Modulhandbuch
Studiengang Bachelor of Science Verkehrsingenieurwesen
Prüfungsordnung: 089-2015
Hauptfach

Wintersemester 2018/19
Stand: 01.10.2018

Universität Stuttgart
Keplerstr. 7
70174 Stuttgart
Kontaktpersonen:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institut</th>
<th>Telefon</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Prof. Dr.-Ing. Ullrich Martin</td>
<td>Institut für Eisenbahn- und Verkehrswesen</td>
<td>0711 685-66368</td>
<td>sd-ving[@]f02.uni-stuttgart.de</td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Ulrich Rentschler</td>
<td>Institut für Eisenbahn- und Verkehrswesen</td>
<td>0711 685-66825</td>
<td>sm-ving[@]f02.uni-stuttgart.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Prof. Dr.-Ing. Manfred Bischoff</td>
<td>Institut für Baustatik und Baudynamik</td>
<td>0711 685-66123</td>
<td>pa[@]ibb.uni-stuttgart.de</td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>siehe Studiengangsmanager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stundenplanverantwortliche/r</td>
<td>Anika Lasi, M.Sc.</td>
<td>Institut für Leichtbau, Entwerfen und Konstruieren</td>
<td>0711 685-66229</td>
<td>stundenplan-f02[@]ilek.uni-stuttgart.de</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Qualifikationsziele .. 5

100 Basismodule .. 6

11180 Raumordnung und Umweltpplanung .. 7
13650 Höhere Mathematik 3 für Ingenieurstudiengänge ... 9
45790 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge ... 11

200 Kernmodule .. 13

210 Pflichtmodule .. 14
10670 Verkehrsplanung und Verkehrstechnik .. 15
13780 Regelungs- und Steuerungstechnik ... 17
17170 Elektrische Antriebe .. 20
38830 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien 22
39160 Grundlagen der Betriebswirtschaftslehre .. 24
39170 Einführung in die Elektrotechnik für Kybernetik und Verkehrsingenieurwesen 26
42190 Logistikfunktionen .. 27
43010 Einführung in das Verkehrsingenieurwesen ... 29
46290 Entwurf von Verkehrsanlagen .. 31
57260 Nachrichtentechnik für Verkehrsingenieure .. 33
69360 Mechanik 1 ... 34
69800 Mechanik 2 .. 35

220 Wahlpflichtmodule Gruppe Fahrzeuge ... 36
13590 Kraftfahrzeuge I + II .. 37
14130 Kraftfahrzeugmechatronik I + II ... 39
67290 Grundlagen Schienenfahrzeugtechnik und -betrieb ... 41
78020 Grundlagen der Fahrzeugantriebe ... 43

230 Wahlpflichtmodule Gruppe Planung und Bau .. 45
10820 Straßenbautechnik I ... 46
11400 Grundlagen der Landschafts- und Umweltpplanung ... 48
46280 Grundlagen der Schienenverkehrssysteme .. 50

300 Ergänzungsmodule ... 52

10570 Werkstoffe im Bauwesen I ... 53
10610 Baubetriebslehre I .. 55
10640 Geotechnik I: Bodenmechanik .. 57
10690 Geodäsie im Bauwesen .. 60
10730 Baubetriebslehre II .. 62
10820 Straßenbautechnik I ... 64
11380 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung 66
11400 Grundlagen der Landschafts- und Umweltplanung ... 68
11560 Elektrische Energienetze I ... 70
11680 Kommunikationssnetze I ... 72
12100 BWL II: Rechnungswesen und Finanzierung ... 74
12270 Simulationstechnik .. 76
12400 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien .. 78
13080 Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten .. 80
13330 Technologiemanagement ... 82
13530 Arbeitswissenschaft .. 84
13590 Kraftfahrzeuge I + II ... 86
13940 Energie- und Umwelttechnik ... 88
14130 Kraftfahrzeugmechatronik I + II .. 90
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14450</td>
<td>Fertigungsverfahren in der Bauwirtschaft II</td>
<td>92</td>
</tr>
<tr>
<td>16000</td>
<td>Erneuerbare Energien</td>
<td>94</td>
</tr>
<tr>
<td>19750</td>
<td>Einführung Geodäsie & Geoinformatik</td>
<td>96</td>
</tr>
<tr>
<td>19760</td>
<td>Geoinformatik</td>
<td>98</td>
</tr>
<tr>
<td>19810</td>
<td>Statistik und Fehlerlehre</td>
<td>100</td>
</tr>
<tr>
<td>23190</td>
<td>Stadtplanung und Stadtmanagement</td>
<td>102</td>
</tr>
<tr>
<td>29140</td>
<td>Smart Grids</td>
<td>104</td>
</tr>
<tr>
<td>30030</td>
<td>Fahrzeugdynamik</td>
<td>106</td>
</tr>
<tr>
<td>30950</td>
<td>Mobile Energiespeicher</td>
<td>107</td>
</tr>
<tr>
<td>37150</td>
<td>Fertigungsverfahren in der Bauwirtschaft</td>
<td>109</td>
</tr>
<tr>
<td>37300</td>
<td>Technische Akustik</td>
<td>111</td>
</tr>
<tr>
<td>38640</td>
<td>Einführung in die Rechtsgrundlagen des Bauwesens</td>
<td>113</td>
</tr>
<tr>
<td>38770</td>
<td>Umweltsociologie</td>
<td>115</td>
</tr>
<tr>
<td>40830</td>
<td>Flugmechanik</td>
<td>117</td>
</tr>
<tr>
<td>41580</td>
<td>Umweltmanagement</td>
<td>118</td>
</tr>
<tr>
<td>42350</td>
<td>Standort und Verkehr</td>
<td>120</td>
</tr>
<tr>
<td>42960</td>
<td>Einführung Städtebau und Ökologie</td>
<td>122</td>
</tr>
<tr>
<td>43020</td>
<td>Stadt und Mobilität</td>
<td>124</td>
</tr>
<tr>
<td>44000</td>
<td>Nachhaltige Energie- und Verkehrssysteme</td>
<td>126</td>
</tr>
<tr>
<td>45900</td>
<td>Lineare Kontrolltheorie</td>
<td>128</td>
</tr>
<tr>
<td>46280</td>
<td>Grundlagen der Schienenverkehrssysteme</td>
<td>130</td>
</tr>
<tr>
<td>56890</td>
<td>Umweltschutz und Bauen: öffentlich-rechtliche Rahmenbedingungen und Praxis</td>
<td>132</td>
</tr>
<tr>
<td>67290</td>
<td>Grundlagen Schienenfahrzeugtechnik und -betrieb</td>
<td>133</td>
</tr>
<tr>
<td>78020</td>
<td>Grundlagen der Fahrzeugantriebe</td>
<td>135</td>
</tr>
<tr>
<td>81340</td>
<td>Bachelorarbeit Verkehrsingenieurwesen</td>
<td>137</td>
</tr>
<tr>
<td>81340</td>
<td>Bachelorarbeit Verkehrsingenieurwesen</td>
<td>152</td>
</tr>
</tbody>
</table>
Qualifikationsziele

Die allgemeinen Kompetenzen der Absolventen, die den Bachelorabschluss Verkehrsingenieurwesen erworben haben, lassen sich durch die folgenden Eigenschaften charakterisieren:

• Die Absolventen beherrschen die wissenschaftlichen Methoden, um Probleme oder Fragestellungen des Fachs in ihrer Grundstruktur zu analysieren.
• Sie beherrschen wesentliche grundlegende Methoden ihrer Fachdisziplin, um problembezogen Modelle aufzustellen, Berechnungen durchzuführen und die Ergebnisse zu interpretieren.
• Die Absolventen haben gelernt, Probleme zu formulieren und die sich daraus ergebenden Aufgaben in arbeitsteilig organisierten Teams zu übernehmen, selbstständig zu bearbeiten, die Ergebnisse anderer aufzunehmen und die eigenen Ergebnisse zu kommunizieren.
• Die Absolventen haben die methodische Kompetenz erworben, um Probleme unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen bearbeiten zu können.
• Die Absolventen haben exemplarisch ausgewählte Anwendungen kennengelernt und die Brücke zwischen ingenieurwissenschaftlichen Grundlagen und berufsfeldbezogenen Anwendungen geschlagen.
• Die Absolventen haben exemplarisch äußerfachliche Qualifikationen erworben und sind damit für die nichttechnischen Anforderungen einer beruflichen Tätigkeit zumindest sensibilisiert.
• Die Absolventen sind durch die Grundlagenorientierung der Ausbildung sehr gut auf lebenslanges Lernen und auf einen Einsatz in unterschiedlichen Berufsfeldern vorbereitet.
• Bachelorabsolventinnen/innen erwerben die Qualifikation für ein Masterstudium im Studiengang Verkehrswesen.

Die Absolventinnen und Absolventen des Bachelorstudienganges Verkehrsingenieurwesen
• verfügen über ingenieurmathematisches, ingenieurtechnisches, naturwissenschaftliches und raum- und umweltpplanerisches Grundlagenwissen,
• haben fundierte Kenntnisse über die Grundlagen der Verkehrssystemgestaltung im gesellschaftlichen Kontext,
• besitzen die Fähigkeit bei der Planung, Beurteilung, dem Entwurf, der Bemessung, dem Betreiben und Erhalten von Verkehrssystemen nach technischen, ökonomischen und umweltbezogenen Gesichtspunkten kompetent und kreativ mitzuarbeiten,
• beherrschen die grundlegenden Methoden zur Ermittlung und Beurteilung der Leistungsfähigkeit sowie Betriebsqualität von Verkehrssystemen unter Berücksichtigung der gegenwärtigen und zukünftigen Gegebenheiten,
• haben Kenntnisse der Grundlagen über das systemische Zusammenwirken von Verkehrswegen, Verkehrsmitteln und Betriebsorganisation unter Berücksichtigung gesellschaftlicher, sicherheitsbezogener, rechtlicher und finanzieller Aspekte.
100 Basismodule

Zugeordnete Module:
11180 Raumordnung und Umweltplanung
13650 Höhere Mathematik 3 für Ingenieurstudiengänge
45790 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge
Modul: 11180 Raumordnung und Umweltplanung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Jörn Birkmann |
| 9. Dozenten: | Jörn Birkmann |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester → Basismodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester → Basismodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester → Basismodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester → Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester → Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester → Zusatzmodule</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | keine |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sie verstehen die rechtlichen Grundlagen der Raumplanung in Deutschland und die Kompetenzen, Organisationsformen, Instrumente und Steuerungsfähigkeiten der unterschiedlichen Ebenen der Raumplanung, die in der Praxis relevant sind. Sie sind mit den Instrumenten des Umweltschutzes und der Umweltplanung vertraut.</td>
</tr>
<tr>
<td>Sie haben einen Einblick in internationale Fallbespiele der Raum- und Umweltplanung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Vorlesung und der zugehörigen Übung werden folgende Themen behandelt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akademie für Raumforschung und Landesplanung (Hrsg.) (2011): Grundriß der Landes- und Regionalplanung, Hannover</td>
</tr>
<tr>
<td>Prieb, A. (2013): Raumordnung in Deutschland, Braunschweig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>111801 Vorlesung Raumordnung und Umweltplanung</td>
</tr>
<tr>
<td>111802 Übung Raumordnung und Umweltplanung</td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

| Präsenzzeit in der Vorlesung (3 SWS): 42 h |
| Präsenzzeit in der Übung (1 SWS): 14 h |
| Selbststudiumszeit / Nacharbeitszeit: 124 h |
| **Gesamt:** 180 h |

17. Prüfungsnummer/n und -name: 11181 Raumordnung und Umweltplanung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Spezialisierungsmodule: Nr. 15610 Fallstudie Umweltplanung I Nr. 15620 Fallstudie Umweltplanung II

19. Medienform:

- Präsentationsfolien
- Kurzskript
- weiterführende Literatur

20. Angeboten von: Raumentwicklungs- und Umweltplanung
Modul: 13650 Höhere Mathematik 3 für Ingenieurstudiengänge

4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Markus Stroppel
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester ➞ Basismodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester ➞ Basismodule

11. Empfohlene Voraussetzungen: HM 1 / 2
12. Lernziele:
 Die Studierenden
 • verfügen über grundlegende Kenntnisse der Integralrechnung für Funktionen mehrerer Veränderlicher, Gewöhnliche Differentialgleichungen, Fourierreihen.
 • sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
 • besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
 • können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.

13. Inhalt:
 Integralrechnung für Funktionen von mehreren Veränderlichen:
 Gebietsintegrale, iterierte Integrale, Transformationssätze, Guldinsche Regeln, Integralsätze von Stokes und Gauß
 Lineare Differentialgleichungen beliebiger Ordnung und Systeme
 linearer Differentialgleichungen 1. Ordnung (jeweils mit konstanten Koeffizienten):
 Fundamentalsystem, spezielle und allgemeine Lösung.
 Gewöhnliche Differentialgleichungen:
 Existenz- und Eindeutigkeitssätze, einige integrierbare Typen, lineare Differentialgleichungen beliebiger Ordnung (mit konstanten Koeffizienten), Anwendungen.
 Aspekte der Fourierreihen und der partiellen Differentialgleichungen:
 Darstellung von Funktionen durch Fourierreihen, Klassifikation partieller Differentialgleichungen, Beispiele, Lösungsansätze (Separation).

14. Literatur:
 • A. Hoffmann, B. Marx, W. Vogt: Mathematik für Ingenieure 1, 2. Pearson Studium.
15. Lehrveranstaltungen und -formen:

- 136502 Höhere Mathematik 3 für Ingenieurstudiengänge (EE)
- 136503 Höhere Mathematik 3 für Ingenieurstudiengänge (FMT)
- 136501 Höhere Mathematik 3 für Ingenieurstudiengänge (Bau)
- 136504 Höhere Mathematik 3 für Ingenieurstudiengänge (Mach)
- 136505 Höhere Mathematik 3 für Ingenieurstudiengänge (Med)
- 136507 Höhere Mathematik 3 für Ingenieurstudiengänge (UWT)
- 136508 Höhere Mathematik 3 für Ingenieurstudiengänge (Verf)
- 136509 Höhere Mathematik 3 für Ingenieurstudiengänge (Verk)
- 136506 Höhere Mathematik 3 für Ingenieurstudiengänge (Tema)

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 84 h
- Selbststudiumszeit / Nacharbeitszeit: 96 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 13651 Höhere Mathematik 3 für Ingenieurstudiengänge (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/ Scheinklausuren,

18. Grundlage für ... :

19. Medienform:

- Beamer, Tafel, persönliche Interaktion

20. Angeboten von:

- Institute der Mathematik
Modul: Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel: 080410501
5. Moduldauer: Zweisemestrig
3. Leistungspunkte: 18 LP
6. Turnus: Wintersemester
4. SWS: 14
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Markus Stroppel
9. Dozenten: Markus Stroppel
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester ➞ Basismodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester ➞ Basismodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester ➞ Basismodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Hochschulreife, Schulstoff in Mathematik

13. Inhalt:
 Lineare Algebra:
 Vektorrechnung, komplexe Zahlen, Matrizenalgebra, lineare Abbildungen, Bewegungen, Determinanten, Eigenwerttheorie, Quadriken
 Differential- und Integralrechnung für Funktionen einer Veränderlichen:
 Konvergenz, Reihen, Potenzreihen, Stetigkeit, Differenzierbarkeit, höhere Ableitungen, Taylor-Formel, Extremwerte, Kurvendiskussion, Stammfunktion, partielle Integration, Substitution, Integration rationaler Funktionen, bestimmtes (Riemann-)Integral, uneigentliche Integrale.

 Differentialrechnung
 Folgen/Stetigkeit in reellen Vektorräumen, partielle Ableitungen, Kettenregel, Gradient und Richtungsableitungen, Tangentialebene,
Taylor-Formel, Extrema (auch unter Nebenbedingungen), Sattelpunkte, Vektorfelder, Rotation, Divergenz.

Kurvenintegrale:
Bogenlänge, Arbeitsintegral, Potential

14. Literatur:
- A. Hoffmann, B. Marx, W. Vogt: Mathematik
- Mathematik Online: www.mathematik-online.org.

15. Lehrveranstaltungen und -formen:
- 457901 Höhere Mathematik 1 für Ingenieurstudiengänge (Bau, Iul, Verk)
- 457902 Höhere Mathematik 2 für Ingenieurstudiengänge (Bau, Iul, Verk)

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 196 h
- Selbststudiumszeit / Nacharbeitszeit: 344 h
- Gesamt: 540 h

17. Prüfungsnummer/n und -name:
- 45791 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (PL), Schriftlich, 180 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Institute der Mathematik
200 Kernmodule

Zugeordnete Module:

210 Pflichtmodule
220 Wahlpflichtmodule Gruppe Fahrzeuge
230 Wahlpflichtmodule Gruppe Planung und Bau
210 Pflichtmodule

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10670</td>
<td>Verkehrsplanung und Verkehrstechnik</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
</tr>
<tr>
<td>38830</td>
<td>Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und</td>
</tr>
<tr>
<td></td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>39160</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>39170</td>
<td>Einführung in die Elektrotechnik für Kybernetik und Verkehrsingenieurwesen</td>
</tr>
<tr>
<td>42190</td>
<td>Logistikfunktionen</td>
</tr>
<tr>
<td>43010</td>
<td>Einführung in das Verkehringenieurwesen</td>
</tr>
<tr>
<td>46290</td>
<td>Entwurf von Verkehrsanlagen</td>
</tr>
<tr>
<td>57260</td>
<td>Nachrichtentechnik für Verkehringenieure</td>
</tr>
<tr>
<td>69060</td>
<td>Mechanik 1</td>
</tr>
<tr>
<td>69070</td>
<td>Mechanik 2</td>
</tr>
</tbody>
</table>
Modul: 10670 Verkehrsplanung und Verkehrstechnik

2. Modulkürzel: 021320001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 5
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Markus Friedrich
9. Dozenten: Markus Friedrich
Wolfram Ressel
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012,
→ Pflichtmodule → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
→ Pflichtmodule → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
→ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
→ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
→ Pflichtmodule → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
→ Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
→ Zusatzmodule
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
13. Inhalt:
Die Lehrveranstaltung gibt eine umfassende Einführung in die Aufgaben und Methoden der Verkehrsplanung und der Verkehrstechnik und behandelt folgende Themen:
• Was ist Verkehr: Einführung, Definitionen und Kennzahlen
• Der Verkehrsplanungsprozess
• Analyse von Verkehrsangebot und Verkehrsnachfrage
• Verkehrsmodule
• Verkehrsnachfrage
• Routenwahl und Verkehrsumlegung
• Planung von Verkehrsnetzen
• Verkehrskonzepte
• Lärm und Schadstoffemissionen
• Grundlagen des Verkehrsflusses
• Grundlagen der Bemessung von Straßenverkehrsanlagen
• Leistungsfähigkeit der freien Strecke
• Leistungsfähigkeit ungesteuerter Knotenpunkte
• Leistungsfähigkeit von Knotenpunkten mit Lichtsignalanlage
• Verkehrsbeeinflussungssysteme IV und ÖV
• Verkehrsmanagement
14. Literatur:

- Friedrich, M., Ressel, W.: Skript Verkehrsplanung und Verkehrstechnik
- Forschungsgesellschaft für Straßen- und Verkehrswesen: Handbuch für die Bemessung von Straßenverkehrsanlagen, Ausgabe 2015

15. Lehrveranstaltungen und -formen:

- 106701 Vorlesung Verkehrsplanung und Verkehrstechnik
- 106702 Übung Verkehrsplanung und Verkehrstechnik

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 55 h
- Selbststudium / Nacharbeitszeit: 125 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 10671 Verkehrsplanung und Verkehrstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

- Power Point, Tafel, Abstimmungsgeräte

20. Angeboten von:

- Verkehrsplanung und Verkehrsleittechnik
Modul: 13780 Regelungs- und Steuerungstechnik

2. Modulkürzel: 074810070
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
Christian Ebenbauer
Oliver Sawodny
Armin Lechner
Matthias Müller
10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012,
➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
➞ Kernmodule
11. Empfohlene Voraussetzungen: HM I-III
12. Lernziele:
Die Studierenden
• können lineare dynamische Systeme analysieren,
• können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
• können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen.
13. Inhalt:
Vorlesung "Systemendynamische Grundlagen der Regelungstechnik":
Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung
Vorlesung "Einführung in die Regelungstechnik":
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsmethoden im Zeit- und Frequenzbereich (PID, Polvorgabe, Vorfilter,...), Beobachterentwurf
Vorlesung "Steuerungstechnik mit Antriebstechnik":
Steuerungssarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotertechnik, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung. Darstellung und Lösung steuerungstechnischer Problemstellungen. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme
Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:
Block 1: Systemdynamische Grundlagen der Regelungstechnik und Einführung in die Regelungstechnik
Block 2: Systemdynamische Grundlagen der Regelungstechnik und Steuerungstechnik mit Antriebstechnik

Bemerkung 2 (Prüfungsanmeldung):
- Studierende der *Erneuerbaren Energien* müssen die Prüfung *Systemdynamische Grundlagen der Regelungstechnik* bei Univ.-Prof. Oliver Sawodny ablegen.
- Studierende anderer Studiengänge müssen die Prüfung *Systemdynamische Grundlagen der Regelungstechnik* bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:

<table>
<thead>
<tr>
<th>Vorlesung "Systemdynamische Grundlagen der Regelungstechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999</td>
</tr>
<tr>
<td>Unbehauen, R.: Systemtheorie 1. Oldenbourg 2002</td>
</tr>
<tr>
<td>Lunze, J.: Regelungstechnik 1, Springer Verlag 2006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesung "Einführung in die Regelungstechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunze, J.: Regelungstechnik 1. Springer Verlag, 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesung "Steuerungstechnik mit Antriebstechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen und -formen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>137803 Vorlesung Einführung in die Regelungstechnik</td>
<td></td>
</tr>
<tr>
<td>137804 Vorlesung Steuerungstechnik mit Antriebstechnik</td>
<td></td>
</tr>
<tr>
<td>137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik</td>
<td></td>
</tr>
<tr>
<td>137802 Vorlesung Systemdynamische Grundlagen der Regelungstechnik (Erneuerbare Energien, Verfahrenstechnik)</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Abschätzung Arbeitsaufwand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 42h</td>
<td></td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit: 138h</td>
<td></td>
</tr>
<tr>
<td>Gesamt: 180h</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13781 Systemdynamische Grundlagen der Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>13782 Einführung in die Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>13783 Steuerungstechnik mit Antriebstechnik (PL), Schriftlich, 60 Min., Gewichtung: 1</td>
<td></td>
</tr>
</tbody>
</table>

Ermittlung der Modulnote:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1: Systemdynamische Grundlagen der Regelungstechnik</td>
<td>50%</td>
</tr>
<tr>
<td>Einführung in die Regelungstechnik</td>
<td>50%</td>
</tr>
<tr>
<td>Block 2: Systemdynamische Grundlagen der Regelungstechnik</td>
<td>50%</td>
</tr>
<tr>
<td>Steuerungstechnik mit Antriebstechnik</td>
<td>50%</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
Modul: 17170 Elektrische Antriebe

2. Modulkürzel: 051010013
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester
 ➞ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 5. Semester
 ➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 5. Semester
 ➞ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester
 ➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2014, 5. Semester
 ➞ Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2014, 4. Semester
 ➞ Pflichtmodule --> Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester
 ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
 • Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:
 Studierende...
 • ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
 • ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können leistungselektronische Stellgliedereines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:
 • Grundlagen der Antriebstechnik
 • Elektronische Stellglieder
 • Gleichstrommaschine
 • Drehfeldmaschinen

14. Literatur:
 • Kremser, Andreas: Elektrische Maschinen und Antriebe, B. G. Teubner, Stuttgart, 2004
 • Schröder, Dierk: Elektrische Antriebe 2, Springer, Berlin, 1995
 • Heumann, K.: Grundlagen der Leistungselektronik B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
 • 171701 Vorlesung Elektrische Antriebe
 • 171702 Übung Elektrische Antriebe

16. Abschätzung Arbeitsaufwand:
 Frontalvorlesung

17. Prüfungsnummer/n und -name:
 171711 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 38830 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien

2. Modulkürzel: 051410003
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stefan Wagner

9. Dozenten: Stefan Wagner
Ivan Bogicevic

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012, Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester Pflichtmodule --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
- Die Studenten verstehen die grundlegenden Konzepte der Programmierung und des Software Engineerings.
- Die Studenten kennen wichtige Datenstrukturen und Algorithmen.
- Die Studenten können einfache Programme in der Sprache Matlab entwickeln.

13. Inhalt:
- Grundlagen (Algorithmen, Kontrollfluss, Sprachen, Datenstrukturen, Informationsdarstellung, Programmierung, Objektorientierung)
- Software Engineering (Vorgehensmodelle, Software-Projekt, Test, Debugging, Software-Qualität, Code-Qualität, Konfigurationsverwaltung mit Git)
- MATLAB/Octave (Grundlagen, Variablen, Arrays und Matrizen, Bibliotheksfunctionen, Ein-/Ausgabe, Plots, Programmierung)
- Übung an durchgehendem Projekt
- Übersicht Programmiersprachen
- Übersicht über weitere Gebiete der Informatik

14. Literatur:
- Appelrath, Ludewig. Skriptum Informatik. Vieweg-Verlag
- Stein. Programmern mit MATLAB. Carl Hanser Verlag

15. Lehrveranstaltungen und -formen:
- 388301 Vorlesung Informatik I

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 38831 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien (BSL), Schriftlich, 60 Min., Gewichtung: 1

Stand: 01.10.2018
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Grundlagen der Informatik</td>
</tr>
</tbody>
</table>
Modul: 39160 Grundlagen der Betriebswirtschaftslehre

2. Modulkürzel: 100110001

3. Leistungspunkte: 3 LP

4. SWS: 3

5. Moduldauer: Einsemestrig

6. Turnus: Unregelmäßig

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Wolfgang Burr

9. Dozenten: Wolfgang Burr
 Micha Bosler
 Xenia Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
 B.Sc. Verkehringenieurwesen, PO 089-2015, 1. Semester Pflichtmodule --> Kernmodule
 B.Sc. Verkehringenieurwesen, PO 089-2015, 1. Semester Zusatzmodule
 B.Sc. Verkehringenieurwesen, PO 089-2017, 1. Semester Zusatzmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, 1. Semester SQ FA Pflichtmodule --> Schlüsselqualifikationen fachaffin
 B.Sc. Verkehringenieurwesen, PO 089-2012, 1. Semester Schlüsselqualifikationen fachaffin
 B.Sc. Verkehringenieurwesen, PO 089-2017, 1. Semester SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
 B.Sc. Verkehringenieurwesen, PO 089-2017, 1. Semester Pflichtmodule --> Kernmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, 1. Semester Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 • Die Studierenden können die zentrale betriebswirtschaftliche Definitionen wiedergeben und lernen auf deren Basis zu argumentieren
 • Die Studierenden können die verschiedene Teilbereiche der Betriebswirtschaft benennen und in das Gesamtkonzept der Betriebswirtschaft einordnen sowie dortige Problemstellungen angeben und eingesetzte Instrumente anwenden
 • Die Studierenden sind in der Lage ausgewählte betriebswirtschaftlichen Theorien zu erklären und auf bestimmte Problemstellungen anzuwenden

13. Inhalt:
 Dieses einführende Modul bringt zunächst den Studierenden den Gegenstand der Betriebswirtschaftslehre näher und ermöglicht ein Kennenlernen erster betriebswirtschaftlicher Begriffe sowie eine Einordnung der Betriebswirtschaftslehre in den Rahmen der Wirtschaftswissenschaften.
 Weiterhin werden die entscheidungstheoretischen Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik begreiflich gemacht. Ferner werden die Einheiten der betrieblichen Leistungserstellung und die Instrumente zur Unterstützung dieser erläutert.
 Schließlich lernen die Studierenden die Aufgaben und Probleme der Unternehmensführung kennen. Neben der Einführung in die Theorien, Methoden und Konzepte der Unternehmensführung,
bekommen die Studierenden Einblick in weitere Bereiche wie z. B. Innovationsmanagement.

14. Literatur:
- Folien zu Vorlesungen und Übungen
- Übungsaufgaben im ILIAS

Die Basisliteratur umfasst die folgenden Werke:
- Burr, W.: Innovationen in Organisationen, aktuelle Auflage, Kohlhammer Verlag, Stuttgart.

15. Lehrveranstaltungen und -formen:
- 391601 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 391602 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:
Vorlesung
- Präsenzzeit: 28 h
- Selbststudium: 32 h
Übung
- Präsenzzeit: 14 h
- Selbststudium: 16 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
39161 Einführung in die BWL für MINT-Studiengänge (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Tafel, Beamer, Overhead-Projektor

20. Angeboten von:
ABWL, Innovations- und Dienstleistungsmanagement
Modul: 39170 Einführung in die Elektrotechnik für Kybernetik und Verkehrsingenieurwesen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 2. Semester Zusatzmodule → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester Pflichtmodule → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester Pflichtmodule → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Elektrischer Gleichstrom
| | • Wechselstrom
| | • Elektrische und magnetische Felder |
| | • Moeller / Fricke / Frohne / Löcherer / Müller, Grundlagen der Elektrotechnik, Teubner Stuttgart, 19. Auflage 2002
| | • Jötten / Zürneck, Einführung in die Elektrotechnik I/II, uni-text Braunschweig 1972
| | • Ameling, Grundlagen der Elektrotechnik I/II, Bertelsmann Universitätsverlag 1974 |
| 15. Lehrveranstaltungen und -formen: | • 391702 Übung Einführung in die Elektrotechnik
| | • 391701 Vorlesung Einführung in die Elektrotechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 48 h
| | Gesamt: 90 h | |
| 17. Prüfungsnummer/n und -name: | 39171 Einführung in die Elektrotechnik für Kybernetik und Verkehrsingenieurwesen (BSL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | | |
| 19. Medienform: | | |
| 20. Angeboten von: | Elektrische Energiespeichersysteme |
Modul: 42190 Logistikfunktionen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Rudolf Large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rudolf Large</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Pflichtmodule → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Pflichtmodule → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Kernmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>BWL I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden sollen nach Abschluss der Lehrveranstaltung in der Lage sein,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• die Logistik als Lehre, Phänomen und Wissenschaft zu erläutern,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• die Ausführung und Planung der einzelnen Teilfunktionen der Logistik detailliert zu beschreiben,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ausgewählte logistische Probleme mathematisch zu formulieren und zu lösen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 421902 Übung Logistikfunktionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 421901 Vorlesung Logistikfunktionen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamtzeitaufwand: 180 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>42191 Logistikfunktionen (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Seminar Logistik</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>ABWL, Logistik- und Beschaffungsmanagement</td>
</tr>
</tbody>
</table>
Modul: 43010 Einführung in das Verkehrsingenieurwesen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020400331</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Ullrich Martin</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehrsingenieurwesen, PO 089-2017, 2. Semester

- Pflichtmodule --> Kernmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester

- Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester

- Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2017, 2. Semester

- Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester

- Pflichtmodule --> Kernmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester

- Kernmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester

- Pflichtmodule --> Kernmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

Raum- und Verkehrsplanung

- Einführung in die Raum- und Verkehrsplanung
- Wirkungen des Verkehrs auf die Raumstruktur, auf die Umwelt, auf die Angebotsqualität und auf die Wirtschaft
- Bewertung der Wirkungen in planerischen Verfahren
- Maßnahmen der Raum- und Verkehrsplanung

1) Regional- und Bauleitplanung
2) Verkehrernetzplanung
3) Stadtverkehrsplanung
4) Verkehrsbauwerke Straße
5) Verkehrsbauwerke Schiene
6) Betriebsablauf Straße
7) Betriebsablauf Schiene
8) Umsetzung von Infrastrukturmaßnahmen
Statistik und Bedienungstheorie im Verkehr
1) Grundlagen der Statistik
2) Wahrscheinlichkeitsrechnung
3) Verteilungen
4) Grundlagen der Fehlerrechnung
5) Bedienungstheorie
6) Bedienungsmodelle
7) Warteschlangentheorie
8) Markovketten

Seminar Verkehrsingenieurwesen
• angeleitete Bearbeitung einer Seminararbeit zu einem Thema des Verkehrsingenieurwesens
• Einblick sowohl in das Verständnis der Wirkungsweise von Instrumenten des Verkehrsingenieurwesens als auch beim Beantworten verkehrsplanerischer Fragestellungen

14. Literatur:
• Friedrich, M., Martin, U., Ressel, W., Siedentop, S.: Raum- und Verkehrsplanung Vorlesungsskript
• Metzner, M., Martin, U.: Statistik und Bedienungstheorie im Verkehr, Vorlesungsskript
• Fischer, Hertel: Bedienungsprozesse im Transportwesen: Grundlagen und Anwendungen der Bedienungstheorie, Transpress Verlag Berlin, neueste Auflage
• Benning, Wilhelm: Statistik in Geodäsie, Geoinformation und Bauwesen, Verlag Wichmann Heidelberg, neueste Auflage

15. Lehrveranstaltungen und -formen:
• 430103 Seminar Verkehrsingenieurwesen
• 430102 Vorlesung mit Übung Statistik und Bedienungstheorie im Verkehr
• 430101 Vorlesung mit Übung Raum- und Verkehrsplanung

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: ca. 70 h
Seminararbeit: ca. 90 h
Nachbereitungszeit: ca. 110 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 43011 Einführung in das Verkehrsingenieurwesen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Einführung in das Verkehrsingenieurwesen (USL-V), Anerkannte Übungsleistung zur Statistik und erfolgreiche Bearbeitung der Seminararbeit sind Prüfungsvoraussetzung des Moduls

18. Grundlage für ...

19. Medienform:
Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung und Übung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:
Schienenbahnen und Öffentlicher Verkehr
Modul: 46290 Entwurf von Verkehrsanlagen

2. Modulkürzel: 020400321
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin

9. Dozenten: Ullrich Martin
Wolfram Ressel
Sebastian Rapp
Barbara Schuck

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
 ➔ Pflichtmodule --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
 ➔ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
 ➔ Pflichtmodule --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
 ➔ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
 ➔ Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
 ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Hörer der Lehrveranstaltung Straßenplanung und -entwurf können:

- Entwurfstechnische Grundlagen für die dreidimensionale Trassierung von Straßenverkehrsanlagen (Autobahnen, Landstraßen, Stadtstraßen, Knotenpunkte) definieren,
- Straßen bemessen und Verkehrsqualität nachweisen sowie
- fahrdynamische und fahrgeometrische Grundlagen anwenden.

In der Lehrveranstaltung Planung von Bahnanlagen werden die Grundsätze der Planung sowie des Baus von Bahnanlagen vermittelt. Die Hörer können:

- den Planungsablauf im Bahnbau nachvollziehen,
- einfache fahrdynamische Berechnungen selbstständig erstellen,
- vereinfachte Spurpläne trassieren und bewerten,
- den Aufbau des Bahnkörpers verstehen sowie
- dessen konstruktive Auslegung unter Beachtung der auftretenden Beanspruchungen vereinfacht bestimmen.

13. Inhalt:
In der Lehrveranstaltung Straßenplanung und -entwurf werden folgende Themengebiete behandelt:
- Funktionale Gliederung des Straßennetzes,
- Fahrdynamik und Fahrgeometrie,
- Bemessung und Querschnittsgestaltung,
- Entwurf von Autobahnen, Landstraßen, Stadtstraßen und Knotenpunkten.
In der Vorlesung **Planung von Bahnanlagen** wird ein Überblick gegeben über das Gesamtsystem des Bahnverkehrs mit folgenden Themengebieten:
- Technische und rechtliche Grundlagen,
- Fahrdynamik im Eisenbahnwesen,
- Gestaltung von Bahnanlagen (Linienführung, Querschnittsgestaltung und Bahnhofsanlagen),
- Konstruktive Auslegung des Bahnkörpers (Oberbau, Unterbau und Untergrund),
- Durchführung eines Trassierungsbeleges.

14. Literatur:
- Ressel, W.: Skript zur Lehrveranstaltung Straßenplanung und -entwurf
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Autobahnen (RAA), neueste Auflage
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Landstraßen (RAL), neueste Auflage
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Stadtstraßen (RAS), neueste Auflage
- Martin, U.: Skript zur Lehrveranstaltung Planung von Bahnanlagen
- Eisenbahn- Bau- und Betriebsordnung (EBO)
- Wende, D: Fahrdynamik des Schienenverkehrs, Teubner Verlag Stuttgart, neueste Auflage
- Matthews, V.: Bahnbau, Teubner Verlag Stuttgart, neueste Auflage

15. Lehrveranstaltungen und -formen:
- 462901 Vorlesung Straßenplanung und -entwurf
- 462903 Exkursion Straßenplanung und -entwurf
- 462902 Übung Straßenplanung und -entwurf
- 462904 Vorlesung Planung von Bahnanlagen
- 462905 Übung Planung von Bahnanlagen
- 462906 Exkursionen Planung von Bahnanlagen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 50 h
- Selbststudium: 130 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 46291 Entwurf von Verkehrsanlagen (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:
Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierter Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:
Schienenbahnen und Öffentlicher Verkehr
Modul: 57260 Nachrichtentechnik für Verkehrsingenieure

2. Modulkürzel: 050600003
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jan Hesselbarth

9. Dozenten: Jan Hesselbarth
Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Semester</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Verkehrsingenieurwesen,</td>
<td>4</td>
<td>6</td>
<td>Sommersemester</td>
<td>Deutsch</td>
</tr>
<tr>
<td>PO 089-2015, 4. Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen,</td>
<td>4</td>
<td>6</td>
<td>Sommersemester</td>
<td>Deutsch</td>
</tr>
<tr>
<td>PO 089-2012, 4. Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen,</td>
<td>4</td>
<td>6</td>
<td>Sommersemester</td>
<td>Deutsch</td>
</tr>
<tr>
<td>PO 089-2017, 4. Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen,</td>
<td>4</td>
<td>6</td>
<td>Sommersemester</td>
<td>Deutsch</td>
</tr>
<tr>
<td>PO 089-2012, 4. Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen,</td>
<td>4</td>
<td>6</td>
<td>Sommersemester</td>
<td>Deutsch</td>
</tr>
<tr>
<td>PO 089-2012, 4. Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

13. Inhalt: Grundzüge der Informationstheorie, Modulation, Grundlagen der Sender- und Empfangstechnik, Leitungen, Antennen, Übersicht wichtiger Funksysteme

15. Lehrveranstaltungen und -formen:
 • 572601 Vorlesung Nachrichtentechnik für Verkehrsingenieure
 • 572602 Übung Nachrichtentechnik für Verkehrsingenieure

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h, Selbststudium: 124 h, Gesamt: 180 h

17. Prüfungsnummer/n und -name: 57261 Nachrichtentechnik für Verkehrsingenieure (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Hochfrequenztechnik
Modul: 69060 Mechanik 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. David Remy

9. Dozenten: David Remy

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>1. Semester</th>
<th>PO 089-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule</td>
<td>Pflichtmodule</td>
</tr>
</tbody>
</table>

B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester

<table>
<thead>
<tr>
<th>1. Semester</th>
<th>PO 089-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule</td>
<td>Pflichtmodule</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Absolventen sind in der Lage, einfache Probleme aus Gebieten der Statik starrer Körper und aus Teilen der Elastostatik zu lösen

13. Inhalt:

- Vektoralgebra
- Kinematik und Statik starrer Körper
- Äquivalente Belastungsfälle und Schwerpunkt
- Fachwerke
- Balken und Tragwerke
- Zug und Druck von Stäben

14. Literatur:

- Aufgabensammlung, Mitschrift

15. Lehrveranstaltungen und -formen:

- 690601 Vorlesung Mechanik 1
- 690602 Übung Mechanik 1

16. Abschätzung Arbeitsaufwand:

- Präsenz: 56 h
- Nacharbeit: 42 h
- Prüfungsvorbereitung: 82 Stunden
- Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:

- 69061 Mechanik 1 (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Nichtlineare Mechanik
Modul: 69070 Mechanik 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. David Remy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>David Remy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Mechanik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Absolventen sind in der Lage, einfache Probleme aus Elastostatik und Dynamik zu lösen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Inhalt:
- **Lineare Kontinua:**
 - Verschiebungen und Dehnungen
 - Spannungen
 - Stoffgesetz
- **Elastostatik von Balken:**
 - Ebene Biegung
 - Schub
 - Torsion
- **Dynamik:**
 - Impulssatz und Drallsatz
 - Kinetische und potenzielle Energie
 - Massenträgheitsmoment
- **Schwingungen:**
 - Lineare Schwingungen
 - Freiheitsgrad
 - Lineare Schwingungen
 - Freiheitsgrade
 - Moden

14. Literatur:
- Aufgabensammlung, Mitschrift

15. Lehrveranstaltungen und -formen:
- 690701 Vorlesung Mechanik 2
- 690702 Übung Mechanik 2

16. Abschätzung Arbeitsaufwand:
- Präsenz: 56 h
- Nacharbeit: 42 h
- Prüfungsvorbereitung: 82 Stunden
- Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
- 69071 Mechanik 2 (PL), Schriftlich, 120 Min., Gewichtung: 1

19. Medienform:
- Nichtlineare Mechanik

Stand: 01.10.2018
220 Wahlpflichtmodule Gruppe Fahrzeuge

Zugeordnete Module:

13590 Kraftfahrzeuge I + II
14130 Kraftfahrzeugmechatronik I + II
67290 Grundlagen Schienenfahrzeugtechnik und -betrieb
78020 Grundlagen der Fahrzeugantriebe
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Nils Widdecke

9. Dozenten:
- Prof. Jochen Wiedemann
- Nils Widdecke

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➔ Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➔ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➔ Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➔ Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➔ Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➔ Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➔ Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➔ Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:
- Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrleistungen - und widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte
- Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Vorlesung, Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
</tr>
</tbody>
</table>
Modul: 14130 Kraftfahrzeugmechatronik I + II

2. Modulkürzel: 070800002

5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Wintersemester

4. SWS: 4

7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Zusatzmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➔ Ergänzungsmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➔ Ergänzungsmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➔ Ergänzungsmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➔ Zusatzmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

 Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
 Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

 VL Kfz-Mech I:
 - kraftfahrzeugspezifische Anforderungen an die Elektronik
 - Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
 - Motorelektronik (Zündung, Einspritzung)
 - Getriebeelektronik
 - Lenkung
 - ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
 - Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
 - Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

 VL Kfz-Mech II:
 - Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
 - Systemarchitektur und Fahrzeugentwicklungsprozesse
 - Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
• Rapid Prototyping (Simulink)
• Modellbasierte Funktionsentwicklung mit TargetLink
• Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)
Vieweg, 2006

15. Lehrveranstaltungen und -formen:
• 141303 Laborübungen Kraftfahrzeugmechatronik
• 141301 Vorlesung Kraftfahrzeugmechatronik I
• 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min.,
Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute
Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 67290 Grundlagen Schienenfahrzeugtechnik und -betrieb

2. Modulkürzel: 072611501
5. Modulldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Corinna Salander
9. Dozenten: Corinna Salander

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
 ➞ Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule

11. Empfohlene Voraussetzungen: Keine, da das Modul in das Thema einführt

12. Lernziele:

13. Inhalt:
• Historische, politische und technische Grundlagen des Systems Bahn, insbesondere der Zusammenhang von Fahrzeugen, Infrastruktur und Betrieb
• Eisenbahninfrastrukturelemente mit Einfluss auf die Konstruktion und Zulassung von Schienenfahrzeugen
• Grundlagen der Schienenfahrzeugtechnik, d.h. Zugfördertechnik, Spurführung, Akustik, Energieeffizienz, Emissionen sowie Fahrdynamik
• Auslegung von Schienenfahrzeugen, auf Basis der technischen, betrieblichen und wirtschaftlichen Randbedingungen
• Konstruktion von Schienenfahrzeugen, Erläuterung bestehender Konzepte sowie der Funktionsweise und Eigenschaften von Fahrzeugkomponenten
• Produktion und Zulassung von Schienenfahrzeugen am Beispiel sicherheitsrelevanter Komponenten
• Technische und betriebliche Bedingungen der Instandhaltung
• Grundlagen der Leit- und Sicherungstechnik
• Eisenbahnrelevante Gesetze, Normen und Verbändestruktur
• Künftige Entwicklungen im System Bahn

14. Literatur:
• Skript und Übungsaufgaben
• Pachl, J.: Systemtechnik des Schienenverkehrs, Verlag Springer Vieweg
• Schindler, C. (Hrsg.): Handbuch Schienenfahrzeuge: Entwicklung, Produktion, Instandhaltung, Verlag Eurailpress

| 15. Lehrveranstaltungen und -formen: | • 672901 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb I
| | • 672902 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb II |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 56 h
| | Selbststudiumszeit 96 h
| | Exkursion (3-tägig, Vor- und Nachbereitung) 28 h |

| 17. Prüfungsnummer/n und -name: | 67291 Grundlagen Schienenfahrzeugtechnik und -betrieb (PL), Schriftlich, 120 Min., Gewichtung: 1 |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Schienenfahrzeugtechnik |
Modul: 78020 Grundlagen der Fahrzeugantriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070810003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Jedes 2. Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Bargende</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Prof. Michael Bargende</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule

11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4 (Bachelor)

12. Lernziele:

13. Inhalt:
I: Einführung; Definition und Einleitung; Ausführungsbeispiele; thermodynamische Vergleichsprozesse; Kenngrößen
II: Kraftstoffe; Gemischbildung, Zündung und Verbrennung beim Ottomotor; Gemischbildung, Verbrennung und Schadstoffentstehung beim Dieselmotor; Ladungswechsel; Aufladung; Schmierölkreislauf; Kühlung
III: Elektrifizierung des Antriebsstranges; Hybridkonzepte
IV: Auslegung des Verbrennungsmotors; Triebwerksdynamik; Konstruktionselemente; Abgasemissionen; Geräuschemissionen

14. Literatur:
- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
- 780201 Vorlesung Grundlagen der Fahrzeugantriebe

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>78021 Grundlagen der Fahrzeugantriebe (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
230 Wahlpflichtmodule Gruppe Planung und Bau

Zugeordnete Module:
- 10820 Straßenbautechnik I
- 11400 Grundlagen der Landschafts- und Umweltplanung
- 46280 Grundlagen der Schienenverkehrssysteme
Modul: 10820 Straßenbautechnik I

2. Modulkürzel: 021310101
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Wolfram Ressel
9. Dozenten: Wolfram Ressel, Stefan Alber
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015,
 ➞ Ergänzungsmodulle
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 ➞ Wahlpflichtmodule Gruppe Planung und Bau --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017,
 ➞ Ergänzungsmodulle
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017,
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Wahlpflichtmodule Gruppe Planung und Bau --> Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Ergänzungsmodulle
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Kernmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
 ➞ Wahlpflichtmodule Gruppe Planung und Bau --> Kernmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:
In den Vorlesungen und den zugehörigen Übungen werden folgende Themen behandelt:

Untergrund/Unterbau:
- Eigenschaften von Böden
- Tragverhalten und bodenmechanische Eigenschaften
- Bodenverfestigung und Bodenverbesserung
- Prüfverfahren von Böden und ungebundenen Schichten

Oberbau:
- Straßenbaustoffe - Prüfungen und Anforderungen
- Dimensionierung des Oberbaues von Verkehrsflächen
- Schichten im Straßenoberbau
- Dimensionierung und Herstellung von Strassenendecken und Tragschichten
- Einführung Maschinenentechnik im Straßenbau
- Recycling von Straßenbaustoffen
Entwässerung von Straßen:
• Planung, Entwurf und Bemessung von Straßenentwässerungseinrichtungen

Straßenerhaltung:
• Schadensbilder
• Einführung in die Zustandserfassung und -bewertung (ZEB)
• Maßnahmen an Asphalt- und Betonstraßen

14. Literatur:
• Ressel, W.: Skript "Straßenbautechnik I"
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Standardisierung des Oberbaus (RStO 12), Köln 2012
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Straßen - Teil: Entwässerung (RAS-Ew), Köln 2005
• Bleßmann, W., Böhm, S., Rosauer, V., Schäfer, V.: ZTV BEA-StB - Handbuch und Kommentar, Kirschbaum Verlag, Bonn 2010
• Floss, R.: Handbuch ZTV E-StB - Kommentar und Leitlinien mit Kompendium Erd- und Felsbau, Kirschbaum Verlag, Bonn 2011
• Hutschenreuther, J.; Wörner, T.: Asphalt im Straßenbau, 3. Auflage, Kirschbaumverlag, 2017

15. Lehrveranstaltungen und -formen:
• 108201 Vorlesung Straßenbautechnik
• 108202 Übung Straßenbautechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10821 Straßenbautechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :
Straßenbautechnik II

19. Medienform:

20. Angeboten von:
Straßenplanung und Straßenbau
Modul: 11400 Grundlagen der Landschafts- und Umweltplanung

2. Modulkürzel: 021100002
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörn Birkmann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Wahlpflichtmodule Gruppe Planung und Bau ➞ Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➞ Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➞ Ergänzungsmodule

12. Lernziele: Vorlesung Landschaftsplanung
 - Aufgaben der Landschaftsplanung
 - Geologische Grundlagen
 - Arten und Eigenschaften von Böden
 - Oberflächengewässer
 - Biodiversität
 - Quantifizierung und Modellierung von Nutzungsauswirkungen
 - Mehrkriterielle Bewertungen in der Landschaftsplanung

Vorlesung Umweltplanung
 - Herausforderungen der Umweltplanung im 21. Jahrhundert
 - Resilienz und Anpassung an Klimawandel
 - Instrumente der Umweltplanung
 - Gesamtplanung und Fachplanung
 - Grundlagen der Raum- und Umweltbeobachtung
- Umweltbelange in der Projektplanung (Umweltpflege, Eingriffsregelung, FFH-Verträglichkeitsprüfung)
- Diskussion umweltplanerischer Handlungsmöglichkeiten in ausgewählten Handlungsfeldern:
 - Freiraum- und Bodenschutz
 - vorsorgender Hochwasserschutz
 - Windenergieanlagenplanung
 - Klimafolgenanpassung

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 114001 Vorlesung Umweltplanung
 - 114002 Vorlesung Landschaftsplanung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbstdstudium / Nacharbeitszeit: 112h
 Gesamt: 168h

17. Prüfungsnummer/n und -name:
 11401 Grundlagen der Landschafts- und Umweltplanung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Raumentwicklungs- und Umweltplanung
Modul: 46280 Grundlagen der Schienenverkehrssysteme

2. Modulkürzel: 020400311
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin

9. Dozenten: Ullrich Martin
 Sebastian Rapp
 Corinna Salander
 Sebastian Skorsetz

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Verkehringenieurwesen, PO 089-2012, ➞ Ergänzungsmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester ➞ Wahlplichtmodule Gruppe Planung und Bau ➞ Kernmodule
 B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester ➞ Wahlplichtmodule Gruppe Planung und Bau ➞ Kernmodule
 B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester ➞ Zusatzmodule
 B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester ➞ Zusatzmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester ➞ Kernmodule
 B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Hörer der Lehrveranstaltung "Betrieb von Schienenbahnen" lernen die Grundsätze des Bahnbetriebs kennen und sind in der Lage:

 • die Charakteristika und die Einsatzbereiche im Personen- und Güterverkehr des Verkehrsträgers Eisenbahn zu erklären,
 • die Zusammenhänge von Sicherheitsniveau und Kostenstrukturen zu verstehen,
 • die grundlegenden Sicherungsprinzipien nachzu vollziehen,
 • die system spezifischen Zusammenhänge des Bahnbetriebs zu verstehen sowie
 • geeignete Betriebsverfahren auszuwählen.

 Die Hörer der Lehrveranstaltung "Fahrdynamische Modellbildung" lernen ergänzend zur Lehrveranstaltung "Betrieb von Schienenbahnen" die grundlegenden fahrdynamischen Aspekte, die für die Energiebedarfs- und Fahrzeitermittlung des Verkehrsträgers Eisenbahn von Bedeutung sind, in Modellen abzubilden und können:
• die Fahrwiderstände, die Fahrzeiten und den Energiebedarf einer Zugfahrt mit unterschiedlichen Parametern händisch und mittels einer speziellen Software errechnen,
• Fahrzeuge und Strecken modellieren sowie
• den Einfluss unterschiedlicher Fahrspiele auf Fahrzeiten und Energieverbrauch bewerten

13. Inhalt: In der Lehrveranstaltung "Betrieb von Schienenbahnen" werden folgende Themengebiete behandelt:
• Administrativ-organisatorische Strukturen,
• Fahrzeitenrechnung,
• Zugfolgeregelung und Fahrwegsteuerung,
• Fahrplangestaltung,
• Betriebsablauf und -steuerung sowie
• Fahrzeugsysteme.

Die Lehrveranstaltung "Fahrdynamische Modellbildung" bietet einen vertieften Einblick in die Wirkung fahrdynamischer Zusammenhänge im Bahnbetrieb:
• Fahrwiderstände, Fahrzeiten und Energiebedarf einer Zugfahrt
• Modellierung von Strecken-, Fahrzeug- und Zugdaten
• Betrachten unterschiedlicher Einflussfaktoren wie, Fahrspiel, Zugbildung, Streckeneinflüsse

15. Lehrveranstaltungen und -formen: • 462803 Exkursion Betrieb von Schienenbahnen
• 462804 Vorlesung Fahrdynamische Modellbildung
• 462801 Vorlesung Betrieb von Schienenbahnen
• 462802 Übung Betrieb von Schienenbahnen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h
Selbststudium: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 46281 Grundlagen der Schienenverkehrssysteme (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung und Übung, Webbasierter Unterlagen zum vertieften Selbststudium

20. Angeboten von: Schienenbahnen und Öffentlicher Verkehr
300 Ergänzungsmodule

<table>
<thead>
<tr>
<th>Zugeordnete Module:</th>
<th>Ergänzungsmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10570</td>
<td>Werkstoffe im Bauwesen I</td>
</tr>
<tr>
<td>10610</td>
<td>Baubetriebslehre I</td>
</tr>
<tr>
<td>10640</td>
<td>Geotechnik I: Bodenmechanik</td>
</tr>
<tr>
<td>10690</td>
<td>Geodäsie im Bauwesen</td>
</tr>
<tr>
<td>10730</td>
<td>Baubetriebslehre II</td>
</tr>
<tr>
<td>10820</td>
<td>Straßenbautechnik I</td>
</tr>
<tr>
<td>11380</td>
<td>Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung</td>
</tr>
<tr>
<td>11400</td>
<td>Grundlagen der Landschafts- und Umweltplanung</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td>12100</td>
<td>BWL II: Rechnungswesen und Finanzierung</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
</tr>
<tr>
<td>12400</td>
<td>Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien</td>
</tr>
<tr>
<td>13080</td>
<td>Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13530</td>
<td>Arbeitswissenschaft</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>14450</td>
<td>Fertigungsverfahren in der Bauwirtschaft II</td>
</tr>
<tr>
<td>16000</td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>19750</td>
<td>Einführung Geodäsie & Geoinformatik</td>
</tr>
<tr>
<td>19760</td>
<td>Geoinformatik</td>
</tr>
<tr>
<td>19810</td>
<td>Statistik und Fehlerlehre</td>
</tr>
<tr>
<td>23190</td>
<td>Stadtplanung und Stadtmanagement</td>
</tr>
<tr>
<td>29140</td>
<td>Smart Grids</td>
</tr>
<tr>
<td>30030</td>
<td>Fahrzeugdynamik</td>
</tr>
<tr>
<td>30950</td>
<td>Mobile Energiespeicher</td>
</tr>
<tr>
<td>37150</td>
<td>Fertigungsverfahren in der Bauwirtschaft</td>
</tr>
<tr>
<td>37300</td>
<td>Technische Akustik</td>
</tr>
<tr>
<td>38640</td>
<td>Einführung in die Rechtsgrundlagen des Bauwesens</td>
</tr>
<tr>
<td>38770</td>
<td>Umweltsoziologie</td>
</tr>
<tr>
<td>40830</td>
<td>Flugmechanik</td>
</tr>
<tr>
<td>41580</td>
<td>Umweltmanagement</td>
</tr>
<tr>
<td>42350</td>
<td>Standort und Verkehr</td>
</tr>
<tr>
<td>42960</td>
<td>Einführung Städtebau und Ökologie</td>
</tr>
<tr>
<td>43020</td>
<td>Stadt und Mobilität</td>
</tr>
<tr>
<td>44000</td>
<td>Nachhaltige Energie- und Verkehrssysteme</td>
</tr>
<tr>
<td>45900</td>
<td>Lineare Kontrolltheorie</td>
</tr>
<tr>
<td>46280</td>
<td>Grundlagen der Schienenverkehrssysteme</td>
</tr>
<tr>
<td>56890</td>
<td>Umweltschutz und Bauen: öffentlich-rechtliche Rahmenbedingungen und Praxis</td>
</tr>
<tr>
<td>67290</td>
<td>Grundlagen Schienenfahrzeugtechnik und -betrieb</td>
</tr>
<tr>
<td>78020</td>
<td>Grundlagen der Fahrzeugantriebe</td>
</tr>
</tbody>
</table>
Modul: 10570 Werkstoffe im Bauwesen I

2. Modulkürzel: 021500101
3. Leistungspunkte: 6 LP
4. SWS: 6
5. Moduldaurer: Zweisemestrigr
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Harald Garrecht
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➞ Ergänzungsmodule
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Vorlesung: Die Studierenden kennen nach dem Besuch der Veranstaltung das Spektrum der im Bauwesen verwendeten Werkstoffe, beherrschen die Grundlagen hinsichtlich der charakteristischen Werkstoffeigenschaften, erkennen den Bezug dieser grundlegenden Werkstoffeigenschaften zur Baupraxis und sind fähig, die Werkstoffe angemessen im Hinblick auf das Gebrauchs- und Versagensverhalten sowie die Dauerhaftigkeit der damit erstellten Konstruktionen auszuwählen.
 Übungen: Die Studierenden können die im Bauwesen verwendeten Werkstoffe erkennen, ihre Eigenschaften abschätzen, sind insbesondere mit der Herstellung von Beton und der damit verbundenen Ingenieurverantwortung vertraut und sind mit den messtechnischen Methoden vertraut, mit denen die in der Vorlesung behandelten charakteristischen Werkstoffeigenschaften in der Materialprüfung ermittelt werden.
13. Inhalt:
 2. Semester:
 • Allgemeine Werkstoffeigenschaften
 • Stahl
 • Korrosion und Korrosionsschutz von Stahl
 • Glas
 • Kunststoffe
 • Holz
 3. Semester:
 • Mineralische Bindemittel
 • Gesteinskörnung
 • Betonzusätze
 • Frischbeton
 • Festbeton
 • Mischungsentwurf
 • Spezialbetone
 Laborübungen (3.Semester):
 • Stahl
• Holz
• Kunststoffe
• Frischbeton
• Festbeton

14. Literatur:
Folienausdrucke, ausgewählte Fachliteratur, Umdrucke zu den Übungen
unterstützende Literatur:
• Scholz, W.: Baustoffkenntnis, 17. Auflage, Bundesanzeiger, 2011

15. Lehrveranstaltungen und -formen:
• 105703 Übung Werkstoffe im Bauwesen I
• 105701 Vorlesung Werkstoffe im Bauwesen I (SS)
• 105702 Vorlesung Werkstoffe im Bauwesen I (WS)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium / Nacharbeitszeit: 96 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10571 Werkstoffe im Bauwesen I (PL), Schriftlich, 180 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: 4 Laborübungen

18. Grundlage für ...:
Werkstoffe im Bauwesen II

19. Medienform:

20. Angeboten von:
Werkstoffe im Bauwesen
Modul: 10610 Baubetriebslehre I

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner
9. Dozenten: Sarina Schmalz
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
11. Empfohlene Voraussetzungen:
 • Bau: Einführung in das Bauingenieurwesen - Fertigungsverfahren in der Bauwirtschaft
 • IuI, Techn.-Päd., BWL techn.: Fertigungsverfahren in der Bauwirtschaft
12. Lernziele:
13. Inhalt:
 Kalkulation von Bauleistungen
 a) Einführung in die Kalkulation
 • Grundlagen des Rechnungswesens
 • Bauauftragsrechnung und Kalkulation
 • Verfahren der Kalkulation
 • Aufbau der Kalkulation
 b) Durchführung der Kalkulation
 • Gliederung der Kalkulation
 • Kostenbestandteile einer Kalkulation
 • praktische Durchführung anhand von Beispielen
 Ausschreibung und Vergabe
 • Ausschreibung von freiberuflichen Leistungen
 • Ausschreibung von Lieferleistungen
 • Ausschreibung von Bauleistungen
 • VOB
 • HOAI
 • Aufbau von Ausschreibungsunterlagen
14. Literatur:
 • VOB/ HOAI
15. Lehrveranstaltungen und -formen:
 • 106101 Vorlesung Baubetriebslehre I
 • 106103 Hausübung und Kolloquium Baubetriebslehre I
 • 106102 Übung Baubetriebslehre I
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 48 h
Selbststudium / Nacharbeitszeit: 132 h
Gesamt: 180 h |
|---------------------------------|---------------------------------|
| 17. Prüfungsnummer/n und -name: | • 10611 Baubetriebslehre I (PL), Schriftlich, 120 Min., Gewichtung: 1
• Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: 1 Hausübung + 1 Kolloquium |
| 18. Grundlage für ... | Baubetriebslehre II |
| 19. Medienform: | |
| 20. Angeboten von: | Baubetriebslehre |
Modul: 10640 Geotechnik I: Bodenmechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulda:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Christian Moormann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Moormann</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
- → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
- → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
- → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
- → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
- → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
- → Ergänzungsmodule

Empfohlene Voraussetzungen:
keine

Lernziele:
Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

Die Studierenden sind in der Lage, die Auswirkungen verschiedener Ausprägungen der klassifizierenden und der zustandsbeschreibenden Bodenparameter auf das mechanische Verhalten einzuschätzen. Die grundlegenden Parameter zur Quantifizierung der Steifigkeit und der Festigkeit von Böden sowie ihre versuchstechnische Bestimmung sind ihnen bekannt.

Die Studierenden kennen die Erddrucktheorien nach COULOMB und nach RANKINE. Ihnen ist bewusst, dass die Größe und die Verteilung des Erddrucks verschiebungsabhängig sind. Sie sind in der Lage, Erddruckverteilungen bei einfachen Randbedingungen unter Anwendung einfacher analytischer Lösungsverfahren zu ermitteln.

Ein Grundverständnis für die Auswirkungen des Bodenverhaltens auf verschiedene Ingenieuraufgaben im Grundbau ist geweckt.

13. Inhalt:

- Entstehung von Böden und deren Klassifikation
- Baugrunderkundung, Feld- und Laborversuche
- Wasser im Boden, Boden als 3-Phasen-System
- Ein- und mehrdimensionale Grundwasserströmung
- Grundwasserhaltung mit Brunnen
- Spannungen im Boden: das Konzept der effektiven Spannungen
- Steifigkeit des Bodens
- Grundlagen der Setzungsermittlung
- Eindimensionale Konsolidation
- Scherfestigkeit und Mohr'scher Spannungskreis
- Erddruckermittlung
- Grundbruchwiderstand von Flachgründungen
- Beurteilung der Böschungsbruchsicherheit
- Einführung Grundbau, Spezialtiefbau in der Anwendung

14. Literatur:

Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:

15. Lehrveranstaltungen und -formen:

- 106402 Übung Geotechnik I: Bodenmechanik
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit (5 SWS): 70 h
Selbststudium / Nacharbeitszeit (1,5 h pro Präsenzstunde): ca. 105 h
Gesamt: ca. 175 h |
|-----------------------------------|--|
| 17. Prüfungsnummer/n und -name: | • 106401 Vorlesung Geotechnik I: Bodenmechanik
• 10641 Geotechnik I: Bodenmechanik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Teil 1: 30 Minuten, ohne Hilfsmittel
Teil 2: 90 Minuten, mit zugelassenen Hilfsmitteln |
| 18. Grundlage für ... : | Geotechnik II: Grundbau Geotechnik III |
| 19. Medienform: | Beamerpräsentationen, Tafelaufschrifte |
| 20. Angeboten von: | Geotechnik |
Modul: 10690 Geodäsie im Bauwesen

2. Modulkürzel: 062300061
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Martin Metzner
9. Dozenten: Aiham Hassan

Martin Metzner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule

11. Empfohlene Voraussetzungen: Höhere Mathematik I, II

12. Lernziele:

13. Inhalt:
• Koordinatensysteme und Projektionen
• Koordinatentransformationen und -umrechnungen
• Zufällige und systematische Fehleranteile
• Fehlerfortpflanzung
• Toleranzen und Standardabweichungen
• Geometriebezogene Qualitätsparameter im Bauprozess
• Geodätische Messtechnik (primäre Datenerfassung)
• Erfassung von Punkten:
 • Terrestrische Methoden: Lage- und Höhenmessung,
 • Berechnungsmethoden
 • Satellitengestützte Methoden: GPS und Galileo
• Erfassung von Flächen und 3D-Objekten:
 • Laserscanning, Photogrammetrie
 • Sekundäre Datenerfassung
• Kartografie als Grundlage
• Digitalisieren
• Datenimport
• Bauprozessbegleitende Informationskette

14. Literatur:
Vorlesungsskript ist vorhanden, zusätzliche Lehrveranstaltungsrelevante Fachbücher:

15. Lehrveranstaltungen und -formen:
• 106901 Vorlesung Geodäsie im Bauwesen
• 106902 Übungen Geodäsie im Bauwesen

Stand: 01.10.2018
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50h
Selbststudium / Nacharbeitszeit: 130h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10691 Geodäsie im Bauwesen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: anerkannte Übungsleistungen in 7 Präsenzübungen inkl. jeweiliger schriftlicher Ausarbeitung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Ingenieurgeodäsie und Geodätische Messtechnik
Modul: 10730 Baubetriebslehre II

2. Modulkürzel: 020200120
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner

9. Dozenten: Fritz Berner

 B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodul

11. Empfohlene Voraussetzungen: Baubetriebslehre I

13. Inhalt:
 Ablauf- und Terminplanung
 - Grundlagen
 - Darstellungsformen
 - Ebenen
 - EDV-Unterstützung bei Ablaufplanung

 Netzplantechnik
 - Allgemeines
 - Methoden
 - Aufbau und Berechnung eines Vorgangsknoten-Netzplanes

 Kalkulatorischer Verfahrensvergleich
 Baustelleneinrichtung und Baustellenlogistik
 - Rechtliche und vertragliche Grundlagen
 - Elemente der Baustelleneinrichtung
 - Grundsätze für den Entwurf
 - Phasenorientierte Baustelleneinrichtungsplanung

 Unternehmensführung im Bauwesen
 - Rechts- und Unternehmensformen
 - Arbeitsgemeinschaften
 - Personalmanagement und Personalführung

 Projektmanagement im Bauwesen

14. Literatur:
 - Manuskript: Unternehmensführung im Bauwesen
 - Manuskript: Projektmanagement im Bauwesen
 - VOB, HOAI
 - AHO-Fachkommission
15. Lehrveranstaltungen und -formen:
• 107301 Vorlesung Baubetriebslehre II
• 107302 Übung Baubetriebslehre II
• 107303 Hausübung und Kolloquium Baubetriebslehre II
• 107304 Vorlesung und Übung Baubetriebslehre II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48 h
Selbststudium / Nacharbeitszeit: 132 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10731 Baubetriebslehre II (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvoraussetzung: 1 Hausübung + 1 Kolloquium

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Baubetriebslehre
Modul: 10820 Straßenbautechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Wolfram Ressel

9. Dozenten: Wolfram Ressel, Stefan Alber

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➔ Ergänzungsmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Wahlpflichtmodule Gruppe Planung und Bau --> Kernmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➔ Ergänzungsmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➔ Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester ➔ Ergänzungsmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester ➔ Zusatzmodule

B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester ➔ Kernmodule

11. Empfohlene Voraussetzungen: keine

13. Inhalt: In den Vorlesungen und den zugehörigen Übungen werden folgende Themen behandelt:

Untergrund/Unterbau:

- Eigenschaften von Böden
- Tragverhalten und bodenmechanische Eigenschaften
- Bodenverfestigung und Bodenverbesserung
- Prüfverfahren von Böden und ungebundenen Schichten

Oberbau:

- Straßenbaustoffe - Prüfungen und Anforderungen
- Dimensionierung des Oberbaues von Verkehrsflächen
- Schichten im Straßenoberbau
- Dimensionierung und Herstellung von Sträßendecken und Tragschichten
- Einführung Maschinentechnik im Straßenbau
- Recycling von Straßenbaustoffen
Entwässerung von Straßen:
- Planung, Entwurf und Bemessung von Straßenentwässerungseinrichtungen

Straßenerhaltung:
- Schadensbilder
- Einführung in die Zustandserfassung und -bewertung (ZEB)
- Maßnahmen an Asphalt- und Betonstraßen

14. Literatur:
- Ressel, W.: Skript "Straßenbautechnik I"
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Standardisierung des Oberbaus (RStO 12), Köln 2012
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Straßen - Teil: Entwässerung (RAS-Ew), Köln 2005
- Bleßmann, W., Böhm, S., Rosauer, V., Schäfer, V.: ZTV BEA-StB - Handbuch und Kommentar, Kirschbaum Verlag, Bonn 2010

15. Lehrveranstaltungen und -formen:
- 108201 Vorlesung Straßenbautechnik
- 108202 Übung Straßenbautechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudium / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 10821 Straßenbautechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...
- Straßenbautechnik II

19. Medienform:

20. Angeboten von:
- Straßenplanung und Straßenbau
Modul: 11380 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung

2. Modulkürzel: 041210007
5. Moduladauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. habil. Rainer Friedrich

9. Dozenten: Rainer Friedrich, Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester ➔ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester ➔ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester ➔ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester ➔ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester ➔ Zusatzmodule

11. Empfohlene Voraussetzungen: Thermodynamik, ingenieurwissenschaftliche Grundlagen

13. Inhalt:

Verbrennung und Verbrennungsschadstoffe:
• Die chemischen und physikalischen Grundlagen der Verbrennung
• Verbrennung von höheren Kohlenwasserstoffen
• Laminare vorgemischte und nicht-vorgemischte Flammen:
 - Flammenstruktur und -geschwindigkeit
 - Erhaltungsgleichungen für Masse, Energie und Geschwindigkeit
• Turbulente vorgemischte und nicht-vorgemischte Flammen:
 - Gleichungssysteme
 - Modellierungsstrategien
• Entstehung von Schadstoffen

Energie und Umwelt:
a) Umwelteinwirkungen durch Energieumwandlung im Normalbetrieb und bei Unfällen, insbesondere Betrachtung der Kategorien:
• Luftschadstoffsbelastung:
• Feinstaub, SO2, NOx, CO, Feinstaub, VOC, NH3, Schwermetalle,...
• Treibhausgasemissionen
• Emission radioaktiver Stoffe
• Flächenverbrauch'
• Lärm
• Abwärme
• elektromagnetische Strahlung.

b) Transport und chemische oder physikalische Umwandlung der emittierten Stoffe oder der emittierten Energie in den Umweltmedien (Luft, Boden, Wasser,...),
c) Schäden bzw. Risiken durch die Exposition, insbesondere Gesundheitsrisiken und Schäden an Ökosystemen (Biodiversitätsverluste), Schäden durch Klimaänderungen, Schäden an Materialien und Ernteverluste.
d) Gesetze, Verordnungen, Direktiven zur Kontrolle der Umwelteinwirkungen, technische und nicht-technische Maßnahmen zur Verminderung von Umweltein- und -auswirkungen.

14. Literatur:
Online-Manuskript
Möller, D. 2003: Luft - Chemie, Physik, Biologie, Reinhal tung, Recht, Berlin: de Gruyter
Roth, E. 1994: Mensch, Umwelt und Energie : die zukünftigen Erfordernisse und Möglichkeiten der Energieversorgung, Düsseldorf: etv
Fifth Assessment Report (AR5) 2015 of the 'International Panel on Climate Change': online unter www.ipcc.ch

15. Lehrveranstaltungen und -formen:
• 113801 Vorlesung Verbrennung und Verbrennungsschadstoffe
• 113802 Vorlesung mit Übung Energie und Umwelt

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnr/n und -name:
11381 Grundlagen der Verbrennung und Umweltauswirkungen der Energieumwandlung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Beamergerüstete Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript

20. Angeboten von:
Energiewirtschaft Energiesysteme
Modul: 11400 Grundlagen der Landschafts- und Umweltplanung

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>021100002</th>
<th>Moduldauer:</th>
<th>Einsemestrig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
<td>Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Jörn Birkmann</td>
</tr>
<tr>
<td>Dozenten:</td>
<td></td>
<td></td>
<td>Hans-Georg Schwarz-von Raumer, Jörn Birkmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012,</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015,</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012,</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012,</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Landschaftsplanung</td>
</tr>
<tr>
<td>• Aufgaben der Landschaftsplanung</td>
</tr>
<tr>
<td>• Geologische Grundlagen</td>
</tr>
<tr>
<td>• Arten und Eigenschaften von Böden</td>
</tr>
<tr>
<td>• Oberflächengewässer</td>
</tr>
<tr>
<td>• Biodiversität</td>
</tr>
<tr>
<td>• Quantifizierung und Modellierung von</td>
</tr>
<tr>
<td>• Nutzungsauswirkungen</td>
</tr>
<tr>
<td>• Mehrkriterielle Bewertungen in der</td>
</tr>
<tr>
<td>• Landschaftsplanung</td>
</tr>
<tr>
<td>Vorlesung Umweltplanung</td>
</tr>
<tr>
<td>• Herausforderungen der Umweltplanung im 21. Jahrhundert</td>
</tr>
<tr>
<td>• Resilienz und Anpassung an Klimawandel</td>
</tr>
<tr>
<td>• Instrumente der Umweltplanung</td>
</tr>
<tr>
<td>- Gesamtplanung und Fachplanung</td>
</tr>
<tr>
<td>- Grundlagen der Raum- und Umweltbeobachtung</td>
</tr>
</tbody>
</table>
- Umweltbelange in der Projektplanung (Umweltprüfung, Eingriffsregelung, FFH-Verträglichkeitsprüfung)
- Diskussion umweltplanerischer Handlungsmöglichkeiten in ausgewählten Handlungsfeldern:
 - Freiraum- und Bodenschutz
 - vorsorgender Hochwasserschutz
 - Windenergieanlagenplanung
 - Klimafolgenanpassung

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 114001 Vorlesung Umweltplanung
- 114002 Vorlesung Landschaftsplanung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium / Nacharbeitszeit: 112h
Gesamt: 168h

17. Prüfungsnummer/n und -name:
11401 Grundlagen der Landschafts- und Umweltplanung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Raumentwicklungs- und Umweltplanung
Modul: 11560 Elektrische Energienetze I

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
 ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
 ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
 ➞ Zusatzmodule
11. Empfohlene Voraussetzungen: • Elektrische Energietechnik
12. Lernziele:
 Studierender hat Kenntnisse der elektrischen Energieübertragung
 und der Berechnungsverfahren für Leitungen und Netze. Die
 Studierenden kennen den Aufbau und die Ersatzschaltbilder
 der elektrischen Netzkomponenten. Sie können Lastfluss- und
 Kurzschlussstromberechnungen durchführen.
13. Inhalt:
 • Aufgaben des elektrischen Energienetzes, Smart Grids
 • Einpolige Ersatzschaltungen der Betriebselemente für
 symmetrische Betriebsweise
 • Berechnung von Energieübertragungsanlagen und -netzen
 • Betrieb elektrischer Energieversorgungsnetze
 • Kurzschlussströme bei symmetrischem Kurzschluss
 • Symmetrische Komponenten
14. Literatur:
 • Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-
 Verlag, 6. Aufl., 2004
 • Heuck, Dettmann: Elektrische Energieversorgung Vieweg,
 Braunschweig/Wiesbaden, 6. Aufl., 2005
 • Hosemann (Hg.):Hütte Taschenbücher der Technik. Elektrische
 • Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006
15. Lehrveranstaltungen und -formen:
 • 115601 Vorlesung Elektrische Energienetze 1
 • 115602 Übung Elektrische Energienetze 1
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name: 11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min.,
 Gewichtung: 1
18. Grundlage für ... : Elektrische Energienetze II
19. Medienform: PowerPoint, Tafelschrieb
20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➞ Ergänzungsmodul
 - B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➞ Zusatzmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
 - Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
 - Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
 - Grundprinzipien von Kommunikationsnetzen und -protokollen:
 - Übertragung und Multiplextechniken
 - Fehlersicherung
 - Medienzugriff
 - Vermittlung
 - Wegesuche
 - Transportprotokolle

 - Spezifikation mit Hilfe der Specification and Description Language (SDL)

 - Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen

 - Ausgewählte Dienste und Anwendungen im Internet
 Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
 - Skript zur Vorlesung
 - Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
 - 116802 Übung zu Kommunikationsnetze I
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Notebook-Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
Modul: 12100 BWL II: Rechnungswesen und Finanzierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100150001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Burkhard Pedell</td>
</tr>
</tbody>
</table>
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Ergänzungsmodul
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Ergänzungsmodul
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | Grundlagen der BWL |
| 14. Literatur: | • Skript Investition und Finanzierung
• Schäfer, H.: Unternehmensfinanzen, Grundzüge in Theorie und Management, aktuelle Aufl., Heidelberg (Physica Verlag)
• Skript Internes und Externes Rechnungswesen

15. Lehrveranstaltungen und -formen:
• 121003 Vorlesung BWL II: Internes und externes Rechnungswesen
• 121002 Übung BWL II: Investition und Finanzierung

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Abschätzung Arbeitsaufwand:</th>
<th>Gesamtzeitaufwand: 270 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investition und Finanzierung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzzeit: 56 h</td>
<td>Selbststudium: 79 h</td>
</tr>
<tr>
<td>Internes und Externes Rechnungswesen</td>
<td></td>
</tr>
<tr>
<td>Präsenzzzeit: 56 h</td>
<td>Selbststudium: 79 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 12101 BWL II: Rechnungswesen und Finanzierung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... : Investitions- und Finanzmanagement und Controlling

19. Medienform: Beamer-Präsentation, Overhaed-Projektion

20. Angeboten von: ABWL und Controlling
Modul: 12270 Simulationstechnik

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Oliver Sawodny
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➞ Ergänzungsmodule
11. Empfohlene Voraussetzungen:
 - Pflichtmodule Mathematik
 - Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik
12. Lernziele:
 Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen Systemen und beherrschen deren Anwendung. Sie setzen geeignete numerische Integrationsverfahren ein und können das Simulationsprogramm in Abstimmung mit der ihnen gegebenen Simulationsaufgabe parametrisieren.
13. Inhalt:
14. Literatur:
 - Vorlesungsumdrucke
15. Lehrveranstaltungen und -formen:
 • 122701 Vorlesung mit integrierter Übung Simulationstechnik
 • 122702 Praktikum Simulationstechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 53 h Selbststudiumszeit / Nacharbeitszeit: 127 h Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 • 12271 Simulationstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
 • 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum (USL), Schriftlich oder Mündlich, Gewichtung: 1
 Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht elektronischen Hilfsmittel
18. Grundlage für ...:
 Systemanalyse I
19. Medienform: -

20. Angeboten von: Systemdynamik
Modul: 12400 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Stefan Zimmer
9. Dozenten: • Maria Unger-Zimmermann • Stefan Zimmer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Ergänzungsmodule

11. Empfohlene Voraussetzungen:

15. Lehrveranstaltungen und -formen:

• 124001 Vorlesung Programmierung (Geodäsie und Verkehrsingenieurwesen)
• 124002 Übung Programmierung (Geodäsie und Verkehrsingenieurwesen)
• 124003 Vorlesung Programmierung (Erneuerbare Energien)
• 124004 Übung Programmierung (Erneuerbare Energien)
• 124005 Vorlesung Programmierung
16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 12401 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien (PL), Schriftlich, 60 Min., Gewichtung: 1
[12401] Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien (PL), schriftliche Prüfung, 60 Min., Gewicht: 1.0

18. Grundlage für ...

19. Medienform: • Beamer • Rechner • Tafel

20. Angeboten von: Grundlagen der Informatik
Modul: 13080 Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten

2. Modulkürzel: 020200320
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner

9. Dozenten: Iris Rosenbauer

B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden haben fundierte Kenntnisse über die sich während der Planungs- und Entwicklungsphase eines Bauprojekts ergebenden rechtlichen Einflüsse.

13. Inhalt: Grundstückserwerb
- Grundbegriffe des BGB, insbesondere Kaufrecht, Darlehensrecht
- Grundstückskauf / Erbbauvertrag
- Grundbuch
- Hypothek / Grundschuld
- Niesbrauch
- Reallasten
- Dingliches und schuldrechtliches Vorkaufsrecht
- Überblick Steuerrecht, insbesondere Grunderwerbsteuer
- Wohnungseigentum, Erbbaurecht
- Mietrecht

Rechtliche Rahmenbedingungen im Planungsstadium
- Planungsrecht

14. Literatur:
- BGB, Beck-Texte im dtv
- Beck'sches Rechtslexikon Geiger u. a.
- www.gesetze-im-internet.de
- VOB/HOAI, Beck-Texte im dtv

15. Lehrveranstaltungen und -formen:
- 130801 Vorlesung Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten
- 130802 betreute Übungen Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 h
- Selbststudium / Nacharbeit: 69 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:
- 13081 Rechtliche Einflüsse in der Entwicklungsphase von Bauprojekten (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Baubetriebslehre
Modul: 13330 Technologiemanagement

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Dieter Spath
9. Dozenten: Dieter Spath
Betina Weber
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Die Studierenden haben Kenntnis von den theoretischen Ansätzen des Technologiemanagements in Unternehmen und können normatives, strategisches und operatives Technologiemanagement unterscheiden.

Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.

Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.

Erworbene Kompetenzen: Die Studierenden

- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsalternativen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden
13. Inhalt: Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement. Im Einzelnen werden folgende Themen behandelt:
Umfeld des Technologiemanagements, Begriffsklärungen, Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement:
• Technologiefrühaufklärung
• Lebenszykluskonzepte
• Portfoliomethodik
• Erfahrungskurvenkonzept
• Technologiestrategien

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement:
• Innovationsmanagement
• Projektmanagement
• Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:
• Spath, D., Weber, B.: Skript zur Vorlesung Technologiemanagement
• Spath, D.: Technologiemanagement - Grundlagen, Konzepte, Methoden, Stuttgart: Fraunhofer Verlag, 2011
• Bullinger, H.-J. (Hrsg.): Fokus Technologie: Chancen erkennen - Leistungen entwickeln, München: Hanser, 2008
• Specht, D., Möhrle, M. (Hrsg.): Gabler-Lexikon Technologiemanagement, Wiesbaden: Gabler, 2002

15. Lehrveranstaltungen und -formen:
• 133301 Vorlesung Technologiemanagement I
• 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 13331 Technologiemanagement (PL), Schriftlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Videos, Animationen, Praktikum

20. Angeboten von: Technologiemanagement und Arbeitswissenschaften
Modul: 13530 Arbeitswissenschaft

2. Modulkürzel: 072010001

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Modulduauer: Zweisemestrig

6. Turnus: Wintersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Dieter Spath

9. Dozenten: Oliver Rüssel

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Ergänzungsmodule

 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 6. Semester ➔ Ergänzungsmodule

 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 6. Semester ➔ Ergänzungsmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

14. Literatur:

 • Spath, D., Rüssel, O.: Skript zur Vorlesung Arbeitswissenschaft
15. Lehrveranstaltungen und -formen:
- 135302 Vorlesung Arbeitswissenschaft II
- 135301 Vorlesung Arbeitswissenschaft I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 h
- Selbststudium / Nacharbeit: 134 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13531 Arbeitwissenschaft (PL), Schriftlich, 120 Min., Gewichtung: 1

Hinweis: Die Note der Modulfachprüfung wird dem Prüfungsamt erst nach Teilnahme an den beiden Praktika übermittelt! (gilt nur für B.Sc.-Studierende!)

18. Grundlage für ... :
19. Medienform:
- Beamer-Präsentation, Videos, Animationen, Demonstrationsobjekte

20. Angeboten von:
- Technologiemanagement und Arbeitswissenschaften
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Prof. Jochen Wiedemann, Nils Widdecke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehringenieurwesen, PO 089-2015, 5. Semester	Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 5. Semester	Wahlplflichtmodule Gruppe Fahrzeuge --> Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 5. Semester	Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 5. Semester	Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 5. Semester	Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 5. Semester	Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 5. Semester	Zusatzmodule

11. Empfohlene Voraussetzungen:

Kennen Sie aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:

Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrleistungen - und widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:

- Bosch: Kraftfahrtechnisches Taschenbuch, 26. Auflage, Vieweg, 2005
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:

- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Vorlesung, Selbststudium</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
</tr>
</tbody>
</table>
Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel: 042510001
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Günter Scheffknecht

9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Zusatzmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester → Ergänzungsmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden des Moduls haben die Prinzipien der Energieumwandlung und Vorräte sowie Eigenschaften verschiedener Primärenergieträger als Grundlagenwissen verstanden und können beurteilen, mit welcher Anlagentechnik eine möglichst hohe Energieausnutzung mit möglichst wenig Schadstoffemissionen erreicht wird. Die Studierenden haben damit für das weitere Studium und für die praktische Anwendung im Berufsfeld Energie und Umwelt die erforderliche Kompetenz zur Anwendung und Beurteilung der relevanten Techniken erworben.

13. Inhalt:
Vorlesung und Übung, 4 SWS
1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
5) Transport und Speicherung von Energie in unterschiedlichen Formen
6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
7) Techniken zur Begrenzung der Umweltbeeinflussungen
8) Treibhausgasemissionen
9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:
• 139401 Vorlesung und Übung Energie- und Umwelttechnik
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13941 Energie- und Umwelttechnik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
• Skripte zu den Vorlesungen und zu den Übungen
• Tafelanschrieb
• ILIAS

20. Angeboten von:
Thermische Kraftwerkstechnik
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Verkehrsingenieurwesen, PO 089-2012**,
 - Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2012**,
 - Zusatzmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester**
 - Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester**
 - Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester**
 - Ergänzungsmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester**
 - Ergänzungsmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester**
 - Ergänzungsmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester**
 - Zusatzmodule
- **B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester**
 - Zusatzmodule

11. Empfohlene Voraussetzungen:

Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.

Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:

- Kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:

- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)
Schäuffele, J., Zurawka, T.: "Automotive Software Engineering"
Vieweg, 2006

15. Lehrveranstaltungen und -formen:
- 141302 Vorlesung Kraftfahrzeugmechatronik II
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min.,
Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 14450 Fertigungsverfahren in der Bauwirtschaft II

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner
9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➔ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➔ Ergänzungsmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

 Grundbau
 - Wasserpumpen
 - Rammern und Ziehen
 - Bohren
 - Baugruben und Verbauarten

 Erdbau
 - Grundlagen
 - Bagger
 - Maschinen für Erdtransport
 - Maschinen für Bodeneinbau und Bodenverdichtung
 - Kompaktgeräte

 Straßenbau
 - Asphaltherstellung
 - Herstellung von Straßendeckung
 - Wiederverwertung von Straßenbaustoffen
 - Bodenstabilisierung und Bodenverbesserung

 Leitungs- und Untertagebau
 - Vortriebsverfahren im Tunnelbau
 - Bauverfahren zur Herstellung von Rohrleitungen

 Brückenbau
 - Brückensysteme
 - Herstellungsverfahren von Brücken

 Abbruch und Recycling
 - Abbruchmethoden und -verfahren
 - Recyclinganlagen zur Aufbereitung der Altbaustoffe

14. Literatur:
 - Manuskript: Fertigungsverfahren in der Bauwirtschaft
15. Lehrveranstaltungen und -formen:

- 144501 Vorlesung Fertigungsverfahren in der Bauwirtschaft II
- 144502 Übung Fertigungsverfahren in der Bauwirtschaft II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 h
- Selbststudiumszeit / Nachbereitungszeit: 69 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

14451 Fertigungsverfahren in der Bauwirtschaft II (PL), Schriftlich, 60 Min., Gewichtung: 1
Prüfungsvoraussetzung: 1 Hausübung + 1 Kolloquium

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Baubetriebslehre
Modul: 16000 Erneuerbare Energien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulcharakteristik:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Hufendiek</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ludger Eltrop Kai Hufendiek</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➞ Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester ➞ Ergänzungsmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➞ Ergänzungsmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester ➞ Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester ➞ Zusatzmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse der Energiewirtschaft</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Die physikalischen und meteorologischen Zusammenhänge der Sonnenenergie und ihre technischen Nutzungsmöglichkeiten</td>
</tr>
<tr>
<td></td>
<td>• Wassergewinnung und Nutzungstechniken</td>
</tr>
<tr>
<td></td>
<td>• Windangebot (räumlich und zeitlich) und technische Nutzung</td>
</tr>
<tr>
<td></td>
<td>• Geothermie</td>
</tr>
<tr>
<td></td>
<td>• Speichertechnologien</td>
</tr>
<tr>
<td></td>
<td>• energetische Nutzung von Biomasse</td>
</tr>
<tr>
<td></td>
<td>• Potentiale, Möglichkeiten und Grenzen des Einsatzes erneuerbarer Energieträger in Deutschland.</td>
</tr>
<tr>
<td></td>
<td>Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Online-Manuskript</td>
</tr>
<tr>
<td></td>
<td>• Hartmann, H. und Kaltschmitt, M. (Hrsg, 2002): Biomasse als erneuerbarer Energieträger - Eine technische, ökologische und ökonomische Analyse im Kontext der übrigen Erneuerbaren</td>
</tr>
</tbody>
</table>
Energien. FNR-Schriftenreihe Band 3, Landwirtschaftsverlag, Münster

15. Lehrveranstaltungen und -formen:
• 160001 Vorlesung Grundlagen der Nutzung erneuerbarer Energien I
• 160002 Vorlesung Grundlagen der Nutzung erneuerbarer Energien II
• 160003 Seminar Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
16001 Erneuerbare Energien (PL), Schriftlich, 120 Min., Gewichtung: 1
Zur erfolgreichen Absolvierung des Moduls gehört neben der bestandenen Modulprüfung ein Nachweis über 5 Teilnahmen am Seminar Erneuerbare Energien (Unterschriften auf Seminarschein). Das Seminar kann sowohl im SS als auch im WS besucht werden.

18. Grundlage für … :

19. Medienform:
• Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript
• Primär Powerpoint-Präsentation

20. Angeboten von:
Energiewirtschaft Energiesysteme
Modul: 19750 Einführung Geodäsie & Geoinformatik

2. Modulkürzel: 062000151
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nicolaas Sneeuw

9. Dozenten: Alfred Kleusberg
Nicolaas Sneeuw
Uwe Sörgel

10. Zuordnung zum Curriculum in diesem Studiengang: B.Sc. Verkehrsingenieurwesen, PO 089-2017,
➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015,
➞ Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012,
➞ Ergänzungsmodule

11. Empfohlene Voraussetzungen: -

12. Lernziele: Die Studierenden können sich in einem Semester, das durch Grundlagenfächer gekennzeichnet wird, fachlich orientieren. Im Rahmen der Orientierungsprüfung können sie sich qualifiziert für das Studium Geodäsie und Geoinformatik entscheiden.

13. Inhalt:

Erdmessung
Geschichte der Geodäsie, Modelle der Erde (Kugel, Ellipsoid, Geoid), Oberflächenparametrisierung (Meridian, Breitenkreis, geodätische Linie), sphärische Trigonometrie, Gravitation, Schwerefeld

Navigation
Geschichte der Navigation, Maßeinheiten (Zeit, Meter), Zweidimensionale Navigationsrechnung (Orthodrome, Loxodrome, Hauptaufgaben, Koppelnavigation), Astronomische Navigation, Terrestrische Radionavigation, Prinzip der Satellitenavigation, Inertialnavigation

Photogrammetrie, Geoinformatik und Fernerkundung
Photogrammetrische Grundbegriffe, Anwendungsfelder der Photogrammetrie (Fernerkundung, Luftbildphotogrammetrie, Nahbereich), Bildflug, mathematische Grundlagen der Zentralperspektive, analytische 3D Punktbestimmung, Basisfunktionen eines GIS, Objektdefinitionen, Strukturen von Vektor- und Rasterdaten, Digitale Globen, GIS-Anwendungen Geschichte der Fernerkundung, passive und aktive Sensoren, Systeme (Scanner, Radar, Photograph. Systeme), Plattformen (Satellitensysteme, Flugzeuggetragene Systeme), Elektromagnetische Strahlung, Wechselwirkungen Strahlung und Materie (Reflexion, Absorption, Emission, Transmission)

14. Literatur:
- Skripten,
15. Lehrveranstaltungen und -formen:

- 197501 Vorlesung Einführung Geodäsie & Geoinformatik
- 197502 Übung Einführung Geodäsie & Geoinformatik

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 h |
| Selbststudium: 140 h |
| Gesamtzeit: 182 h |

17. Prüfungsnummer/n und -name:

- 19751 Einführung Geodäsie & Geoinformatik (PL), Schriftlich, 120 Min., Gewichtung: 1

Prüfungsvorleistung Erfolgreiche Teilnahme an den Übungen und korrekte Bearbeitung aller Hausübungen

18. Grundlage für ... :

19. Medienform:

- Tafel, Beamer, Overhead, podcasting

20. Angeboten von:

- Höhere Geodäsie
Modul: 19760 Geoinformatik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester → Ergänzungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester → Ergänzungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Höhere Mathematik, Einführung in die Physik, Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norbert Bartelme: Geoinformatik - Modelle, Strukturen, Funktionen. 3. Auflage, Springer Verlag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skripte, Übungen mit ArcGIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>197604 Übung Geoinformatik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197601 Vorlesung Geoinformatik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197602 Übung Geoinformatik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197603 Vorlesung Geoinformatik II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63 h
- Selbststudium: 207 h
- Gesamtzeit: 270 h

17. Prüfungsnummer/n und -name:
- 19761 Geoinformatik I (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
- 19762 Geoinformatik II (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
- Prüfungsvorleistung Hausübungen in Lehrveranstaltungen Geoinformatik I, Geoinformatik II

18. Grundlage für ...

19. Medienform:
Für jede Vorlesung wird ein Audio Podcast erstellt und zusätzlich zu den Präsentationsunterlagen zur Verfügung gestellt

20. Angeboten von:
Photogrammetrie, Fernerkundung und Geoinformatik
Modul: 19810 Statistik und Fehlerlehre

2. Modulkürzel: 062300002
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Volker Schwieger

9. Dozenten: Volker Schwieger
 Jinyue Wang

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015,
 → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 → Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017,
 → Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester
 → Ergänzungsmodule

11. Empfohlene Voraussetzungen: Höhere Mathematik I

12. Lernziele:
 Die Studierenden beherrschen die Grundlagen der Statistik und Fehlerlehre und sind in der Lage sie auf Problemstellungen in der Geodäsie im Allgemeinen sowie in der Messtechnik im Speziellen anzuwenden.

13. Inhalt:
 • Diskrete und stetige Zufallsgrößen,
 • Häufigkeitsfunktion und Wahrscheinlichkeitsdichte, Summenhäufigkeitsfunktion und Verteilungsfunktion,
 • Mittelwert und Erwartungswert, Varianz und Standardabweichung,
 • zwei- und n-dimensionalen Zufallsvektoren,
 • Kovarianzmatrix und Korrelationskoeffizient,
 • Fehlerfortpflanzung, Kovarianzfortpflanzung,
 • Anwendung der Kovarianzfortpflanzung auf die Messtechnik
 • Normalverteilung, der zentrale Grenzwertsatz,
 • synthetische Kovarianzmatrix,
 • X,2-Verteilung, t-Verteilung, F-Verteilung,
 • Konfidenzbereich, Konfidenzellipse und KonfidenzhypereLLipsoid,
 • - Normalverteilten Zufallsvektor, 2- und n-dimensionale Normalverteilung,
 • - Statistische Tests, Grundzüge der Testtheorie,
 • Signifikanztests für die Differenz zweier Zufallsvariablen,
 • Signifikanztests für den Vergleich von Standardabweichungen und Korrelationskoefizienten,
 • Tests auf Normalverteilung, Schiefe und Exzess einer Verteilung,
 • Verteilungsunabhängige Testverfahren,
 • Anwendung der Testverfahren in der Messtechnik

14. Literatur:
15. Lehrveranstaltungen und -formen:
 - 198101 Vorlesung Statistik und Fehlerlehre
 - 198102 Übung Statistik und Fehlerlehre

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 138 h
 Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:
 19811 Statistik und Fehlerlehre (PL), Schriftlich, 90 Min.,
 Gewichtung: 1
 Prüfungsvorleistung: Hausübungen

18. Grundlage für ...:
 Messtechnik II für Geodäsie Ausgleichungsrechnung Grundlagen
 der Navigation und Fernerkundung Ingenieurgeodäsie Integriertes
 Projekt

19. Medienform:
 Tafel, Laptop + Beamer, Rechenübungen

20. Angeboten von:
 Ingenieurgeodäsie und Geodätische Messtechnik
Modul: 23190 Stadtplanung und Stadtmanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Daniel Schönle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• 011200500 Einführung Städtebau und Ökologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 011200510 B 1 - Projekt Stadt und Landschaft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grundlagen der Planung / Planungstheorie
Grundlagen des Bauleitplanung und der Fachplanungen
Stadtmanagement / Städtebauliches Projektmanagement
Prozess und Ebenen der Stadtplanung
CAD- und Simulation

14. Literatur:
Lehrbausteine Städtebau, Städtebau-Institut, Fakultät Architektur und Stadtplanung Universität Stuttgart, 2009
Sinning, Heidi (Hrsg.): Stadtmanagement. Strategien zur Modernisierung der Stadt(-Region), Dortmund 2006.

15. Lehrveranstaltungen und -formen:
• 231901 Seminar Stadtplanung und Stadtmanagement

16. Abschätzung Arbeitsaufwand:
180h (42h Präsenzzeit, 138h Selbststudium)

17. Prüfungsnummer/n und -name:
23191 Stadtplanung und Stadtmanagement (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Städtebau-Institut
Modul: 29140 Smart Grids

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Krzysztof Rudion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Krzysztof Rudion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Elektrische Energienetze I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Regelmöglichkeiten dezentraler Erzeuger, Speicher, Elektrofahrzeuge und Lasten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aggregation, Virtuelle Kraftwerke, Mikronetze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Smart Metering, Informations- und Kommunikationstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Netzanschlussbedingungen und Systemdienstleistungen (z.B. Spannungs- und Frequenzhaltung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verteilnetzplanung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Netzmodellierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Netzberechnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verteilnetzbetrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• V. Quaschning, Regenerative Energiesysteme, 5. Aufl., Hanser Verlag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VDE-Studie: Smart Distribution 2020, ETG, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VDE-Studie: Smart Energy 2020, ETG, 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ILIAS, Online-Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dena Studie Systemdienstleistungen 2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Buchholz, B. M., Styczynski, Z.: Smart Grids - Grundlagen und Technologien der elektrischen Netze der Zukunft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 291401 Vorlesung Smart Grids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 291402 Übung Smart Grids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 01.10.2018
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29141 Smart Grids (PL), Schriftlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Netzintegration erneuerbarer Energien</td>
</tr>
</tbody>
</table>
Modul: 30030 Fahrzeugdynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard, Pascal Ziegler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule

Empfohlene Voraussetzungen:
Grundlagen in Technischer Mechanik

Lernziele:
Kenntnis und Verständnis fahrzeugdynamischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Fahrzeugdynamik.

Inhalt:
- Systembeschreibung und Modellbildung
- Fahrzeugmodelle
- Modelle für Trag- und Führsysteme
- Fahrwegmodelle
- Modelle für Fahrzeug-Fahrweg-Systeme
- Beurteilungskriterien
- Berechnungsmethoden
- Längstbabelbewegungen
- Lateralbewegungen
- Vertikalbewegungen

Literatur:
- Vorlesungsmitschrieb
- Vorlesungsunterlagen des ITM

Lehrveranstaltungen und -formen:
- 300301 Vorlesung Fahrzeugdynamik

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

Prüfungsnummer/n und -name:
30031 Fahrzeugdynamik (BSL), Mündlich, 20 Min., Gewichtung: 1

Grundlage für...:

Medienform:

Angeboten von:
Technische Mechanik
Modul: 30950 Mobile Energiespeicher

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Peter Birke
9. Dozenten: Kai Peter Birke

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester ➞ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester ➞ Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Speichertechnik für elektrische Energie I (optional)

13. Inhalt:
 VL1: Einführung in mobile Energiespeicher (Architektur, Zelltypen, Aufbau)
 VL2: Bordnetz, Micro-Hybrid
 VL3: Mild-Hybrid, Full-Hybrid
 VL4: Plug-in-Hybrid
 VL5: Range Extender
 VL6: BEV (Battery Electric Vehicle)
 VL7: FCEV (Fuel Cell Electric Vehicle)
 VL8: Batterie-Management-Systeme für mobile Anwendungen (elektrisch)
 VL9: Batterie-Management-Systeme für mobile Anwendungen (thermisch)
 VL10: Ladetechnik und -infrastruktur (moderne Ladetechniken)
 VL11: Haustechnik, Werkzeuge, Geräte
 VL12: Zwei- und dreirädrige Fortbewegungsmittel (Squads, Caddies, Roller, Motorräder,...)
 VL13: Schienenfahrzeuge
 VL14: Boote, Schiffe
 VL15: Elektrisches Fliegen

14. Literatur:

15. Lehrveranstaltungen und -formen: • 309501 Vorlesung Mobile Energiespeicher

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 30 Stunden
 Selbststudium: 60 Stunden
 Summe: 90 Stunden
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30951 Mobile Energiespeicher (BSL), Schriftlich, 60 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiespeichersysteme</td>
</tr>
</tbody>
</table>
Modul: 37150 Fertigungsverfahren in der Bauwirtschaft

2. Modulkürzel: 020200180
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Moduldauber: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner
9. Dozenten: Fritz Berner
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➔ Ergänzungsmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➔ Ergänzungsmodule
 - B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➔ Ergänzungsmodule
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
13. Inhalt:
 - Ablauf und Beteiligte beim Bauen
 - Am Bau Beteiligte
 - Bauablauf
 - HOAI
 - Voraussetzungen zum Baubeginn
 - Vergabe an Bauunternehmen
 - Baustelleneinrichtung
 - Grundlagen
 - Vorschriften
 - Sozial- und Büroinrichtungen, Lagerräume
 - Verkehrsflächen und Transportwege
 - Medienversorgung der Baustelle
 - Hebezeuge
 - Turmkran
 - Autokran, Mobilkran
 - Portalkran
 - Kabelkran
 - Bauaufzüge
 - Kranwahl
 - Beton
 - Grundlagen
 - Betonmischanlagen
 - Betontransport
 - Betonverarbeitung
 - Betonstahlbearbeitung
 - Schalung und Rüstung
 - Aufgaben einer Schalung
 - Aufbau von Schalungen
 - Schalungsarten
14. Literatur:
- Manuskript: Fertigungsverfahren in der Bauwirtschaft

15. Lehrveranstaltungen und -formen:
- 371501 Vorlesung Fertigungsverfahren in der Bauwirtschaft
- 371502 Übung Fertigungsverfahren in der Bauwirtschaft
- 371503 Hausübung und Kolloquium Fertigungsverfahren

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 h
- Selbststudiumszeit / Nachbereitungszeit: 69 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:
- 37151 Fertigungsverfahren in der Bauwirtschaft (BSL), Schriftlich, 60 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
 Prüfungsvoraussetzung:
 - Fertigungsverfahren in der Bauwirtschaft: 1 Hausübung + 1 Kolloquium

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baubetriebslehre
Modul: 37300 Technische Akustik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Philip Leistner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Philip Leistner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Höherer Mathematik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | Die Lehrveranstaltung vermittelt die Grundlagen der technischen Akustik in folgender Gliederung:
• Schallfeldgrößen - Grundlegende Größen (Luft- und Körperschall), Pegel, komplexe und spektrale Darstellung
• Schallquellen - Grundtypen, Abstrahlung, Wellenarten, strömungsinduzierte Schallquellen
• Schallfelder - Schallreflexion, -absorption und -beugung, Kanal- und Raumakustik, Schalldämpfung und -dämmung
• Beeinflussung von Schallfeldern - Schallabsorber, Schalldämpfer, Schalldämmende Elemente, Aktive Systeme
• Messung und Analyse von Schallfeldern - Sensoren und Aktoren, Signalverarbeitung, Bestimmung der Schallleistung, Schallmessung in Strömungen
• Wahrnehmung und Wirkung von Schall - Begriffe und Größen, Bewertung von Schall, Schallwirkungen, Psychoakustik und Sound Design
• Technische Geräuschquellen - Kenngrößen und ihre Bestimmung, Typen und Bauformen, Wege zur Geräuschminderung
• Akustische Behandlung technischer Systeme - Methodik, Normen und Grenzwerte, Beispiele |
| 14. Literatur: | Vorlesungsskript |

Weiterführende Literatur:
15. Lehrveranstaltungen und -formen:

| 373001 Vorlesung Grundlagen der technischen Akustik |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 28 h |
| Selbststudiumszeit / Nacharbeitszeit: 62 h |

Gesamt: 90 h

17. Prüfungsnummer/n und -name:

| 37301 Technische Akustik (BSL), Schriftlich, 60 Min., Gewichtung: 1 Klausur |

18. Grundlage für ...:

19. Medienform:

| Powerpointpräsentation |

20. Angeboten von:

| Akustik |
Modul: 38640 Einführung in die Rechtsgrundlagen des Bauwesens

3. Leistungspunkte: 3 LP 6. Turnus: Sommersemester
4. SWS: 2 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner
9. Dozenten: Iris Rosenbauer
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
11. Empfohlene Voraussetzungen: keine

13. Inhalt:

Einführung und Überblick
- Ziel der Vorlesung
- Beteiligte beim Bauen
- Gründe für die rechtliche Einflussnahme des Staates
- Überblick relevanter Rechtsgebiete (Abgrenzung)
- Öffentliches Recht - Privatrecht

Einführung in die Rechtsgrundlagen
- Einführung in die Rechtsgeschichte
- Einführung in das Rechtssystem der Bundesrepublik Deutschland
- Der staatliche Aufbau der Bundesrepublik Deutschland
- Begriffsdefinition Recht (Definition allgemein, Normen, Verordnungen etc.)
- Gliederung des deutschen Rechtes (Allgemein, Rechtsgebiete, Öffentliches Recht - Privatrecht)
- Grundlagen der juristischen Kommunikation

Öffentliches Baurecht
- Grundlagen des Öffentlichen Baurechts
- Bauplanungsrecht
- Bauordnungsrecht

Einführung in die Grundbegriffe des Bürgerlichen Rechts
- Grundprinzipien des BGB
• Inhalt und Aufbau des BGB
• Grundwissen im BGB-AT
• Kaufrecht
• Werkvertragsrecht

Einführung in die VOB

Grundbegriffe des Grundstücksrechts

• beschränkt dingliche Rechte
• Wohnungseigentum
• Erbbaurecht

14. Literatur:

- BGB, Beck-Texte im dtv
- VOB, Beck-Texte im dtv
- BauGB, Beck-Texte im dtv
- www.gesetze-im-internet.de

15. Lehrveranstaltungen und -formen:

- 386401 Vorlesung Einführung in die Rechtsgrundlagen im Bauwesen

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: ca. 21 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachbereitungszeit: ca. 69 h</td>
</tr>
<tr>
<td>Gesamt: ca. 90 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

| 38641 | Einführung in die Rechtsgrundlagen des Bauwesens (BSL), Schriftlich, 60 Min., Gewichtung: 1 |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baubetriebslehre
Modul: 38770 Umweltsoziologie

2. Modulkürzel: 100200507
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Moduldauser: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Cordula Kropp
9. Dozenten: Cordula Kropp
Jürgen Hampel
Michael Zwick
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2015,
 ➔ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 ➔ Ergänzungsmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017,
 ➔ Ergänzungsmodule
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 • Die Studierenden kennen die Möglichkeiten von
 Nachhaltigkeitsmaßnahmen und Umweltschutzpolitik
 vor dem Hintergrund der Bevölkerungseinstellungen zu
 Umweltproblemen.
 • Sie besitzen Kenntnisse über technische und gesellschaftliche
 Innovationen, mit denen sie in der betrieblichen oder
 administrativen Praxis entsprechend tätig werden zu können.
13. Inhalt:
 Betrachtet werden die Wechselwirkungen zwischen Natur, Technik
 und Gesellschaft für folgende Schwerpunkte
 • Technikgenese
 • Technikfolgenforschung und Technikfolgenabschätzung
 • Technikdiffusion und Markteinführung
 • Risiko- und Umweltwahrnehmung (Konflikte um Gentechnik,
 Kerntechnik, Digitalisierung)
 • Technikkatastrophen und ihre Ursachen
 • Technischer und sozialer Wandel, insb. Infrastrukturerwicklung
 • Technik und Umwelt als Elemente einer interdisziplinären
 Sozialwissenschaft
14. Literatur:
 • BAUER, Susanne, HEINEMANN, Thorsen und LEMKE, Thomas
 2017: Science and Technology Studies – Klassische Positionen
 und aktuelle Perspektiven. Berlin: Suhrkamp
 • GROSS, Matthias 2011: Handbuch Umweltsoziologie.
 Wiesbaden: VS Verlag
 • RENN, Ortwin et al. 2007: Risiko. Über den gesellschaftlichen
 Umgang mit Unsicherheit. München: Oekom
 • WEYER, Johannes 2008: Techniksoziologie. Genese,
 Gestaltung und Steuerung sozio-technischer Systeme.
 Weinheim: Juventa
15. Lehrveranstaltungen und -formen:
 • 387701 Vorlesung Umweltsoziologie
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium Zeit / Nacharbeitszeit: 69 h
 Gesamt: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>38771 Umweltsoziologie (BSL), Schriftlich oder Mündlich, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>• PowerPoint-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>• Skripte</td>
</tr>
<tr>
<td></td>
<td>• Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Technik- und Umweltsoziologie</td>
</tr>
</tbody>
</table>
Modul: 40830 Flugmechanik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Walter Fichter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Walter Fichter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➔ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➔ Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden sind in der Lage,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modelle der Flugzeugebewegung zu bilden mit der Komplexität, die der jeweiligen Anwendung angemessen ist,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• das Bewegungsverhalten bzgl. Stabilität, Eigendynamik usw. zu analysieren,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Flugsimulationsprogrammen zu verstehen, entwerfen und zu modifizieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Koordinatensysteme und Transformationen Herleitung verschiedener Bewegungsmodelle (nichtlinear, 6 Freiheitsgrade und 3 Freiheitsgrade) und Kriterien für deren Einsatz Aufbau von Flugsimulationen, Initialisierung und Parametrisierung Berechnung von stationären Flugzuständen Linearisierung der Bewegungsmodelle mit 6 Freiheitsgraden Analyseverfahren und Analyse der Bewegungsgleichungen im Zeitbereich</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vortragsfolien, Vortragsübungen und Matlab-Files im Netz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>408302 Übung Flugmechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>408301 Vorlesung Flugmechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Flugmechanik, Vorlesung: 10 h Präsenzzeit, 35 Stunden Selbststudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung (Pflicht): 5 h Präsenzzeit, 18 h Selbststudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutorium (freiwillig): 5 h Präsenzzeit, 17 h Selbststudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>40831 Flugmechanik (BSL), Schriftlich, 60 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Flugmechanik und Flugregelung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 01.10.2018
Modul: 41580 Umweltmanagement

2. Modulkürzel: 021220019
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Martin Kranert

9. Dozenten: Martin Kranert

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehringenieurwesen, PO 089-2017, ➞ Ergänzungsmodule
 B.Sc. Verkehringenieurwesen, PO 089-2015, ➞ Ergänzungsmodule
 B.Sc. Verkehringenieurwesen, PO 089-2012, ➞ Ergänzungsmodule

11. Empfohlene Voraussetzungen: Keine

14. Literatur: Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: • 415801 Vorlesung Umweltmanagement

17. Prüfungsnummer/n und -name: 41581 Umweltmanagement (USL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamengestützte Vorlesung Folien Handouts PPT-Slides Skripte Tafelanschriebe Begleitende Skripte
20. Angeboten von: Abfallwirtschaft und Abluft
Modul: 42350 Standort und Verkehr

2. Modulkürzel: 100402011
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Bernd Woeckener
9. Dozenten: Frank Clemens Englmann Bernd Woeckener Marion Aschmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Verkehringenieurwesen, PO 089-2012, ➔ Zusatzmodule
 - B.Sc. Verkehringenieurwesen, PO 089-2015, ➔ Zusatzmodule
 - B.Sc. Verkehringenieurwesen, PO 089-2017, ➔ Zusatzmodule
 - B.Sc. Verkehringenieurwesen, PO 089-2015, 6. Semester ➔ Ergänzungsmodule
 - B.Sc. Verkehringenieurwesen, PO 089-2017, 6. Semester ➔ Ergänzungsmodule
 - B.Sc. Verkehringenieurwesen, PO 089-2012, 6. Semester ➔ Ergänzungsmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind nach Abschluss des Moduls in der Lage,
 • die jeweilige Bedeutung der verschiedenen klassischen Standortfaktoren, der Transportkostenstrukturen sowie der unterschiedlichen Agglomerationseffekte für die Standortwahl in Abhängigkeit vom angebotenen Gut richtig einzuschätzen,
 • die Relevanz der bereits getroffenen und zu erwartenden Standortentscheidungen der Konkurrenten für die eigene Standortwahl zu erkennen und richtig einzuordnen,
 • die Bedeutung der in Zukunft zu erwartenden Entwicklung der Transportkostenstrukturen für aktuelle Standortentscheidungen zu erkennen,
 • die zentralen Bestimmungsgrößen von Verkehrsnachfrage und -angebot, ihr Zusammenspiel sowie politische Steuerungsmöglichkeiten zu benennen und zu erläutern,
 • empirische Untersuchungen, die sich mit einer Schätzung dieser Einflussgrößen beschäftigen, zu beurteilen und ihre Ergebnisse zu interpretieren.

13. Inhalt:

14. Literatur:
- K. Schöler: Raumwirtschaftstheorie, Vahlen, neueste Auflage
- M. J. Beckmann: Lectures on Location Theory, Springer, neueste Auflage
- W. Störmann: Regionalökonomik: Theorie und Politik, Oldenbourg, neueste Auflage
- G. Aberle: Transportwirtschaft, München, neueste Auflage
- H.-F. Ecket und W. Stock: Verkehrswirtschaft, Wiesbaden, neueste Auflage
- P. McCarthy: Transportation Economics, Malden/Mass., neueste Auflage

15. Lehrveranstaltungen und -formen:
- 423501 Vorlesung Standortökonomik
- 423502 Vorlesung Verkehrsökonomik

16. Abschätzung Arbeitsaufwand:
Vorlesung Standortökonomik: Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h Vorlesung
Verkehrsökonomik: Präsenzzeit: 28h Selbststudiumszeit / Nacharbeitszeit: 62 h Gesamt: 180 h

17. Prüfungsnummer/n und -name: 42351 Standort und Verkehr (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mikroökonomik und räumliche Ökonomik
Modul: 42960 Einführung Städtebau und Ökologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Astrid Ley</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Dieterle, Sigrid Busch, Astrid Ley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehringenieurwesen, PO 089-2017, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehringenieurwesen, PO 089-2012, → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Studierende kennen die Themen- und Aufgabenfelder der Ökologie und Landschaftsplanung sowie des Städtebaus und der Stadtplanung, d.h. die grundlegenden Funktionsweisen städtischer Systeme. Die Studierenden besitzen ein Grundverständnis für die natürliche und gebaute Umwelt und die Beziehung zwischen Mensch, Gebäude und Umfeld und lernen, städtebauliche Konzepte unter Berücksichtigung ökologischer, sozialer und funktionaler Rahmenbedingungen zu erarbeiten.

13. Inhalt: Einführung in die Ökologie

Inhalte der Vorlesung sind:
- Grundlagen der Stadtklima, Geologie, Boden, Hydrologie, Flora und Fauna
- Einführung in Theorien und Methoden der Landschaftsplanung/ landschaftsbezogenen Stadtplanung/ Architektur
- Beispielprojekte auf verschiedenen Maßstabs- und Planungsebenen
Grundlagen Städtebau

Inhalte der Vorlesung sind:

• Handlungsfelder der Stadtplanung im lokalen und internationalen Kontext
• Systematische Analyse von Planungsgebieten
• Grundlagen zum städtebaulichen Entwerfen
• Kennenlernen der „Bausteinen der Stadt“: Gebäudetypologien und Erschließungskonzepte
• Öffentlicher Raum und Freiraumtypologien
• Mobilität, Mobilitätswandel und Erschließungsnetze
• Planungsebenen und Planungsinstrumente
• Urbane Nutzungen, Nutzungsmischung sowie Kenndaten und Richtwerte

14. Literatur:

Städtebau-Institut (2014): Lehrbausteine Städtebau - Basiswissen für Entwurf und Planung (Eigenverlag)

15. Lehrveranstaltungen und -formen:

• 429601 Vorlesung Einführung in die Ökologie
• 429602 Vorlesung Grundlagen Städtebau
• 429603 Übung Grundlagen Städtebau

16. Abschätzung Arbeitsaufwand:

180h (84h Präsenzzeit, 967h Selbststudium)

17. Prüfungsnummer/n und -name:

• 42961 Einführung Städtebau und Ökologie (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Städtebau-Institut
Modul: 43020 Stadt und Mobilität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Martina Barbara Baum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ralf Huber-Erler, Helmut Bott, Johann Jessen, Astrid Ley, Martina Barbara Baum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester → Ergänzungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester → Ergänzungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 430201 VL Stadt und Mobilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>180h (56h Präsenzzeit, 124h Selbststudium)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>43021 Stadt und Mobilität (LBP), Sonstige, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19. Medienform:

20. Angeboten von: Städtebau-Institut
Modul: 44000 Nachhaltige Energie- und Verkehrssysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Po Wen Cheng</td>
</tr>
</tbody>
</table>
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 5. Semester → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 5. Semester → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 5. Semester → Ergänzungsmodule |
| 11. Empfohlene Voraussetzungen: | |
| 13. Inhalt: | 1) Biomasse, -gas, Biomass To Liquid (BTL)
2) Windenergie
3) Photovoltaik
4) Brennstoffzellen
5) CO2-Methanisierung
6) Wasserstoff
7) Speicherung
8) Kombikraftwerk
9) Prognosesysteme
10) Elektromobilität
11) Elektrisches Fliegen |
| 14. Literatur: | Vorlesungsfolien unter ILIAS
Übung unter ILIAS
Begleitbuch: V. Quaschning, Regenerative Energiesysteme |
| 15. Lehrveranstaltungen und -formen: | • 440001 Vorlesung Nachhaltige Energie- und Verkehrssysteme |
| 16. Abschätzung Arbeitsaufwand: | Gruppenarbeit, Präsentation, Ringvorlesung |
| 17. Prüfungsnummer/n und -name: | 44001 Nachhaltige Energie- und Verkehrssysteme (USL), Schriftlich, 60 Min., Gewichtung: 1
1) Gruppenarbeit mit Präsentation und schriftlicher Ausarbeitung
2) Freiwilliger Kurztest zur Ringvorlesung |
18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Windenergie
Modul: 45900 Lineare Kontrolltheorie

3. Leistungspunkte: 9 LP 6. Turnus: Sommersemester
4. SWS: 6 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Carsten Scherer
9. Dozenten: Carsten Scherer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, ➞ Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, ➞ Ergänzungsmodul
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, ➞ Ergänzungsmodul

11. Empfohlene Voraussetzungen: Lineare Algebra 1-2 und Analysis 1-3
 oder
 Höhere Mathematik 1-3

12. Lernziele:
 Die Studenten sollen in der Lage sein:
 1. ein dynamisches System im Zustandsraum, im Frequenzbereich oder als Blockdiagramm zu beschreiben
 2. die Lösungsmenge eines Kontrollsystems zu charakterisieren
 3. ein System zu linearisieren und die Stabilität eines Gleichgewichtes zu untersuchen
 4. Regelbarkeit, Stabilisierbarkeit, Beobachtbarkeit und Entdeckbarkeit von Kontrollsystemen zu analysieren
 5. Zustandsregelungen durch Eigenwertvorgabe, linear-quadratische Feedbackregler und Zustandsschätzer zu entwerfen
 6. das Separationsprinzip zu erläutern und anzuwenden
 7. Referenz- und Störungsmodelle zu entwerfen und das Prinzip des internen Modells anzuwenden
 8. eine minimale Realisierung eines dynamischen Systems zu berechnen und Modellreduction anzuwenden
 9. Formfilter für stochastische Störungssignale zu bestimmen
 10. einen H2-optimalen Regler zu entwerfen

13. Inhalt:
 • Zustandsraumbeschreibung multivariable linearer Systeme, Blockdiagramme
 • Linearisierung, Gleichgewichte, Lyapunovfunktionen, Lyapunovgleichung
 • Antwort linearer Systeme, Moden, Matrixexponentialfunktion und Variation-der-Konstanten
 • Übertragungsfunktionen und Realisationstheorie, Normalformen
 • Regelbarkeit, Stabilisierbarkeit, nicht steuerbare Eigenwerte und Polvorgabe
 • Linear-quadratische Optimierung, algebraische Riccati-Gleichung, Robustheit
 • Beobachtbarkeit, Entdeckbarkeit, nicht beobachtbare Eigenwerte, Zustandsschätzer
 • Rückkopplungsregler, Separationsprinzip
 • Referenz- und Störungsmodelle und das Internal Model Principle
 • Balancierte Realisierungen und Modellreduction
 • Unterdrückung stochastischer Störungen und H2-optimale Regelung
14. Literatur:

- Folien
- B. Friedland, Control System Design: An Introduction to State-space Methods, Dover Publications, 2005

15. Lehrveranstaltungen und -formen:

- 459001 Vorlesung Lineare Kontrolltheorie
- 459002 Gruppenübung zur Linearen Kontrolltheorie

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 63 Stunden |
| Selbststudium: 207 Stunden |
| Summe: 270 Stunden |

17. Prüfungsnummer/n und -name:

- 45901 Lineare Kontrolltheorie (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Sonstige

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Mathematische Systemtheorie
Modul: 46280 Grundlagen der Schienenverkehrssysteme

2. Modulkürzel: 020400311
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehringenieurwesen, PO 089-2012,
→ Ergänzungsmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester
→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester
→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester
→ Wahlpflichtmodule Gruppe Planung und Bau → Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester
→ Ergänzungsmodul
B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester
→ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 4. Semester
→ Ergänzungsmodul
B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester
→ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2012, 4. Semester
→ Kernmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 4. Semester
→ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Hörer der Lehrveranstaltung "Betrieb von Schienenbahnen" lernen die Grundsätze des Bahnbetriebs kennen und sind in der Lage:

• die Charakteristika und die Einsatzbereiche im Personen- und Güterverkehr des Verkehrsträgers Eisenbahn zu erklären,
• die Zusammenhänge von Sicherheitsniveau und Kostenstrukturen zu verstehen,
• die grundlegenden Sicherungsprinzipien nachzu vollziehen,
• die systemspezifischen Zusammenhänge des Bahnbetriebs zu verstehen sowie
• geeignete Betriebsverfahren auszuwählen.

Die Hörer der Lehrveranstaltung "Fahrdynamische Modellbildung" lernen ergänzend zur Lehrveranstaltung "Betrieb von Schienenbahnen" die grundlegenden fahrdynamischen Aspekte, die für die Energiebedarfs- und Fahrzeitermittlung des Verkehrsträgers Eisenbahn von Bedeutung sind, in Modellen abzubilden und können:
13. Inhalt: In der Lehrveranstaltung "Betrieb von Schienenbahnen" werden folgende Themengebiete behandelt:

- Administrativ-organisatorische Strukturen,
- Fahrzeitenrechnung,
- Zugfolgeregelung und Fahrwegsteuerung,
- Fahrplangestaltung,
- Betriebsablauf und -steuerung sowie
- Fahrzeugsysteme.

Die Lehrveranstaltung "Fahrdynamische Modellbildung" bietet einen vertieften Einblick in die Wirkung fahrdynamischer Zusammenhänge im Bahnbetrieb:

- Fahrwiderstände, Fahrzeiten und Energiebedarf einer Zugfahrt
- Modellierung von Strecken-, Fahrzeug- und Zugdaten
- Betrachten unterschiedlicher Einflussfaktoren wie, Fahrspiel, Zugbildung, Streckeneinflüsse

Pachl, J.: Systemtechnik des Schienenverkehrs, Teubner Verlag Stuttgart, neueste Auflage

15. Lehrveranstaltungen und -formen:

- 462801 Vorlesung Betrieb von Schienenbahnen
- 462802 Übung Betrieb von Schienenbahnen
- 462803 Exkursion Betrieb von Schienenbahnen
- 462804 Vorlesung Fahrdynamische Modellbildung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	50 h
Selbststudium:	130 h
Gesamt:	**180 h**

17. Prüfungsnummer/n und -name: 46281 Grundlagen der Schienenverkehrssysteme (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Medienform: Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung und Übung, Webbasierter Unterlagen zum vertieften Selbststudium

19. Angeboten von: Schienenbahnen und Öffentlicher Verkehr
Modul: 56890 Umweltschutz und Bauen: öffentlich-rechtliche Rahmenbedingungen und Praxis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Daniela Winkler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexis Komorowski</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 568901 Vorlesung Umweltrecht
- 568902 Vorlesung Grundfälle zum öffentlichen Baurecht - unter besonderer Berück-sichtigung des Umweltrechts

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 Std.
Selbststudium: 112 Std.
Gesamt: 168 Std.

17. Prüfungsnummer/n und -name:

56891 Umweltschutz und Bauen: öffentlich-rechtliche Rahmenbedingungen und Praxis (LBP), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Rechtswissenschaft, insbesondere öffentliches Recht
Modul: 67290 Grundlagen Schienenfahrzeugtechnik und -betrieb

2. Modulkürzel: 072611501
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Corinna Salander
9. Dozenten: Corinna Salander

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
➞ Ergänzungsmodulte
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2014, 4. Semester
➞ Ergänzungsmodulte
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
➞ Ergänzungsmodulte
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 4. Semester
➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
➞ Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 4. Semester
➞ Wahlpflichtmodule Gruppe Fahrzeuge --> Kernmodule

11. Empfohlene Voraussetzungen: Keine, da das Modul in das Thema einführt

13. Inhalt:
- Historische, politische und technische Grundlagen des Systems Bahn, insbesondere der Zusammenhang von Fahrzeugen, Infrastruktur und Betrieb
- Eisenbahninfrastrukturelemente mit Einfluss auf die Konstruktion und Zulassung von Schienenfahrzeugen
- Grundlagen der Schienenfahrzeugtechnik, d.h. Zugförder- und Spurführung, Akustik, Energieeffizienz, Emissionen sowie Fahrdynamik
- Auslegung von Schienenfahrzeugen, auf Basis der technischen, betrieblichen und wirtschaftlichen Randbedingungen
- Konstruktion von Schienenfahrzeugen, Erläuterung bestehender Konzepte sowie der Funktionsweise und Eigenschaften von Fahrzeugkomponenten
- Produktion und Zulassung von Schienenfahrzeugen am Beispiel sicherheitsrelevanter Komponenten
- Technische und betriebliche Bedingungen der Instandhaltung
- Grundlagen der Leit- und Sicherungstechnik
- Eisenbahnrelevante Gesetze, Normen und Verbändestruktur
- Künftige Entwicklungen im System Bahn

14. Literatur:
- Skript und Übungsaufgaben
15. Lehrveranstaltungen und -formen:

- 672901 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb I
- 672902 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit 56 h
- Selbststudiumszeit 96 h
- Exkursion (3-tägig, Vor- und Nachbereitung) 28 h

17. Prüfungsnummer/n und -name:

67291 Grundlagen Schienenfahrzeugtechnik und -betrieb (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Schienenfahrzeugtechnik
Modul: 78020 Grundlagen der Fahrzeugantriebe

2. Modulkürzel: 070810003
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Jedes 2. Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Bargende
9. Dozenten: Prof. Michael Bargende

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Ergänzungsmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, → Wahlpflichtmodule Gruppe Fahrzeuge → Kernmodule

11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4 (Bachelor)

12. Lernziele:

13. Inhalt:
I: Einführung; Definition und Einleitung; Ausführungsbeispiele; thermodynamische Vergleichsprozesse; Kenngrößen
II: Kraftstoffe; Gemischbildung, Zündung und Verbrennung beim Ottomotor; Gemischbildung, Verbrennung und Schadstoffentstehung beim Dieselmotor; Ladungswechsel; Aufladung; Schmierölkreislauf; Kühlung
III: Elektrifizierung des Antriebsstranges; Hybridkonzepte
IV: Auslegung des Verbrennungsmotors; Triebwerksdynamik; Konstruktionslemente; Abgasemissionen; Geräuschemissionen

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
• 780201 Vorlesung Grundlagen der Fahrzeugantriebe

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>78021 Grundlagen der Fahrzeugantriebe (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
400 Schlüsselqualifikationen fachaffin

Zugeordnete Module:

- 410 SQ FA Pflichtmodule (3.0 LP)
- 420 SQ FA Wahlpflichtmodule (9.0 LP)
410 SQ FA Pflichtmodule (3.0 LP)

Zugeordnete Module: 38790 Grundlagen der Wirtschaftswissenschaften
Modul: 38790 Grundlagen der Wirtschaftswissenschaften

2. Modulkürzel: 100410003
5. Modulduer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 3
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Clemens Englmann
9. Dozenten:
 Frank Clemens Englmann
 Susanne Becker

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 → Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012,
 → SQ FA Pflichtmodule --> Schlüsselqualifikationen fachaffin
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester
 → SQ FA Pflichtmodule (3.0 LP) --> Schlüsselqualifikationen fachaffin
 B.Sc. Verkehrsingenieurwesen, PO 089-2015, 1. Semester
 → Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester
 → Zusatzmodule
 B.Sc. Verkehrsingenieurwesen, PO 089-2012, 1. Semester
 → Schlüsselqualifikationen fachaffin
 B.Sc. Verkehrsingenieurwesen, PO 089-2017, 1. Semester
 → SQ FA Pflichtmodule (3.0 LP) --> Schlüsselqualifikationen fachaffin

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
 Die Studierenden kennen nach Abschluss des Moduls grundlegende volkswirtschaftliche Begriffe und Zusammenhänge sowie einfache ökonomische Modelle. Sie sind in der Lage, diese zu erklären und graphisch zu veranschaulichen sowie mit diesen zu argumentieren und auf aktuelle Fragestellungen anzuwenden.

13. Inhalt:

14. Literatur:
 Vorlesungsfolien und ergänzende Übungsaufgaben stehen zum Download in ILIAS zur Verfügung. Die Basisliteratur umfasst u.a. die folgenden Werke:
 • N.G. Mankiw und M.P. Taylor: Grundzüge der Volkswirtschaftslehre, Schäffer-Poeschel, neueste Auflage
- H.-D. Hardes und A. Uhly: Grundzüge der Volkswirtschaftslehre, Oldenburg, neueste Auflage
- F.C. Englmann: Makroökonomik, Kohlhammer, neueste Auflage
- B. Woeckener: Volkswirtschaftslehre, Springer, neueste Auflage

| 15. Lehrveranstaltungen und -formen: | 387901 Vorlesung Grundlagen der Wirtschaftswissenschaften |
| | 387902 Übung Grundlagen der Wirtschaftswissenschaften |

16. Abschätzung Arbeitsaufwand:	Vorlesung
	Präsenzzeit: 28 h
	Selbststudiumszeit / Nacharbeitszeit: 32 h
	Übung
	Präsenzzeit: 14 h
	Selbststudiumszeit / Nacharbeitszeit: 16 h
	Gesamtzeitaufwand: 90 h

| 17. Prüfungsnummer/n und -name: | 38791 Grundlagen der Wirtschaftswissenschaften (BSL), Schriftlich, 60 Min., Gewichtung: 1 |

| 18. Grundlage für ... : | Theoretische Volkswirtschaftslehre |

19. Medienform:	
420 SQ FA Wahlpflichtmodule (9.0 LP)

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20430</td>
<td>Experimentalphysik mit Praktikum für Umweltschutztechniker</td>
</tr>
<tr>
<td>38200</td>
<td>Themen der Wissenschafts- und Technikgeschichte</td>
</tr>
<tr>
<td>43030</td>
<td>Introduction to Integrated Planning</td>
</tr>
<tr>
<td>43920</td>
<td>Verkehr und Gesellschaft</td>
</tr>
<tr>
<td>46270</td>
<td>Verkehr in der Praxis</td>
</tr>
</tbody>
</table>
Modul: 20430 Experimentalphysik mit Praktikum für Umweltschutztechniker

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081700013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Moduldaeur:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Bruno Gompf</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Arthur Grupp, Bruno Gompf</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehrsingenieurwesen, PO 089-2012, SQ FA Wahlpflichtmodule --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester, SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 2. Semester, SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester, Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2015, 2. Semester, Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2017, 2. Semester, Zusatzmodule
B.Sc. Verkehrsingenieurwesen, PO 089-2012, 2. Semester, Zusatzmodule

11. Empfohlene Voraussetzungen:
Vorlesung: -
Praktikum: bestandene Scheinklausur der Vorlesung zwingend erforderlich

12. Lernziele:
Vorlesung: Die Studierenden beherrschen Lösungsstrategien für die Bearbeitung naturwissenschaftlicher Probleme und Kenntnisse in den Grundlagen der Physik.
Praktikum: Anwendung physikalischer Grundgesetze auf einfache experimentelle Problemstellungen

13. Inhalt:
Vorlesung
- Mechanik: Newtonsche Mechanik, Bezugssysteme, Erhaltungssätze, Dynamik starrer Körper, Fluidmechanik
- Schwingungen und Wellen: Frei, gekoppelte, gedämpfte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
- Elektrodynamik: Grundbegriffe der Elektro- und Magnetostatik, Elektrischer Strom (Gleich- und Wechselstrom), Widerstände, Kapazitäten, Induktivitäten, Induktion, Kräfte und Momente in elektrischen und magnetischen Feldern
- Optik: Strahlenoptik und Grundzüge der Wellenoptik

Praktikum
- Kinematik von Masspunkten
- Newton'sche Mechanik: Grundbegriffe, translatorische Dynamik starrer Körper, Erhaltungssätze, Bezugssysteme
- Elektrodynamik: Grundbegriffe der Elektrik, Kräfte und Drehmomente in elektrischen und magnetischen Feldern,
Induktion, Gleich- und Wechselströme und deren Beschreibung in Schaltkreisen
• Schwingungen und Wellen: Freie, gekoppelte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
• Wellenoptik: Lichtwellen und deren Wechselwirkung mit Materie
• Strahlenoptik: Bauelemente und optische Geräte

14. Literatur:
• Dobrinski, Krakau, Vogel, Physik für Ingenieure, Teubner Verlag
• Demtröder, Wolfgang, Experimentalphysik Bände 1 und 2, Springer Verlag
• Paus, Hans J., Physik in Experimenten und Beispielen, Hanser Verlag
• Halliday, Resnick, Walker, Physik, Wiley-VCH
• Bergmann-Schaefer, Lehrbuch der Experimentalphysik, De Gruyter
• Paul A. Tipler: Physik, Spektrum Verlag
• F. Kuypers, Physik für Ingenieure und Naturwissenschaftler, Wiley-VHC

15. Lehrveranstaltungen und -formen:
• 204301 Vorlesung Experimentalphysik mit Physikpraktikum für Umweltschutztechniker
• 204303 Praktikum Experimentalphysik mit Physikpraktikum für Umweltschutztechniker
• 204302 Übung Experimentalphysik mit Praktikum für Umweltschutztechniker

16. Abschätzung Arbeitsaufwand:
Vorlesung:
Präsenzzzeit: 2,25 h x 14 Wochen: 31,5 h
Tutorium: 1 h x 14 Wochen: 14 h
Nachbereitung Vorlesung, Vorbereitung Tutorium und Abschlussklausur: 74,5 h
Praktikum:
Präsenzzzeit: 6 Versuche x 3 h 18 h
Vor- und Nachbereitung: 42 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 20431 Experimentalphysik für Umweltschutztechniker (Klausur)
 (USL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
• 20432 Experimentalphysik für Umweltschutztechniker (Praktikum)
 (USL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung: Tablet-PC, Beamer,
Praktikum: -

20. Angeboten von: Experimentalphysik I
Modul: 38200 Themen der Wissenschafts- und Technikgeschichte

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr. Beate Ceranski
9. Dozenten: Klaus Hentschel
Beate Ceranski

10. Zuordnung zum Curriculum in diesem Studiengang:
B. Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
➞ SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B. Sc. Verkehrsingenieurwesen, PO 089-2015, 3. Semester
➞ Zusatzmodule
B. Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
➞ Zusatzmodule
B. Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
➞ SQ FA Wahlpflichtmodule --> Schlüsselqualifikationen fachaffin
B. Sc. Verkehrsingenieurwesen, PO 089-2017, 3. Semester
➞ SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B. Sc. Verkehrsingenieurwesen, PO 089-2012, 3. Semester
➞ Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden können die Historizität des eigenen Studienfaches bzw. verwandter natur- und ingenieurwissenschaftlicher Fächer wahrnehmen, benennen und reflektieren. Ihnen sind an einem klar umrissenen Themengebiet die Wechselbeziehungen zwischen naturwissenschaftlicher Erkenntnis, technischer Entwicklung einerseits und kulturellen, politischen, sozialen, religiösen u. a. Kontexten andererseits bewußt geworden.

13. Inhalt:
Disziplinär, geographisch, wissenschaftstheoretisch oder auf andere Weise umrissenes Themengebiet der Forschungsdiskussion

14. Literatur:
Forschungsliteratur zum jeweiligen Thema einschließlich internationaler Fachzeitschriften

15. Lehrveranstaltungen und -formen:
• 382001 Vorlesung Themen der Wissenschafts- und Technikgeschichte

16. Abschätzung Arbeitsaufwand:
30 Präsenzstunden, 30 Stunden Vor-/Nachbereitung mit bis zu drei kurzen reflektierenden Essays zu einzelnen Vorlesungsthemen, 30 Stunden Vorbereitung der Prüfung, insgesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
38201 Themen der Wissenschafts- und Technikgeschichte (PL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Geschichte der Naturwissenschaften und Technik
Modul: 43030 Introduction to Integrated Planning

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Markus Friedrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Friedrich</td>
<td>Antje Stokman</td>
<td></td>
</tr>
</tbody>
</table>
→ SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
→ Schlüsselqualifikationen fachaffin
→ Zusatzmodule
→ Schlüsselqualifikationen fachaffin
→ Schlüsselqualifikationen fachaffin
→ SQ FA Wahlpflichtmodule --> Schlüsselqualifikationen fachaffin
→ Zusatzmodule
→ Schlüsselqualifikationen fachaffin
→ Zusatzmodule
→ Schlüsselqualifikationen fachaffin
→ Schlüsselqualifikationen fachaffin | |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | The students understand the general planning process and can apply it for the purpose of integrating land use planning, urban planning and transport planning. |
| 13. Inhalt: | The lecture "Introduction to Integrated Planning addresses the problem of incorporating regional/ urban planning, water management, landscape planning, and transport planning in an integrated planning process. The challenges and methodologies of an integrated planning process are described from the perspective of different disciplines. External practitioners present approaches from their field of work. The students also learn how to write scientific reports and how to prepare and give a presentation. |
| 15. Lehrveranstaltungen und -formen: | • 430301 Vorlesung Introduction to Integrated Planning |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 21 h
Scientific Paper: ca. 45 h
Nachbereitungszeit: ca. 24 h |
| 17. Prüfungsnummer/n und -name: | 43031 Introduction to Integrated Planning (USL), Sonstige, Gewichtung: 1 |
| 18. Grundlage für ...: |
| 19. Medienform: |
| 20. Angeboten von: | Verkehrsplanung und Verkehrsleittechnik |
Modul: 43920 Verkehr und Gesellschaft

2. Modulkürzel: 020400394
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin

9. Dozenten:
Ullrich Martin
Peter Schütz
Richard Junesch
Xiaojun Li

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Verkehringenieurwesen, PO 089-2012,
→ Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2015, 2. Semester
→ SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2012, 2. Semester
→ SQ FA Wahlpflichtmodule --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2015, 2. Semester
→ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 2. Semester
→ SQ FA Wahlpflichtmodule (9.0 LP) --> Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2012, 2. Semester
→ Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2017, 2. Semester
→ Zusatzmodule

11. Empfohlene Voraussetzungen:
Inhaltlich: Die Teilnahme an unseren Lehrveranstaltungen Verkehrspolitik (LV-Nr. 330446) und Verkehrsplanungsrecht (LV-Nr. 330447) z.B. im Rahmen des Moduls Verkehr in der Praxis (Modul-Nr. 25040) wird empfohlen.
Vorgängermodule: keine

12. Lernziele:
Die Hörer können mit dem entwickelten politischen und rechtlichen Grundverständnis:

- verkehrspolitische Entscheidungen, die in der Praxis getätigt werden, qualifiziert einschätzen und im gesamtgesellschaftlichen Zusammenhang werten,
- verkehrspolitische Zusammenhänge nutzbringend anwenden,
- Verfahren raumordnerischer und planfeststellungsrelevanter europäischer sowie nationaler Rechtsgrundlagen für Vorhaben im Bereich des öffentlichen Verkehrs in Planungsaufgaben einbeziehen sowie
- die allgemein gesellschaftlichen planungsrechtlichen Wirkungen von baulichen und betrieblichen Maßnahmen abschätzen.

13. Inhalt:
Folgende Themen werden behandelt:
- Grundlagen der Verkehrspolitik,
- wesentliche Rahmenbedingungen für die Gestaltung von Verkehrssystemen und somit auch für das Verkehrsangebot,
- Verantwortung der Politik sowie Möglichkeiten politischer Einflussnahme, um Verkehrsleistungen in guter Qualität zu angemessenen Preisen im fairen Wettbewerb anzubieten,
- Verbindungen mit anderen Politikfeldern,

14. Literatur: Skripte zu den Lehrveranstaltungen Verkehrspolitik (LV-Nr. 330446) und Verkehrsplanungsrecht (LV-Nr. 330447)

15. Lehrveranstaltungen und -formen: • 439201 Vorlesung Verkehr und Gesellschaft

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 25 h
Selbststudium: 65 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 43921 Verkehr und Gesellschaft (USL), Sonstige, 0 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von: Schienenbahnen und Öffentlicher Verkehr
Modul: 46270 Verkehr in der Praxis

2. Modulkürzel: 020400732
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ullrich Martin
9. Dozenten: Wolfgang Müller, Marvin König, Ulrich Rentschler, Volkhard Malik, Peter Schütz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Verkehringenieurwesen, PO 089-2012, \(\rightarrow\) Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 2. Semester \(\rightarrow\) SQ FA Wahlpflichtmodule (9.0 LP) \(\rightarrow\) Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2017, 2. Semester \(\rightarrow\) SQ FA Wahlpflichtmodule \(\rightarrow\) Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2019, 2. Semester \(\rightarrow\) SQ FA Wahlpflichtmodule \(\rightarrow\) Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2012, 2. Semester \(\rightarrow\) Schlüsselqualifikationen fachaffin
B.Sc. Verkehringenieurwesen, PO 089-2017, 2. Semester \(\rightarrow\) Zusatzmodule
B.Sc. Verkehringenieurwesen, PO 089-2015, 2. Semester \(\rightarrow\) Zusatzmodule

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Hörer der Lehrveranstaltung **Speditionsweisen und Güterverkehr** wissen:

- nach welchen Kriterien eine Transportkette im Güterverkehr zusammengestellt wird,
- welche Vor- und Nachteile die einzelnen Verkehrsträger im Gütertransport aufweisen und
- kennen die wesentlichen Akteure und die rechtlichen Rahmenbedingungen im Speditionsweisen.

Die Hörer der Lehrveranstaltung **Verkehrspolitik** können:

- verkehrspolitische Entscheidungen, die in der Praxis getätigt werden, qualifiziert einschätzen und
- im Rahmen von Verkehrsprojekten verkehrspolitische Zusammenhänge nutzbringend anwenden.

Mit der Teilnahme an der Lehrveranstaltung **Luftverkehr und Flughafenmanagement** vermag der Hörer:

- die Aufgaben der Akteure des Luftverkehrs und deren Zusammenspiel nachzu vollziehen,
- die Zusammenhänge des Luftverkehrs, der Flughafenanlagen und des Flughafenbetriebs zu verstehen,
• den Aufbau und die Funktionsweise der Flugsicherung zu beschreiben sowie
• Managementprozesse von Luftverkehrsgesellschaften und Flughäfen qualifiziert einzuschätzen.

Die Hörer der Lehrveranstaltung Verkehrsplanungsrecht können:

• Verfahren raumordnerischer und planfeststellungsrelevanter europäischer sowie nationaler Rechtsgrundlagen für Vorhaben im Bereich des öffentlichen Verkehrs in Planungsaufgaben einbeziehen sowie
• die planungsrechtliche Wirkung von baulichen und betrieblichen Maßnahmen abschätzen.

13. Inhalt:

In der Vorlesung Speditionswesen und Güterverkehr werden die Eigenschaften verschiedener Verkehrsträger in Bezug auf den Gütertransport betrachtet sowie die organisatorischen Abläufe im Güterverkehr beleuchtet.

• Güterverkehr im Allgemeinen,
• Spezifika der Verkehrsträger im Güterverkehr,
• Kombinierter Verkehr,
• Speditionswesen,
• Exkursionen zum Rangierbahnhof Kornwestheim und zu einem Logistik-Zentrum.

Die Vorlesung Verkehrspolitik befasst sich mit:

• Grundlagen der Verkehrspolitik,
• wesentliche Rahmenbedingungen für die Gestaltung von Verkehrssystemen und somit auch das Verkehrsangebot,
• Verantwortung der Politik sowie Möglichkeiten politischer Einflussnahme, um Verkehrsleistungen in guter Qualität zu angemessenen Preisen im fairen Wettbewerb anzubieten,
• Verbindungen mit anderen Politikfeldern,
• Rolle der Europäischen Verkehrspolitik.

Die folgenden Inhalte werden in der Vorlesung Luftverkehr und Flughafenmanagement dargestellt:

• Interessensverbände und Institutionen des Luftverkehrs,
• Grundlagen des Luftverkehrs,
• Flugsicherung,
• Betrieb von Flughafenanlagen sowie
• Ressourcenmanagementprozesse von Luftverkehrsgesellschaften und Flughäfen.

Ergänzt werden die Lehrinhalte durch die freiwillige Teilnahme an einer seminaristischen Übung zu luftverkehrlichen Fragestellungen am Flughafen Stuttgart.

In der Vorlesung Verkehrsplanungsrecht werden folgende verkehrsrechtlichen Grundlagen vermittelt:

• verkehrliche Rechtsgrundlagen auf europäischer Ebene,
• verkehrliche Rechtsgrundlagen auf nationaler Ebene,
• verkehrliches Planungsrecht,
• verkehrliches Umweltrecht.

14. Literatur:

• Skript zu den Lehrveranstaltungen Luftverkehr und Flughafenmanagement, Speditionswesen und Güterverkehr, Verkehrspolitik und Verkehrsplanungsrecht
- Suckale, M.: Taschenbuch der Eisenbahngesetze, Hestra-Verlag Darmstadt, neueste Auflage

15. Lehrveranstaltungen und -formen:
- 462702 Exkursion Speditionsweisen und Güterverkehr
- 462701 Vorlesung Speditionsweisen und Güterverkehr
- 462703 Vorlesung Verkehrspolitik
- 462704 Vorlesung Luftverkehr und Flughafenmanagement
- 462705 Vorlesung Verkehrsplanungsrecht

16. Abschätzung Arbeitsaufwand:
| Präsenztunden: | 45 h |
| Eigenstudiumstunden: | 135 h |
| Gesamtstunden: | 180 h |

17. Prüfungsnummer/n und -name: 46271 Verkehr in der Praxis (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von: Schienenbahnen und Öffentlicher Verkehr
Modul: 81340 Bachelorarbeit Verkehrsingenieurwesen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Markus Friedrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Verkehrsingenieurwesen, PO 089-2012, 6. Semester
- B.Sc. Verkehrsingenieurwesen, PO 089-2015, 6. Semester
- B.Sc. Verkehrsingenieurwesen, PO 089-2017, 6. Semester

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Verkehrsplanung und Verkehrsleittechnik