:
 • Motivation: Einführung in die computerorientierte Fluidodynamik (CFD)
 • Kontinuumsmechanische Grundlagen: Kinematik und Bilanzrelationen
 • Materialeigenschaften von Fluiden: Newtonsche und nicht-Newtonscne Fluide
 • Turbulente Strömungen und deren Modellierung
 • Strömungen in deformierbaren, heterogenen, porösen Festkörpem
 • Wellenausbreitung, Mehrphasenströmungen, Diffusionsprozesse
 • Aspekte der numerischen Behandlung von Strömungsproblemen

14. Literatur:
 Vollständiger Tafelanschrieb
 • J. H. Spurk [1996], Einführung in die Theorie der Strömungen, Springer.
 • J. Bear [1988], Dynamics of Fluids in Porous Media, Dover Books on Physics und Chemistry.
 • R. Helmig, H. Class [2005], Grundlagen der Hydromechanik, Shaker Verlag.
 • W. Ehlers [2014], Vector and Tensor Calculus: An Introduction, Lecture notes, Institute of Applied Mechanics, Chair of Continuum Mechanics, University of Stuttgart.

15. Lehrveranstaltungen und -formen:
 • 597401 Vorlesung Ausgewählte Kapitel der Strömungsmechanik

16. Abschätzung Arbeitsaufwand:
 Vorlesung, Umfang 2 SWS:
 Präsenzzeit (2 SWS) 28 h
 Selbststudium (1,0 h pro Präsenzstunde) 28 h
 Seminar, Umfang 3 SWS:
Präsenzzeit (3 SWS) 42 h
Selbststudium (Vorbereitung des eigenen Seminarvortrags) 22 h
Schriftliche Ausarbeitung des Seminarthemas 60 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 59741
Ausgewählte Kapitel der Strömungsmechanik (LBP), Sonstige, Gewichtung: 1
Ausgewählte Kapitel der Strömungsmechanik (Gewicht: 1.0): setzt sich zusammen aus Vortrag eines zugeteilten Seminarthemas (Gewicht 0.5) und schriftliche Ausarbeitung (ca. 20 Seiten) zum Seminarthema (Gewicht 0.5).

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 59900 Euler- und Navier-Stokes-Gleichungen

4. SWS: 6 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Guido Schneider
9. Dozenten: Guido Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972Eio2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972Eio2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
empfohlen: Analysis 1-3, Höhere Analysis, Funktionalanalysis

12. Lernziele:
Die Studierenden verfügen über Kenntnis und Umgang mit Euler- und Navier-Stokes-Gleichungen

13. Inhalt:
Modellierung, lokale Existenz und Eindeutigkeit, qualitative Theorie, Instabilitäten, Musterbildung, Wellenphänomene

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 599001 Vorlesung Euler- und Navier-Stokes-Gleichungen
• 599002 Übung Euler- und Navier-Stokes-Gleichungen

16. Abschätzung Arbeitsaufwand:
Insgesamt 270 h, wie folgt:
Präsenzzeit: 56 h (V), 28 h (Ü)
Selbststudium: 186 h

17. Prüfungsnummer/n und -name:
59901 Euler- und Navier-Stokes-Gleichungen (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Analysis und Modellierung
Modul: 59940 Dynamik Nichtglatter Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810380</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>59940</td>
</tr>
<tr>
<td>6. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Frank Allgöwer</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Viktor Avrutin</td>
</tr>
<tr>
<td>9. Modul:</td>
<td>59940</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, Wahlmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• verstehen die Gründe, die zur Entstehung stückweise glatter Modelle führen,</td>
</tr>
<tr>
<td></td>
<td>• kennen verschiedene Typen stückweiser glatter Systeme und ihre Eigenschaften,</td>
</tr>
<tr>
<td></td>
<td>• verstehen, wie sich stückweise glatte Systeme von glatten Systemen unterscheiden, und wie diese Unterschiede zum Auftreten bestimmter Arten der Dynamik führen,</td>
</tr>
<tr>
<td></td>
<td>• kennen charakteristische Bifurkationsphänomene in stückweise glatten Systemen und können diese analysieren.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>59941 Vorlesung Dynamik Nichtglatter Systeme</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>Präsenzzeit: 28 h, Selbststudium: 62 h</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Dynamik Nichtglatter Systeme (BSL), Mündlich, 30 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>Systemtheorie und Regelungstechnik</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Systemtheorie und Regelungstechnik</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Systemtheorie und Regelungstechnik</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Systemtheorie und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 59950 Mechanik nichtlinearer Kontinua

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010910</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Simon Raphael Eugster</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule |
| 11. Empfohlene Voraussetzungen: | TM II+III |
| 12. Lernziele: | Verständnis für das Modellieren nichtlinearer Kontinua. |
| 13. Inhalt: | Tensoranalysis:
Multilinear forms and tensors
Index notation
Tensor product
Contraction operations
Differentiation rules
Integration theorem
Nonlinear Continua:
Nonlinear deformation
Deformation gradient
Strain measures
Principle of virtual work
Stress tensors
Balance laws
Material laws |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | • 599501 Vorlesung Mechanik nichtlinearer Kontinua
• 599502 Übung Mechanik nichtlinearer Kontinua |
| 16. Abschätzung Arbeitsaufwand: | Präsenz: 56 Stunden
Selbststudium: 124 Stunden
Gesamt: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 59951 Mechanik nichtlinearer Kontinua (PL), Mündlich, 30 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Angewandte und Experimentelle Mechanik |
Modul: 59990 Nichtglatte Dynamik

2. Modulkürzel: 074010820
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr. Remco Ingmar Leine
9. Dozenten: Remco Ingmar Leine
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
11. Empfohlene Voraussetzungen: TM II+III
13. Inhalt:
 Convex analysis:
 Normal cone
 Subdifferential
 Maximal monotonicity
 Proximal point functions
 Set-valued Force Laws:
 Scalar force elements
 Potential theory
 Contact law in normal direction
 Coulomb friction (planar und spatial)
 Impact laws in multibody dynamics
 Nonsmooth Dynamical Systems:
 DAEs
 Differential inclusions
 Event driven integration method
 Measure differential inclusions
 Time-stepping methods
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 599901 Vorlesung Nichtglatte Dynamik
 • 599902 Übung Nichtglatte Dynamik
16. Abschätzung Arbeitsaufwand:
 Präsenz: 56 Stunden
 Selbststudium: 124 Stunden
 Gesamt: 180 Stunden
17. Prüfungsnummer/n und -name: 59991 Nichtglatte Dynamik (PL), Schriftlich, 90 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Angewandte und Experimentelle Mechanik
Modul: 60090 Diskretisierung der inkompressiblen Navier-Stokes-Gleichungen

3. Leistungspunkte: 3 LP 6. Turnus: Unregelmäßig

4. SWS: 2 7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Dr. Claus-Justus Heine

9. Dozenten: Claus-Justus Heine

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
Basic knowledge of PDEs and the finite element method programming skills, depending on the FEM toolbox used for the course, for example C++ in the context of Dune

12. Lernziele:
discretization of the incompressible Navier-Stokes equations
actual simulations of basic problems
verification and visualization of the simulation results

13. Inhalt:
Theory: Brief introduction into continuum fluid dynamics, "weak" formulation, saddle point problems.
Implementation:
Introduction to the simulation software used, advanced programming techniques (e.g. Dune, C++), discretization of saddle point problems with finite elements, time discretization, non-linear solvers, error computation, visualization.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 600901 Vorlesung Diskretisierung der inkompressiblen Navier-Stokes-Gleichungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28h
Selbststudium/Nacharbeitszeit: 52h
Projektvorstellung mit Vorbereitung: 10h
Gesamt: 90h

17. Prüfungsnr/n und -name: 60091 Diskretisierung der inkompressiblen Navier-Stokes-Gleichungen (BSL), Sonstige, Gewichtung: 1
Implementierung eines konkreten Fallbeispiels und Präsentation der Simulationsergebnisse
Implementation of a concrete problem and presentation of the results of the simulations

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Angewandte Mathematik/Numerik für Höchstleistungsrechner
Modul: 60110 Wissenschaftliches Rechnen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080300016</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modulstart:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßigkeit</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. rer. nat. Dominik Göddeke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dominik Göddeke</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-EiO2016, → Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Erwerb von vertieften Fähigkeiten in einem Teilgebiet der modernen Mathematik</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Analyse von Methoden und ihre effiziente praktische Umsetzung</td>
</tr>
<tr>
<td></td>
<td>Übertragung auf anwendungsorientierte Fragestellungen</td>
</tr>
<tr>
<td></td>
<td>Grundlagen für das Verständnis aktueller Forschungsthemen</td>
</tr>
<tr>
<td></td>
<td>Konkrete Themengebiete: Krylov-Unterraum- und Projektionsverfahren, Mehrgitterverfahren, Crashkurs Rechnerarchitektur, Parallele Programmierung mit OpenMP, Vorkonditionierungs- und Glättungstechniken, Einführung in Gebietszerlegungsverfahren</td>
</tr>
<tr>
<td></td>
<td>Die Übungen haben sowohl theoretische als auch praktische Anteile.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 601101 Vorlesung Wissenschaftliches Rechnen</td>
</tr>
<tr>
<td></td>
<td>• 601102 Übung Wissenschaftliches Rechnen</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56h (V), 28h (Ü)
Selbststudium: 186 h
Gesamt: 270 h |
|------------------------------|--|
| 17. Prüfungsnummer/n und -name: | • 60111 Wissenschaftliches Rechnen (PL), Mündlich, 30 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich |
18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	Mathematische Methoden für komplexe Simulationen der Naturwissenschaft und Technik
Modul: 60210 Implementation and Algorithms for Finite Elements

2. Modulkürzel: 020300006
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Dr.-Ing. Malte von Scheven
9. Dozenten: Malte von Scheven

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: "Computational Mechanics of Structures" or "Finite Elemente für Tragwerksberechnungen"

12. Lernziele:
The students know the numerical methods and algorithms for implementation of the finite element method. They are able to understand the individual components of complex finite element packages and they can produce their own finite element code. For that purpose, the students have basic knowledge of a scientific programming language. Furthermore, the students understand the most important methods of numerical mathematics and know how to implement it within a computer code.

13. Inhalt:
- principal structure of a finite element code
- pre- and post-processing, software engineering in the context of finite element programs
- integration of element stiffness matrices and load vectors, implementation of boundary conditions
- assembly of stiffness matrices
- solution of linear systems of equations
- storage formats for sparse matrices

14. Literatur:
lecture notes "Implementation and Algorithms for Finite Elements", Institut für Baustatik und Baudynamik

15. Lehrveranstaltungen und -formen:
- 602101 Vorlesung Implementation and Algorithms for Finite Elements
- 602102 Übung Implementation and Algorithms for Finite Elements

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 60211 Implementation and Algorithms for Finite Elements (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Prerequisite: 3 approved, not graded assignments

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 60230 Matrix Computations in Signal Processing and Machine Learning

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Stefan Uhlich

11. Empfohlene Voraussetzungen: Basic knowledge of linear algebra (matrices, vectors,) and of digital signal processing

12. Lernziele: Understand that many practical problems in signal processing and machine learning can be expressed and solved conveniently using matrices and vectors

Know the basic concepts of recommendation systems which are used in many online stores (e.g. Amazon) and the page rank algorithm from Google

Be able to formulate new problems in signal processing and machine learning in such a way that matrix computations can be used

13. Inhalt:

1 Basics
1.1 Notations and Definitions
1.2 Vector and Matrix Norms, Condition Numbers
Applications: Compressed Sensing, Matrix Completion
2 Vector and Matrix Derivatives
2.1 Definition and Properties
2.2 Verification
3 Eigenvalue Decomposition (EVD)
3.1 Definition
3.2 Numerical Computation
3.3 Generalized EVD
Application: Feature Reduction using the Fisher Transform, PageRank Algorithm
4 Singular Value Decomposition (SVD)
4.1 Definition
4.2 Numerical Computation
4.3 Pseudoinverses
4.4 Nearest Orthogonal Matrix
4.5 Low-Rank Approximations
Application: Feature Reduction using the Principal Component Analysis, Recommender Systems, Classical Multidimensional Scaling
5 Nonnegative Matrix Factorization (NMF)
5.1 Motivation
5.2 Numerical Computation
Application: Blind Source Separation
6 Special Matrices and Their Applications
6.1 Matrices with Special Structures
6.1.1 Toeplitz Matrices
6.1.2 Hankel Matrices
6.1.3 Vandermonde Matrices
6.1.4 Circulant Matrices
6.2 Matrices with Special Characteristics
6.2.1 Projection Matrices
6.2.2 Stochastic Matrices

14. Literatur:
P. N. Klein: "Coding the matrix: linear algebra through applications to computer science", Newtonian Press, 2013

15. Lehrveranstaltungen und -formen:
• 602301 Vorlesung Matrix Computations in Signal Processing and Machine Learning

16. Abschätzung Arbeitsaufwand:
Presence time: 28 h
Self study: 62 h
Total: 90 h

17. Prüfungsnummer/n und -name:
60231 Matrix Computations in Signal Processing and Machine Learning (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
In case of a small number of attending students, the exam can be oral. This will be announced in the lecture.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Netzwerk- und Systemtheorie
Modul: 60860 3D Scanner - Algorithms and Systems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Sven Simon

9. Dozenten:

M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: • 608601 Vorlesung mit Übung 3D-Scanner - Algorithmen und Systeme

16. Abschätzung Arbeitsaufwand:

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Parallele Systeme
Modul: 61280 Partielle Differentialgleichungen I (klassische Theorie)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080200095</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modulldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Jens Wirth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Lesky, Guido Schneider, Jens Wirth</td>
</tr>
</tbody>
</table>
M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2016, → Wahlmodule |
| 11. Empfohlene Voraussetzungen: | Lineare Algebra, Analysis I-III, Höhere Analysis |
Analytische Theorie, Sätze von Cauchy-Kovalevskaya und Holmgren, Eindeutigkeit und Abhängigkeitsgebiete
Cauchyprobleme, Korrektheit und Hadamardbedingung, Hyperbolizität
Randwertprobleme, Elliptizität, Ungleichung von Garding und Lösbarkeit von Dirichletproblemen |
Olga Ladyzhenskaja: The boundary value problems of mathematical physics (Springer, 1985) |
| 15. Lehrveranstaltungen und -formen: | • 612801 Vorlesung Partielle Differentialgleichungen I (klassische Theorie)
• 612802 Übung Partielle Differentialgleichungen I (klassische Theorie) |
| 16. Abschätzung Arbeitsaufwand: | Insgesamt 270h, wie folgt:
Präsenzzeit 56 h (V), 28h (Ü)
Selbststudium 186 h |
<p>| 17. Prüfungsnummer/n und -name: | • 61281 Partielle Differentialgleichungen I (klassische Theorie) (PL), Mündlich, 30 Min., Gewichtung: 1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Analysis und Mathematische Physik</td>
</tr>
</tbody>
</table>
Modul: 67140 Statistische Lernverfahren und stochastische Regelungen

4. SWS: 4 7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Ebenbauer
9. Dozenten: Nicole Radde
Christian Ebenbauer
Sebastian Trimpe

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule

11. Empfohlene Voraussetzungen: Grundlagen Wahrscheinlichkeitsrechnung

12. Lernziele:
Die Studenten können das Grundprinzip von Bayes’schen Lern- und Schätzverfahren (Filter) erklären und anwenden.
Die Studenten können direkte Verfahren zur Generierung von Stichproben aus Wahrscheinlichkeitsverteilungen sowie Markov Chain Monte Carlo Verfahren erläutern und implementieren.

Die Studenten lernen weiterführende Methoden im den Bereichen statistische Lernverfahren und stochastische Regelung kennen und können diese auf Probleme anwenden.

13. Inhalt:
Weiterführende Themen im den Bereichen statistische Lernverfahren und stochastische Regelung wie zum Beispiel
• Stichprobengenerierung, stochastische Simulation
• Bayessche Schätzverfahren, Filter
• Regression und Gauß-Prozesse

Die genaue Themenauswahl erfolgt unter Berücksichtigung der Interessen der Studierenden.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 671401 Vorlesung Statistische Lernverfahren und stochastische Regelungen
• 671402 Übung Statistische Lernverfahren und stochastische Regelungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Vor- und Nachbearbeitungszeit: 84 h
Prüfungsvorbereitung: 40 h
Gesamter Arbeitsaufwand: 180h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>67141 Statistische Lernverfahren und stochastische Regelungen (PL), Schriftlich oder Mündlich, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Computations in Control</td>
</tr>
</tbody>
</table>
Modul: 67150 Einführung in die Modellreduktion mechanischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021020015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Moduldaeu:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Felix Oliver Fritzen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Ehlers, Felix Oliver Fritzen</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse der Kontinuumsmechanik, Kenntnisse numerischer Methoden für partielle Differentialgleichungen (insbesondere Finite-Elemente-Methode, Finite-Differenzen-Methode), Grundkenntnisse in MATLAB, basic knowledge of continuum mechanics, knowledge in numerical methods for partial differential equations (in particular: finite element method, finite difference method), basic knowledge in MATLAB,</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Durch die Vorlesung erlernen die Studierenden Grundkenntnisse aus dem Bereich der Modellreduktionsverfahren zur numerisch effizienten Behandlung parametrisierter partieller Differentialgleichungen. Dabei werden theoretische Grundlagen und anwendungsorientierte Aspekte vermittelt, die in praktische Problemstellungen und akademischen Fragestellungen eingesetzt werden können. Withing the course the students attain basic knowledge in the field of model order reduction for the computationally efficient treatment of parameterized partial differential equations. Both theoretical foundations and application oriented aspects will be covered, thus providing tools for use in either practical problem settings or in an academic environment.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die Vorlesung gibt eine Einführung in Modellreduktionsverfahren, insbesondere in Verfahren, die eine Reduktion linearer Funktionenräume durch sogenannte Reduzierte Basen realisieren. Die Veranstaltung gliedert sich wie folgt:
 • Motivation: Notwendigkeit der Modellreduktion für numerische Studien, Eigenschaften parametrisierter mechanischer Probleme (mit Beispielen)
 • Kontinuumsmechanische Grundlagen:
 Wärmeleitung (stationär, instationär)
 Diskrete mechanische System (Feder-Massen-Systeme)
 Elastostatik
 • Matrixalgebra (inkl. EIG/SVD,), formale Definition von Funktionenräumen</td>
</tr>
</tbody>
</table>
• Substrukturtechniken
• Definition lokaler und globaler Maße für Approximationsfehler
• Proper Orthogonal Decomposition (POD)
• Reduzierte Basis Methoden für lineare, zeitunabhängige Probleme (RB for LTI systems)
• Reduzierte Basis Methoden für lineare, zeitabhängige Probleme
• Einführung in die Modellreduktion nichtlinearer Systeme
• Numerische Aspekte der Modellreduktion für nichtlineare Probleme

The lecture gives an introduction to model order reduction, more specifically for methods aiming at a reduction of linear function spaces by using a reduced basis. The course is partitioned as follows:
• Motivation: necessity for model order reduction in numerical studies, properties of parameterized mechanical systems (with examples)
• Continuum mechanical foundations:

Heat conduction (stationary, instationary)
Discrete mechanical systems (spring-mass-systems)
• matrix algebra (eigenproblems/SVD,), formal definitions of function spaces
• substructuring techniques
• definition of local and global measures of the approximation error
• proper orthogonal decomposition (POD)
• reduced basis methods for linear time invariant problems (LTI)
• reduced basis methods for linear time dependent problems
• introduction to model order reduction of nonlinear systems
• numerical aspects of model order reduction for nonlinear problems

14. Literatur:
Digital lecture notes including digital material for the course preparation will be provided
Supplementing literature:
J. Fehr: "Automated and error controlled model reduction in elastic multibody systems", Dissertationsschrift, Shaker Verlag, 2011

15. Lehrveranstaltungen und -formen:
• 671501 Vorlesung Einführung in die Modellreduktion mechanischer Systeme
16. Abschätzung Arbeitsaufwand: Präsenzzeit Vorlesung 21 h
Nachbereitung Vorlesung 56 h
Präsenzzeit Übung/Rechnerpraktika 32 h
Nachbereitung/Vorbereitung Übung/Rechnerpraktika 71 h
Gesamt: 180 h
Lecture attendance 21 h
Individual lecture wrap-up 56 h
Exercise attendance/computer lab 32 h
Wrap-up/preparation of exercises/computer lab 71 h
Total: 180 h

17. Prüfungsnummer/n und -name:
• 67151 Einführung in die Modellreduktion mechanischer Systeme (PL), Mündlich, 40 Min., Gewichtung: 1
• V Vorleistung (USL-V), Sonstige
Abgabe und Kurzvorstellung von drei lauffähigen MATLAB-Programmen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik II
Modul: 67250 Numerische Verfahren für Mehrskalenprobleme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080300017</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Iryna Rybak</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Iryna Rybak</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, ➔ Zusatzmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse der partiellen Differentialgleichungen</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Kenntnisse über klassische Modelle der Fluiddynamik und der Strömungen in porösen Medien sowie über Mittelungsansätze, • Fähigkeit zur Entwicklung von Makromodellen sowie von effizienten numerischen Algorithmen für Mehrskalenprobleme.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 672501 Vorlesung Numerische Verfahren für Mehrskalenprobleme</td>
</tr>
<tr>
<td></td>
<td>• 672502 Übung Numerische Verfahren für Mehrskalenprobleme</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>67251 Numerische Verfahren für Mehrskalenprobleme (PL), Mündlich, 30 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mathematische Methoden für komplexe Simulationen der Naturwissenschaft und Technik</td>
</tr>
</tbody>
</table>

Stand: 13. Dezember 2018
Modul: 68050 Probabilistik und Monte-Carlo-Methoden

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041600108</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Starflinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Buck, Jörg Starflinger</td>
</tr>
</tbody>
</table>

Lernziele:

- Die Studierenden wissen, dass viele technische Systeme zufälligen Einflüssen unterliegen und sind in der Lage, diese mit Hilfe der Methoden der Stochastik zu beschreiben und zu analysieren,

- Sie kennen die Grundlagen der Monte-Carlo-Methode und haben gelernt, diese anhand praktischer Beispiele zur Lösung numerischer Problemstellungen anzuwenden,

- Sie wissen, wie probabilistische Methoden im Rahmen einer Sensitivitäts- und Unsicherheitsanalyse eingesetzt werden können, um die Ergebnisse komplexer Simulationsmodelle besser zu verstehen,

- Sie haben verstanden, wie mit Hilfe einer probabilistischen Risikoanalyse die Zuverlässigkeit bzw. die Versagenswahrscheinlichkeit eines technischen Systems berechnet werden kann und welche Schritte und Methoden hierzu notwendig sind,

- Sie wissen wie die Monte-Carlo-Methode zur Modellierung physikalischer Prozesse mit stochastischer Natur z.B. in der Kernphysik angewendet werden kann.

- Sie haben das Verständnisses der theoretischen Inhalte durch praktische Übungen vertieft.

Inhalt:

- Die o.g. Lernziele werden in 5 Themenkomplexen abgehandelt.

 - Mathematische und numerische Grundlagen (Wahrscheinlichkeitsrechnung und Statistik)
 - Monte-Carlo-Methode als Basis numerischer Werkzeuge: Integration über komplexe Gebiete, Optimierung (simulated annealing, genetische Algorithmen)
 - Sensitivitäts- und Unsicherheitsanalyse komplexer mathematisch-physikalischer Modelle
 - Probabilistische Risikoanalyse (PRA)
 - Anwendungen der Monte-Carlo-Methode in der Kernphysik, beispielsweise Strahlungs transport, Teilchen- und Materie-Wechselwirkungen und in anderen Gebieten der Ingenieurtechnik
Im Wechsel mit den theoretischen Einheiten werden praktische Übungen am Computer unter Verwendung z.B. von MATLAB und SUSA (Software for Uncertainty and Sensitivity Analyses) abgehalten.

15. Lehrveranstaltungen und -formen: 680501 Vorlesung Probabilistik und Monte-Carlo-Methoden

16. Abschätzung Arbeitsaufwand: 56h Präsenzzeit
36h Vor-/Nacharbeitungszeit
88h Prüfungsvorbereitung und Prüfung
Gesamt:180 h

17. Prüfungsnummer/n und -name: 68051 Probabilistik und Monte-Carlo-Methoden (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Kernenergetik und Energiesysteme
Modul: 68320 Modulationsgleichungen

2. Modulkürzel: 080210005
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Modul: 68320
6. Turnus: Unregelmäßig
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Wolf-Patrick Düll
9. Dozenten: Wolf-Patrick Düll
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule
 M.Sc. Simulation Technology, PO 972-2013, ➞ Zusatzmodule
 M.Sc. Simulation Technology, PO 972-2016, ➞ Zusatzmodule
11. Empfohlene Voraussetzungen: Analysis 1-3, Nichtlineare Partielle Differentialgleichungen
13. Inhalt: Generische Modulationsgleichungen für konservative und dissipative Systeme: Herleitung und mathematisch rigorose Rechtfertigung ihrer Approximationseigenschaften
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 683201 Vorlesung Modulationsgleichungen
 • 683202 Übung Modulationsgleichungen
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 h
 Selbststudium: 187 h
 Prüfungsvorbereitung: 20 h
 Gesamt: 270
17. Prüfungsnummer/n und -name:
 • V Vorleistung (USL-V), Schriftlich oder Mündlich
 • 68321 Modulationsgleichungen (PL), Mündlich, 30 Min., Gewichtung: 1
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 68420 Deep learning for NLP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Ngoc Thang Vu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ngoc Thang Vu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>statistics and machine learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students develop an understanding of state-of-the-art research in deep learning (DL) techniques and their applications for speech and language processing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>This module gives an introduction to deep learning (DL) techniques and their applications for speech and language processing. It covers several fundamental topics about neural nets. Furthermore, different kinds of neural nets such as multilayer perceptron (MLP), convolution neural nets (CNN), recurrent neural nets (RNN) and long short-term memory (LSTM) RNNs will be discussed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>68421 Deep learning for NLP (BSL), Gewichtung: 1 written (60 min.) or oral (30 min.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 68720 Human-Computer Interaction

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Andreas Bulling</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Bulling wiss. Mitarbeiter</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, Wahlmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>051520005 Programmierung und Software-Entwicklung</td>
</tr>
<tr>
<td></td>
<td>051200005 Systemkonzepte und -programmierung</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Grundlagen der Mensch-Computer Interaktion, historische Entwicklung</td>
</tr>
<tr>
<td></td>
<td>• Prozesse zur Entwicklung von benutzbaren Schnittstellen</td>
</tr>
<tr>
<td></td>
<td>• Entwurfsprinzipien und Modelle für moderne Benutzungsschnittstellen und interaktive Systeme</td>
</tr>
<tr>
<td></td>
<td>• Informationsverarbeitung des Menschen, Wahrnehmung, Motorik, Eigenschaften und Fähigkeiten des Benutzers</td>
</tr>
<tr>
<td></td>
<td>• Interaktionskonzepte und -stile, Metaphern, Normen, Regeln und Style Guides</td>
</tr>
<tr>
<td></td>
<td>• Ein- und Ausgabegeräte, Entwurfssraum für interaktive Systeme</td>
</tr>
<tr>
<td></td>
<td>• Analyse-, Entwurfs- und Entwicklungsmethoden und -werkzeuge für Benutzungsschnittstellen</td>
</tr>
<tr>
<td></td>
<td>• Prototypische Realisierung und Implementierung von interaktiven Systemen, Werkzeuge</td>
</tr>
<tr>
<td></td>
<td>• Architekturen für interaktive Systeme, User Interface Toolkits und Komponenten</td>
</tr>
<tr>
<td></td>
<td>• Methoden zur formativen und summativen Evaluation von Benutzungsschnittstellen</td>
</tr>
<tr>
<td></td>
<td>• Akzeptanz, Evaluationsmethoden und Qualitätsicherung</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Alan Dix, Janet Finley, Gregory Abowd, Russell Beale, Human Computer Interaction, 2004</td>
</tr>
<tr>
<td></td>
<td>Ben Shneiderman, Catherine Plaisant, Designing the User Interfaces, 2005</td>
</tr>
</tbody>
</table>
• Field, Andy, and Graham Hole, How to design and report experiments, 2002.

15. Lehrveranstaltungen und -formen:
• 687201 Vorlesung Human-Computer Interaction
• 687202 Übung Human-Computer Interaction

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 68721 Human-Computer Interaction (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
• 68722 Human-Computer Interaction (BSL), Sonstige, Gewichtung: 1

18. Grundlage für … :

19. Medienform:

20. Angeboten von: Mensch-Computer Interaktion und Kognitive Systeme
Modul: 68740 Non-linear Computational Mechanics of Structures

2. Modulkürzel: 020300005
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Bischoff
9. Dozenten: Manfred Bischoff

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016,
➞ Zusatzmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013,
➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
Computational Mechanics of Structures (55920)

12. Lernziele:
The students have an overview of computational methods for the non-linear analysis of structures with an emphasis on the finite element method. They are prepared for self dependent work on a scientific level. At the same time they have practical skills, particularly in view of computational modelling of non-linear structural behaviour and critical review of the results. They have gained insight into aims and methods of scientific work in an international environment.

13. Inhalt:
The course covers the theory of non-linear structural mechanics and corresponding discretization methods and algorithms with a focus on the finite element methods.
• basic principles, phenomena and concepts of structural mechanics
• non-linear strain measures and stress measures
• large deformations, stability problems
• methods and algorithms of non-linear structural mechanics
• iteration methods and path following techniques
• stability analysis, buckling problems

14. Literatur:
• lecture notes "Advanced Computational Mechanics of Structures", Institut für Baustatik und Baudynamik

15. Lehrveranstaltungen und -formen:
• 687401 Vorlesung Non-linear Computational Mechanics of Structures
• 687402 Übung Non-linear Computational Mechanics of Structures

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 68741 Non-linear Computational Mechanics of Structures (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorlesung (USL-V), Sonstige Prerequisite: 3 approved, not graded assignments

18. Grundlage für ...:
19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 69160 Einführung in die Materialwissenschaft und Werkstofftechnik

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Bonten
9. Dozenten: Christian Bonten
Ralf Schacherl
Michael Seidenfuß
Anke Weidenkaff

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

Einführung Materialwissenschaften:

Werkstoffmechanik für Chemie- und Bioingenieure:

13. Inhalt:

Einführung Materialwissenschaften I

1. Struktur der Materie
 - Atombau, Periodensystem der Elemente und chemische Bindung

2. Kristallstruktur
 - Formale Beschreibung von Kristallstrukturen, Translationsgitter/ Bravaisgitter,
 - Kristallsysteme, Ebenen + Richtungen,
 - Kristallstrukturen von Metallen, einfachen Legierungen, und Keramiken, Polymorphie und Polytypie,
 - kristallstrukturbestimmende Faktoren, Grundlagen von Beugungsexperimenten

3. Gitteraufbaufehler
 - Punktdefekte, Liniendefekte (Versetzungen), Korngrenzen

4. Zustandsdiagramme
• Gibbsche Phasenregel, Hebelregel, Reaktionstypen, Gefügeentwicklung, Grundlagen der Mikroskopie.

5. Atomarer Transport
• Diffusionsmechanismen, 1. u. 2. Ficksche Gesetz,

Werkstoffmechanik für Chemie- und Bioingenieure:
1. Mechanische Eigenschaften
2. Werkstoffgruppen
• Metalle
• Polymere / Kunststoffe
• Keramiken
• Verbundwerkstoffe

3. Werkstoffprüfung
• Zugprüfung, Härteprüfung, Kerbschlagbiegeprüfung, Dauerschwingversuch, Kriechversuch, Strukturanalyse

4. Umgebungseinflüsse auf das Werkstoffverhalten

14. Literatur:
• Physikalische Grundlagen der Materialkunde, G. Gottstein, 1998, Springer
• Lehrbuch "Werkstoffkunde für Ingenieure" (Eberhard Ross, Karl Maile, Springer Verlag)
• Lehrbuch "Kunststofftechnik - Einführung und Grundlagen" (Christian Bonten, Hanser Verlag)
• Ergänzende Folien als pdf

15. Lehrveranstaltungen und -formen:
• 691601 Vorlesung Einführung Materialwissenschaften I
• 691602 Übung Einführung Materialwissenschaften I
• 691603 Vorlesung Werkstoffmechanik für Chemie- und Bioingenieure

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium: 110 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
• 69161 Einführung in die Materialwissenschaft (BSL), Schriftlich, 60 Min., Gewichtung: 1
• 69162 Einführung in die Werkstofftechnik (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Kunststofftechnik
Modul: 69460 Computational contact mechanics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Anton Tkachuk

9. Dozenten: Anton Tkachuk

11. Empfohlene Voraussetzungen: Computational Mechanics of Structures

12. Lernziele: This course describes formulations, methods and algorithms of contact mechanics. It covers penalty, Lagrange and Nitsche formulations for weak forms, Node-to-Node, Node-to-Segment and Segment-to-Segment spatial discretization of contact terms, local and global search algorithms, friction and application to quasi-static and dynamic problems. The students learn to solve contact problems, how to skilfully choose the solution methods, interpret results of contact simulations and avoid problems with convergence. Furthermore, the students understand details of the implementation and performance of contact algorithms.

13. Inhalt:
- Introduction to kinematics of contact, Signorini conditions
- Weak and strong forms of a contact problem
- Spatial discretization
- Global and local contact search
- Global solution algorithms: active set and complementarity algorithms
- Treatment of contact for explicit time integration
- Treatment of contact with implicit time integration
- Mesh tying techniques

14. Literatur:
- slides
- additional material (Maple worksheets, Ansys examples)
- textbook (Wriggers, "Computational contact mechanics")

15. Lehrveranstaltungen und -formen:
- 694601 Vorlesung Computational contact mechanics
- 694602 Übung Computational contact mechanics

16. Abschätzung Arbeitsaufwand:

17. Prüfungnummer/n und -name:
- 69461 Computational contact mechanics (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich Prerequisite: 3 approved, not graded assignments

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 70050 Numerische Strömungsmechanik

2. Modulkürzel: 060120115
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Claus-Dieter Munz

9. Dozenten: Claus-Dieter Munz

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➞ Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:
Powerpoint-Folien werden als Skript zur Verfügung gestellt.
Verschiedene Lehrbücher werden in der Vorlesung angegeben.

15. Lehrveranstaltungen und -formen:
- 700501 Vorlesung Numerische Strömungsmechanik
 (Präsenzzeit: 56 h, Selbststudium 124 h) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>70051 Numerische Strömungsmechanik (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td>Powerpoint transperencies are available that cover the topics of the lecture. Basic knowledge can be find in the book C.-D. Munz, T. Westermann: Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen, 3. Auflage, Springer 2012</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Aerodynamik und Gasdynamik</td>
</tr>
</tbody>
</table>
Modul: 70060 Simulation verdünnter Gase und Plasmen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dr.-Ing. Marcel Pfeiffer

9. Dozenten: Marcel Pfeiffer

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Simulation Technology, PO 972-2016, Wahlmodule
- M.Sc. Simulation Technology, PO 972-2013, Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
The Studierenden besitzen Grundkenntnisse bezüglich der Theorie und der Simulation von verdünnten Gasen und Plasmen, im Speziellen unter Nutzung verschiedener Partikelverfahren unter besonderer Beachtung der mathematischen und physikalischen Modellbildung.

13. Inhalt:
Theorie verdünnter Gase und Plasmen (Boltzmann Gleichung, Maxwell Gleichungen, Fokker-Planck Gleichung,...) Grundlage verschiedener Partikelverfahren Einführung in die "Direct Simulation Monte Carlo" Methode Einführung in die "Particle in Cell" Methode Andere Partikelverfahren (z.B. "Low Diffusion") Umsetzung und Anwendung der Verfahren

14. Literatur:
Vorgeschlagene Literatur:
- C. K. Birdsall, "Plasma Physics via Computer Simulation", Taylor and Francis, 2004

15. Lehrveranstaltungen und -formen:
- 700601 Vorlesung Simulation verdünnter Gase und Plasmen

16. Abschätzung Arbeitsaufwand:
Vorlesung: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
- 70061 Simulation verdünnter Gase und Plasmen (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Raumfahrtsysteme
Modul: 70090 Battery modelling and Energy Management

2. Modulkürzel: 050513061
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Peter Birke

9. Dozenten: Kai Peter Birke

 M.Sc. Simulation Technology, PO 972-2016, -> Wahlmodule

11. Empfohlene Voraussetzungen: Interest in electromobility and renewable energies

12. Lernziele:
• Good understanding of concepts of battery modelling and energy management and as a consequence ability to apply battery design principles.
• Energy management as an enabler of renewable energies.

13. Inhalt:
• Motivation and introduction
• Physical-chemical motivated battery models (Doyle, Fuller, Newman)
• Analytical (empirical) battery models
• Abstract battery models (equivalent circuit, stochastic-based)
• Aging effects in batteries
• Thermal modelling of batteries
• Practical implementation of the battery models with examples (electromobility, renewable energies)
• Energy management aspects (introduction, need, fields of application)
• Energy management in electrochemical and electrical cells
• Energy management in the automotive powertrain (small and medium vehicles)
• Energy management in the automotive powertrain (large and heavy duty vehicles)
• Energy management in battery based stationary and island applications
• Sustainable energy chains
• Smart house
• Future concepts for battery modelling and energy management

14. Literatur:
• Plett, G.: Battery Management Systems, Volume I: Battery Modelling, Artech House
• Weicker, P.: Lithium-Ion Battery Management, Artech House
• Andrea, D.: Battery Management Systems for Large Lithium-Ion Battery Packs, Artech House
• Reddy, T.B.: Linden's Handbook of Batteries, Mc Graw Hill
• Daniel, C. and Besenhard, J.O.: Handbook of Battery Materials, Wiley-VCH

15. Lehrveranstaltungen und -formen:
• 700901 Vorlesung Battery modelling and Energy Management
• 700902 Übung Battery modelling and Energy Management

16. Abschätzung Arbeitsaufwand:
Presence: 58 h
Self Study: 122 h
Total: 180 h
17. Prüfungsnummer/n und -name: 70091 Battery modelling and Energy Management (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 70400 Modellierung, Analyse und Entwurf neuer Roboterkinematiken

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Pott</td>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

13. Inhalt: • Modellbildung von Maschinen mit komplexer Kinematik • Techniken zur Analyse und Eigenschaftsbestimmung • Kinematische Transformation und Arbeitsraumbestimmung • Methoden für Entwurf und Auslegung

15. Lehrveranstaltungen und -formen: • 704001 Vorlesung Modellierung, Analyse und Entwurf neuer Roboterkinematiken I • 704002 Vorlesung Modellierung, Analyse und Entwurf neuer Roboterkinematiken II

17. Prüfungsnummer/n und -name: 70401 Modellierung, Analyse und Entwurf neuer Roboterkinematiken (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...: Application of Simulation Technology in Manufacturing Engineering
Modul: 71910 Seminar zu Mehrphasenströmungen

2. Modulkürzel: 060700308
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 2
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bernhard Weigand

9. Dozenten: Weigand, Bernhard; Univ.-Prof. Dr.-Ing. Munz, Claus-Dieter; Univ.-Prof. Dr. Rohde, Christian; Univ.-Prof. Dr.

M.Sc. Simulation Technology, PO 972-2016, ➞ Wahlmodule

11. Empfohlene Voraussetzungen: • Thermodynamik Grundlagen
• Numerische Simulation

12. Lernziele:
• Die Studierenden können verschiedene Mehrphasenströmungen definieren und unterscheiden.
• Die Studierenden kennen verschiedene Berechnungsmethoden für Mehrphasenströmungen.
• Die Studierenden kennen verschiedene experimentelle Methoden zur Untersuchung von Mehrphasenströmungen.
• Die Studierenden haben einen Überblick über den aktuellen Stand der Forschung auf dem Gebiet der Mehrphasenströmungen.

13. Inhalt:
Einführung in die aktuelle Forschung auf dem Gebiet der Mehrphasenströmungen (Experimentell, analytisch, numerisch)
Beschreibung verschiedener Mehrphasenströmungen
Vorträge zu ausgewählten Gebieten der Mehrphasenströmungen
Diskussionen über den aktuellen Stand der Forschung

14. Literatur:
Clift, Grace and Weber: Bubbles, Drops, and Particles, 2005
Yeoh and Tu: Computational Techniques for Multiphase Flows, 2009

15. Lehrveranstaltungen und -formen:
• 719101 Seminar zu Mehrphasenströmungen

16. Abschätzung Arbeitsaufwand: 90h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name: 71911 Seminar zu Mehrphasenströmungen (BSL), Sonstige, Gewichtung: 1
Vortrag 30min im Seminar

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Thermodynamik der Luft- und Raumfahrt
Modul: 71940 Additive Fertigungsverfahren

2. Modulkürzel: 060310107
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Joachim Greiner
9. Dozenten: Joachim Greiner

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
Die Studierenden sind in der Lage Modelle in der Sinter-Technologie zu bauen. Dabei lernen sie die Funktionsweise der Maschine kennen, sowie die Anforderungen an die CAD Datensätze und deren Bearbeitung. Es werden beim Erstellen der CAD-Daten Konstruktionsverfahren vermittelt, die speziell für die spätere Verwendung der Daten in einer Laser-Sinter-Maschine von Vorteil sind. Weiterhin wird auf die Bearbeitung von CAD Daten in unterschiedlichen Formaten genauer eingegangen.

13. Inhalt:
- Funktionsweise Laser-Sinter-Anlage
- Verarbeitung der CAD Daten
- Bedienung der Maschine
- Verfahrensweisen der Produktion

14. Literatur:
Unterlagen im ILIAS
Begleitbuch: Entwicklung und Erprobung innovativer Produkte Rapid Prototyping
B.Bertsche Springer

15. Lehrveranstaltungen und -formen:
• 719401 Vorlesung und Übung Additive Fertigungsverfahren

16. Abschätzung Arbeitsaufwand:
90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
71941 Additive Fertigungsverfahren (BSL), , 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Flugzeugbau
Modul: 72790 Risiko, Robustheit und Resilienz für Bau- und Umweltingenieure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Definitionen von Risiko, Robustheit, Resilienz, Vulnerabilität, Exposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methoden zur Erfassung, Analyse und Bewertung von Risiko, Robustheit und Resilienz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maßnahmen und Strategien zur Reduktion von Risiko</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maßnahmen und Strategien zur Erhöhung von Robustheit und Resilienz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anwendungsbeispiele aus dem Bau- und Umweltingenieurswesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>727901 Seminar Risiko, Robustheit und Resilienz für Bau- und Umweltingenieure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>72791 Risiko, Robustheit und Resilienz für Bau- und Umweltingenieure (BSL), Sonstige, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnr. und -name:</td>
<td>Stochastische Simulation und Sicherheitsforschung für Hydrosysteme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 72940 Introduction to Neuromechanics

3. Leistungspunkte: 3 LP 6. Turnus: Sommersemester
4. SWS: 2 7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr. Oliver Röhrle

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule

11. Empfohlene Voraussetzungen: Basics in Calculus

12. Lernziele: The students will acquire a basic understanding of neurophysiology and neuronal networks. The students will have specific knowledge in biosignal processing, especially of electrophysiological signals. The students will be able to independently use this gained knowledge to record and analyse data from multiple biological sources in order to develop strategies applicable to neurorehabilitation.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 729401 Vorlesung Einführung in die Neuromechanik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 72941 Einführung in die Neuromechanik (BSL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Kontinuumsbiomechanik und Mechanobiologie
Modul: 72970 Systembiologie

2. Modulkürzel: 074810400
5. Modulsdauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr. Nicole Radde
9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Simulation Technology, PO 972-2013,
 → Wahlmodule
 M.Sc. Simulation Technology, PO 972-2016,
 → Wahlmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 - Studierende sind vertraut mit Methoden zur mathematischen Modellierung biologischer Systeme mit Hilfe von dynamischen Modellen, insbesondere Differenzialgleichungen
 - Sie kennen Grundbegriffe aus der Theorie gewöhnlicher Differenzialgleichungen (Trajektorie, Vektorfeld, Phasenportrait, Gleichgewichtspunkte) und können diese erklären
 - Sie kennen graphische Methoden zur Analyse solcher Systeme und können diese selbständig auf kleine Beispielsysteme anwenden
 - Sie sind vertraut mit den Grundprinzipien numerischer Integration
 - Sie kennen graphische Methoden für die Analyse von 1D und 2D Systemen (Phasenraumanalyse, Nullisoklinen) und können diese selbständig auf Beispielsysteme anwenden
 - Sie sind vertraut mit den Grundprinzipien von Optimierungsproblemen (gradientenbasierte und globale Optimierungsverfahren) im Kontext von Parameterschätzung für Modelle mit Hilfe von Daten und können Probleme und Schwierigkeiten sowie Lösungsansätze benennen
 - Sie haben einen Einblick in die Modellierung biologischer Systeme mit Hilfe von Differenzialgleichungen und kennen das Potenzial und die Grenzen eines solchen Modellierungsansatzes

13. Inhalt:
 Es werden Modellierungsansätze und Analysemethoden für biologische Systeme basierend auf gewöhnlichen Differenzialgleichungen vorgestellt.
 Insbesondere werden folgende Themen behandelt:
 - Beschreibung der Dynamik biologischer Netzwerke und deren Ruhelagen mit Differenzialgleichungen
 - Numerische Simulation am Computer
 - Stabilität von Ruhelagen und biologische Schalter
 - Anpassung von Modellparametern an experimentelle Daten
 - Implementierung von gewöhnlichen Differenzialgleichungen in Matlab oder R
14. Literatur: Unterlagen und weiterführende Literatur werden in der Lehrveranstaltung bekannt gegeben

15. Lehrveranstaltungen und -formen: • 729701 Vorlesung Grundlagen der Systembiologie

16. Abschätzung Arbeitsaufwand: Präsenzzeit 28 Stunden
Selbststudium 72 Stunden
SUMME 90 Stunden

17. Prüfungsnummer/n und -name: 72971 Grundlagen der Systembiologie (BSL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 73390 Computational Methods for Quantitative Finance

4. SWS: - 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andrea Barth

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Simulation Technology, PO 972EiO2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2016, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972-2013, ➔ Wahlmodule
M.Sc. Simulation Technology, PO 972EiO2016, ➔ Wahlmodule

11. Empfohlene Voraussetzungen:
Grundkenntnisse in Wahrscheinlichkeitstheorie und Finanzmathematik

12. Lernziele:

• Fähigkeit
 Finanzderivate numerisch zu bewerten

• Kenntnis
 des besten Lösungsansatz zum Preisen von Derivaten

• Fähigkeit
 selber numerische Verfahren für neue Derivate zu entwickeln
13. Inhalt:

- Einführung in die Theorie von Black & Scholes
- Einführung in die Theorie und Numerik parabolischer Differentialgleichungen
- Bewertung von verschiedenen Derivaten mit deterministischen Methoden (European, American, Barrier, Asian Option; Interest Rate Models; Baskets; Stochastic Volatility Models; Levy Models)
- Bewertung von verschiedenen Derivaten mit stochastischen Methoden (Monte Carlo Methoden, Richardson Extrapolation, Higher Order Schemes)

14. Literatur:

- eigenes Skript/Slides

15. Lehrveranstaltungen und -formen:

- 733901 Computational Methods for Quantitative Finance, Vorlesung
- 733902 Computational Methods for Quantitative Finance, Übung

16. Abschätzung Arbeitsaufwand:

- 733901 Computational Methods for Quantitative Finance (PL), 30 Min., Gewichtung: 1

17. Prüfungsnummer/n und -name:

- 73391 Computational Methods for Quantitative Finance (PL), , 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

- Slides, Tablet-Notes

20. Angeboten von:
Modul: 74370 Methoden der Simulationstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>-</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Christian Rohde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 743701 Methoden der Simulationstechnik, Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>74371 Methoden der Simulationstechnik (BSL), Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 74980 Computational Dynamics for Robotics

4. SWS: - 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. David Remy
9. Dozenten: Prof. Dr. C. David Remy

11. Empfohlene Voraussetzungen: Technische Mechanik I-III

12. Lernziele:
Students:
• are able to use an off-the-shelf dynamics engine to model simple mechanical systems.
• gain an intuitive understanding of the dynamics of mechanical systems. In particular, they understand and are able to visualize:
 • physical and numerical vectors, coordinate systems, transformations, as well as their derivatives.
 • the properties of inertia/mass matrices in Euclidean-, generalized-, and contact coordinates.
 • angular momentum and kinetic moment of rigid bodies.
 • constraint Jacobians as generalized lever-arms.
 • can classify constraints as explicit/implicit, uni-/bilateral, reho-/scleronomic, (non-)/holonomic.
• can determine the Denavit–Hartenberg parameters for robotic joints.
• are able to derive the equations of motion for complex multibody dynamic systems using projected Newton-Euler Equations.
• know the following algorithms and understand their computational complexity:
 • recursive forward kinematics
 • recursive Newton-Euler algorithm
 • articulated body inertia
• implement a multi body dynamics engine in Matlab using:
 • recursive algorithms acting on linked lists.
 • object oriented programming taking advantage of the concepts of inheritance, abstract classes, and polymorphism.
• understand the implications of implicit constraints, loop closures, contacts, and collisions.
• are able to apply their dynamics knowledge in the comparison of the following robotic controller concepts:
 • virtual model control.
 • operational space control

13. Inhalt:
Kinematics and dynamics of multibody systems as they are typical for applications in robotics, mechatronics, and biomechanics. The course provides a solid theoretical background to describe such systems in a precise mathematical way and develops the tools and methods to create the governing differential equations analytically.
and in a numerically efficient way. Special attention is paid to an intuitive but thorough physical understanding of such systems. This understanding will enable a creative approach to the design and control of robotic systems. Topics of particular interest include efficient algorithmic implementations for multibody algorithms and the handling of collisions and variable structure. As part of the exercises, students will implement a complete multibody dynamics engine in MATLAB, using advanced programming techniques that include recursive formulations and object oriented programming.

14. Literatur: There is no official course book, but I will refer to parts of the following books:
 • Amirouche, F.: Computational Methods in Multibody Dynamics
 • Pfeiffer, F. & Glocke, C.: Multibody Dynamics with Unilateral Contacts
 • Shabana, A.: Dynamics of Multibody Systems
 Additional Reading:
 • Featherstone, R.: Rigid Body Dynamics Algorithms
 • Huston, R.: Multibody Dynamics
 • Murray, R., Li, Z., and Sastry S.: A Mathematical Introduction to Robotic Manipulation

15. Lehrveranstaltungen und -formen:
 • 749801 Computational Dynamics for Robotics, Vorlesung
 • 749802 Computational Dynamics for Robotics, Übung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 74981 Computational Dynamics for Robotics (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Laptop, Projektor, Computer

20. Angeboten von:
Modul: 75870 Metals and Computational Materials Science

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>-</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Jedes 2. Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Siegfried Schmauder</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Prof. Dr. rer. nat. Dr. h. c. Siegfried Schmauder Dr.-Ing. Yanling Schneider</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 758701 Metals, Vorlesung • 758702 Metals, Übung • 758703 Computational Materials Science, Vorlesung • 758704 Computational Materials Science, Übung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 75871 Metals (BSL), , Gewichtung: 1 • 75872 Computational Materials Science (BSL), , Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 77920 Deep Learning

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2016, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972EiO2013, → Wahlmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Solid knowledge about matrix computation, probability theory as well as basic knowledge about optimization as from the course "Advanced mathematics for signal and information processing" are highly recommended. Knowledge about general methods for pattern recognition as from the course "Detection and pattern recognition" is recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>*) Learn the basic tasks and concepts of machine learning (density estimation, regression, classification, model, representation).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Learn the differences between conventional (shallow) concepts of machine learning and deep learning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Learn the most basic deep architectures (DNN, auto-encoder, CNN, RBM, RNN) and issues of training (how to parametrize, initialize and optimize).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Learn to understand and reduce a trained DNN (visualization, model reduction).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Learn how to use Python for deep learning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>*) Important basics from statistics (Entropy, cross-entropy, KL-divergence, important inequalities).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Tasks and concepts from machine learning (density estimation, regression, classification).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) The most basic deep architectures (DNN, auto-encoder, CNN, RBM, RNN).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) How to train a network and to perform inference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Concepts for visualization and reduction of a trained DNN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Basic introduction to Python and Theano</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Implementation of DNN, auto-encoder, CNN, RBM with examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Stefan Uhlichs, Course Matrix Calculations in Signal Processing and Machine Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*) Neal Parikh and Stephen Boyd, Proximal Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>779201 Vorlesung Deep learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Total time: 90h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence time: 28h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self study: 62h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>77921 Deep Learning (PL), Schriftlich oder Mündlich, Gewichtung: 1 Schriftlich (60min). Bei geringer Teilnehmerzahl ggf. mündlich. Das wird zum Beginn der Vorlesung bekanntgegeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Computer, beamer, video recording</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Netzwerk- und Systemtheorie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 78900 Introduction to Modern Cryptography

2. Modulkürzel: 052900003
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldauer: Einsemestrig
6. Turnus: Wintersemester
8. Modulverantwortlicher: Univ.-Prof. Dr. rer. nat. Ralf Küsters
9. Dozenten: Ralf Küsters
 M.Sc. Simulation Technology, PO 972-2016, → Wahlmodule
12. Lernziele: Students will acquire an in-depth understanding of cryptography. They will be able to judge and assess the security of cryptographic constructions used in practice (encryption schemes, digital signatures, messages authentication codes, etc.) and will be able to read scientific papers on cryptography.
13. Inhalt: Cryptography is everywhere! We heavily rely on cryptography in our everyday life when we do, for example, online shopping and online banking, pay with credit or debit card, open doors with electronic keys, or when we use social networks, instant messengers, online games, WiFi, mobile networks, or electronic currencies. Here, cryptography is essential in order to guarantee various central security properties such as secrecy and integrity of messages as well as authenticity of the communication partners. This course provides an introduction to modern cryptography. In the traditional approach to cryptography, cryptographers proposed, for example, encryption algorithms, and then others, cryptanalysts, tried to break them. In modern cryptography, cryptographers try to prove that their cryptographic constructions are secure under certain assumptions, even when attacked by powerful adversaries. Hence, cryptography turned from pure art to science.
 The course covers several fundamental cryptographic primitives, including (symmetric and asymmetric) encryption, hash functions, digital signatures, and message authentication codes. These primitives are important building blocks for other cryptographic constructions and for cryptographic protocols (TLS, SSH, WPA2, etc.), used by billions of people every day. The course presents common cryptographic constructions as used in practice, such...
as AES with various encryption modes (e.g., CBC, CTR), RSA, ElGamal, HMAC, PKCS#1, DSA. It also discusses public-key infrastructures and cryptographic protocols.

In the spirit of modern cryptography, we ask the following questions: What does it mean for an encryption algorithm, digital signature, etc. to be secure? Under which assumptions can we prove security? For several cryptographic constructions used in practice, including those mentioned above, we prove security or present attacks. This provides a deep understanding of the security/insecurity of the cryptography that surrounds us.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 789001 Vorlesung und Übung zu Introduction to Modern Cryptography

16. Abschätzung Arbeitsaufwand:
Vorlesung und Übung zu Introduction to Modern Cryptography

17. Prüfungsnummer/n und -name:
- V Vorleistung (USL-V),
- 78901 Introduction to Modern Cryptography (PL), Schriftlich oder Mündlich, Gewichtung: 1
Unbenotete Studienleistung als Vorleistung (USL-V); ausreichende Punktzahl in den Übungen
Prüfungsleistung (PL): Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) zur Vorlesung und Übung Introduction to Modern Cryptography

18. Grundlage für ...

19. Medienform: Projector, blackboard

20. Angeboten von: Informationssicherheit
Modul: 79100 Deep Learning for Speech and Language Processing

4. SWS: 4 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Ngoc Thang Vu
9. Dozenten: Ngoc Thang Vu

11. Empfohlene Voraussetzungen: statistics and machine learning

12. Lernziele: Students develop an in-depth understanding of state-of-the-art research in deep learning (DL) techniques and their applications for speech and language processing.

13. Inhalt: This module gives a thorough introduction to deep learning (DL) techniques and their applications for speech and language processing. It covers several fundamental topics about neural nets. Furthermore, different kinds of neural nets such as multilayer perceptron (MLP), convolution neural nets (CNN), recurrent neural nets (RNN) and long short-term memory (LSTM) RNNs will be discussed.

14. Literatur: will be announced in the lecture

15. Lehrveranstaltungen und -formen: • 791001 Vorlesung Deep Learning for Speech and Language Processing

17. Prüfungsnummer/n und -name: 79101 Deep Learning for Speech and Language Processing Prüfung (PL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Computerlinguistik
Modul: 79250 Variational Methods in Structural Dynamics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Manfred Bischoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Anton Tkachuk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2013, → Wahlmodule</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Simulation Technology, PO 972-2016, → Zusatzmodule</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Computational Mechanics of Structures |

| 12. Lernziele: | The students have an introduction to variational calculus, alternative finite element formulations and structural dynamics. The introduction to variational calculus contains basic definitions and methods, like Euler-Lagrange equations, canonical variational principles of elasticity and elasto-dynamics, which is necessary for derivation of weak forms for locking-free finite element formulations in statics and weak forms for dynamics. They are prepared for self dependent work on a scientific level. At the same time they have practical skills, particularly in view of basics of structural dynamics and modeling of transient phenomena. They have gained insight into aims and methods of scientific work in an international environment. |

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>The course covers the basics of variational calculus, alternative finite element formulations and structural dynamics.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Functional, first variation, Euler-Lagrange equation</td>
</tr>
<tr>
<td></td>
<td>• Lagrange multipliers method, Legendre transformation</td>
</tr>
<tr>
<td></td>
<td>• Hu-Washizu, Hellinger-Reissner, least action and Hamilton principles</td>
</tr>
<tr>
<td></td>
<td>• Hybrid-mixed and enhanced assumed strain finite element formulations. Reduced integration and stabilization</td>
</tr>
<tr>
<td></td>
<td>• Dynamic equation of motion</td>
</tr>
<tr>
<td></td>
<td>• Consistent and lumped mass matrices for continua and structures. Spectral finite element.</td>
</tr>
<tr>
<td></td>
<td>• Eigenmodes and eigenfrequencies, their numerical computation</td>
</tr>
<tr>
<td></td>
<td>• Newmark and central difference methods</td>
</tr>
<tr>
<td></td>
<td>• Conditional stability and critical time step estimates</td>
</tr>
<tr>
<td></td>
<td>• Discontinuous Galerkin methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 792501 Vorlesung Variational Methods in Structural Dynamics</td>
</tr>
<tr>
<td></td>
<td>• 792502 Übung Variational Methods in Structural Dynamics</td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name:

- 79251 Variational Methods in Structural Dynamics (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Prerequisite: 3 approved, not graded assignments

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Baustatik und Baudynamik
Modul: 79370 Spectral Methods for Differential Equations in Computational Mechanics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jun.-Prof. Dr.-Ing. Marc-André Keip</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Marc-André Keip</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>B.Sc. Degree in Civil Engineering, in Mechanical Engineering, in Mathematics, in Technical Mathematics or in related subject, as well as the knowledge of basic concepts in trigonometric functions and Fourier series. The knowledge of numerical analysis and Fourier transform are helpful for the study. Experience with MATLAB or Python is highly favorable.</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students can use the Discrete Fourier Transform (DFT) method, which is efficiently implemented as the FFT function in MATLAB (or Python), to solve a wide range of ordinary and partial differential equations. The focus is paid to how the application of the FFT-based solver to period boundary value problems in computational mechanics and wave equations. An extension of the FFT-based method to deal with non-periodic boundary value problems is also introduced.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>The goal of the lecture is to provide the students with a class of numerical tool with extremely high accuracy which can be easily implemented by the use of existing library in MATLAB (or Python). In doing so, the lectures will be splitted into two main parts: (i) Introduction of the spectral methods, their implementation, advantages and disadvantages as compared to finite difference method and finite element method, (ii) Application of the spectral method to a wide range of boundary value problems including the elliptic, parabolic and hyperbolic equations. Contents: (i) Differentiation matrices (ii) Periodic grids: The DFT and FFT (iii) Smoothness and spectral accuracy: an advantage of the spectral methods. (iv) Polynomial interpolation and Chebyshev Differentiation Matrices (v) Boundary value problems: first applications (vi) Time-stepping for dynamics problems and stability regions Further applications in periodic homogenization for composites, functionally graded materials and water wave problems.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Notes on blackboard, further materials are handed out in an ilias-group. • Lloyd N. Trefethen, Spectral Methods in Matlab • Bengt Fornberg, A Practical Guid to Pseudospectral Methods • Further reading such as publications are personally recommended during the lectures.</td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:
- 793701 Vorlesung Spectral Methods for Differential Equations in Computational Mechanics
- 793702 Übung Spectral Methods for Differential Equations in Computational Mechanics

16. Abschätzung Arbeitsaufwand:
- Time of Attendance: 60h
- Self-study: 120h
- Summary: 180h

17. Prüfungsnummer/n und -name:
- 79371 Spectral Methods for Differential Equations in Computational Mechanics Prüfung (BSL), Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Blackboard and Computer Exercises.

20. Angeboten von:
Mechanik I
Modul: 80070 Masterarbeit Simulation Technology

2. Modulkürzel: 021420020

5. Moduldauger: Einsemestrig

3. Leistungspunkte: 30 LP

6. Turnus: Wintersemester/Sommersemester

4. SWS: 0

7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Rainer Helmig

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Simulation Technology, PO 972EiI2016,
M.Sc. Simulation Technology, PO 972-2016,
M.Sc. Simulation Technology, PO 972EiI2013,
M.Sc. Simulation Technology, PO 972-2013,

11. Empfohlene Voraussetzungen: Erfolgreicher Abschluss aller Pflichtveranstaltungen des Fachstudiums bis zum 3. Fachsemester

12. Lernziele:

13. Inhalt:

Das Thema der Masterarbeit wird zu einem aktuellen Forschungsgebiet der Simulationstechnik gestellt. Die Aufgabenstellung wird so gewählt, dass sie eigenständige Forschung ermöglicht.

Die Masterarbeit besteht aus der schriftlichen Arbeit sowie einem Kolloquium.

Das Kolloquium beinhaltet einen 30-minütigen Vortrag über die Arbeit sowie eine anschließende nicht-öffentliche mündliche Befragung.

Die Note der schriftlichen Arbeit sowie die Note des Kolloquiums gehen in die Gesamtnote der Masterarbeit ein.

14. Literatur:

Entsprechend dem Thema der Thesis.

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

Erstellen der Masterarbeit: 810 h
Vorbereitung Kolloquium: 89 h
Kolloquium inkl. mündl. Befragung: 1 h

17. Prüfungsnummer/n und -name: 80071 Masterarbeit Simulation Technology (PL), Gewichtung: 1

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Hydromechanik und Hydrosystemmodellierung