Modulhandbuch
Studiengang Master of Science
Nachhaltige Elektrische Energieversorgung
Prüfungsordnung: 948-2011

Wintersemester 2017/18
Stand: 19. Oktober 2017

Universität Stuttgart
Keplerstr. 7
70174 Stuttgart
Kontaktpersonen:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institut</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td>stefan.tenbohlen@ieh.uni-stuttgart.de</td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>PD Markus Gaida</td>
<td>Institutsverbund Elektrotechnik und Informationstechnik</td>
<td>markus.gaida@f05.uni-stuttgart.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td>stefan.tenbohlen@ieh.uni-stuttgart.de</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Präambel ... 6

Qualifikationsziele ... 7

100 Vertiefungsmodules .. 8

<table>
<thead>
<tr>
<th>110 Wahlpflichtkatalog NEE 1</th>
<th>... 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>21690 Elektrische Maschinen II</td>
<td>.. 10</td>
</tr>
<tr>
<td>21700 Hochspannungstechnik II</td>
<td>.. 12</td>
</tr>
<tr>
<td>21710 Leistungselektronik II</td>
<td>.. 13</td>
</tr>
<tr>
<td>21730 Automatisierungstechnik II</td>
<td>... 14</td>
</tr>
<tr>
<td>21740 Regelungstechnik II</td>
<td>.. 16</td>
</tr>
<tr>
<td>21760 Elektrische Energiernetze II</td>
<td>... 18</td>
</tr>
<tr>
<td>29160 Photovoltaik III</td>
<td>.. 20</td>
</tr>
<tr>
<td>30880 Windenergie 3 - Entwurf von Windenergieanlagen</td>
<td>... 22</td>
</tr>
<tr>
<td>21930 Photovoltaik II</td>
<td>.. 24</td>
</tr>
<tr>
<td>29140 Smart Grids</td>
<td>.. 25</td>
</tr>
<tr>
<td>29150 Windenergie 2 - Planung und Betrieb von Windparks</td>
<td>... 26</td>
</tr>
</tbody>
</table>

600 Praktische Übungen im Labor ... 27

14590: Praktische Übungen im Labor "Hochspannungstechnik"	.. 28
22270: Praktische Übungen im Labor "Automatisierungstechnik"	... 30
22330: Praktische Übungen im Labor "Elektromechanische Energiewandlung II"	... 31
22350: Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"	... 32
22360: Praktische Übungen im Labor "Simulation gekoppelter Feldprobleme"	... 34
28400: Praktische Übungen im Labor "Energieübertragung"	... 35
30890 Windenergie 4 - Windenergie-Projekt	.. 36
70080: Praktische Übungen im Labor "Messtechnik für Energiewandler und -speicher"	... 38

200 Spezialisierungsmodules .. 39

<table>
<thead>
<tr>
<th>210 Wahlpflichtkatalog NEE 1</th>
<th>.. 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>21690 Elektrische Maschinen II</td>
<td>.. 41</td>
</tr>
<tr>
<td>21700 Hochspannungstechnik II</td>
<td>.. 43</td>
</tr>
<tr>
<td>21710 Leistungselektronik II</td>
<td>.. 44</td>
</tr>
<tr>
<td>21730 Automatisierungstechnik II</td>
<td>... 45</td>
</tr>
<tr>
<td>21740 Regelungstechnik II</td>
<td>.. 47</td>
</tr>
<tr>
<td>21760 Elektrische Energiernetze II</td>
<td>... 49</td>
</tr>
<tr>
<td>29160 Photovoltaik III</td>
<td>.. 51</td>
</tr>
<tr>
<td>30880 Windenergie 3 - Entwurf von Windenergieanlagen</td>
<td>... 53</td>
</tr>
<tr>
<td>220 Wahlkatalog NEE 2</td>
<td>.. 55</td>
</tr>
<tr>
<td>16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme</td>
<td>.. 56</td>
</tr>
<tr>
<td>21690 Elektrische Maschinen II</td>
<td>.. 58</td>
</tr>
<tr>
<td>21700 Hochspannungstechnik II</td>
<td>.. 60</td>
</tr>
<tr>
<td>21710 Leistungselektronik II</td>
<td>.. 61</td>
</tr>
<tr>
<td>21730 Automatisierungstechnik II</td>
<td>... 62</td>
</tr>
<tr>
<td>21740 Regelungstechnik II</td>
<td>.. 64</td>
</tr>
<tr>
<td>21760 Elektrische Energiernetze II</td>
<td>... 66</td>
</tr>
<tr>
<td>22040 Numerik</td>
<td>.. 68</td>
</tr>
<tr>
<td>29160 Photovoltaik III</td>
<td>.. 69</td>
</tr>
<tr>
<td>29190 Planungsmethoden in der Energiewirtschaft</td>
<td>... 71</td>
</tr>
<tr>
<td>29210 Transiente Vorgänge und Regelungssaspekte in Wasserkraftanlagen</td>
<td>.. 72</td>
</tr>
<tr>
<td>30880 Windenergie 3 - Entwurf von Windenergieanlagen</td>
<td>... 73</td>
</tr>
<tr>
<td>30920 Elektronikmotor</td>
<td>.. 75</td>
</tr>
<tr>
<td>41750 Speichertechnik für elektrische Energie II</td>
<td>.. 76</td>
</tr>
</tbody>
</table>
Modulhandbuch: Master of Science Nachhaltige Elektrische Energieversorgung

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulname</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>41760</td>
<td>Aspekte der Elektromobilität</td>
<td>78</td>
</tr>
<tr>
<td>46710</td>
<td>Umweltsoziologie und Technikfolgenabschätzung</td>
<td>80</td>
</tr>
<tr>
<td>50520</td>
<td>Environmental Aspects</td>
<td>82</td>
</tr>
<tr>
<td>56950</td>
<td>Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung</td>
<td>84</td>
</tr>
<tr>
<td>68180</td>
<td>Ausgewählte Kapitel der Leistungselektronik</td>
<td>86</td>
</tr>
<tr>
<td>68390</td>
<td>Energiemärkte und Energiehandel</td>
<td>88</td>
</tr>
<tr>
<td>69480</td>
<td>Energieeffizienz in Industrie, Gewerbe, Handel und Dienstleistung</td>
<td>90</td>
</tr>
<tr>
<td>70010</td>
<td>Technologien und Methoden der Softwaresysteme II</td>
<td>92</td>
</tr>
<tr>
<td>72350</td>
<td>Nachhaltige Energieversorgung und Rationelle Energienutzung</td>
<td>93</td>
</tr>
<tr>
<td>79220</td>
<td>Finite Element Methods</td>
<td>94</td>
</tr>
<tr>
<td>230</td>
<td>Wahlkatalog NEE 3</td>
<td>95</td>
</tr>
<tr>
<td>18320</td>
<td>Solartechnik II</td>
<td>96</td>
</tr>
<tr>
<td>22110</td>
<td>Diagnostik und Schutz elektrischer Netzkomponenten</td>
<td>97</td>
</tr>
<tr>
<td>22180</td>
<td>Wissenschaftliches Vortragen und Schreiben II</td>
<td>98</td>
</tr>
<tr>
<td>22220</td>
<td>Konstruktion elektrischer Maschinen</td>
<td>99</td>
</tr>
<tr>
<td>24790</td>
<td>Elektrochemische Energiespeicherung in Batterien</td>
<td>100</td>
</tr>
<tr>
<td>29180</td>
<td>Dynamik elektrischer Verbundsysteme</td>
<td>101</td>
</tr>
<tr>
<td>30610</td>
<td>Regelungstechnik für Kraftwerke</td>
<td>103</td>
</tr>
<tr>
<td>30750</td>
<td>Meeresenergie</td>
<td>105</td>
</tr>
<tr>
<td>30770</td>
<td>Planung von Wasserkraftanlagen</td>
<td>106</td>
</tr>
<tr>
<td>30950</td>
<td>Mobile Energiesspeicher</td>
<td>108</td>
</tr>
<tr>
<td>36800</td>
<td>Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik</td>
<td>110</td>
</tr>
<tr>
<td>36830</td>
<td>Lithiumbatterien: Theorie und Praxis</td>
<td>112</td>
</tr>
<tr>
<td>37010</td>
<td>Netzentegration von Windenergie</td>
<td>113</td>
</tr>
<tr>
<td>37300</td>
<td>Technische Akustik</td>
<td>114</td>
</tr>
<tr>
<td>40510</td>
<td>Der Ingenieur als innovativer Unternehmer</td>
<td>116</td>
</tr>
<tr>
<td>41770</td>
<td>Induktives Laden</td>
<td>118</td>
</tr>
<tr>
<td>45420</td>
<td>Windenergie 5 - Windenergie-Labor</td>
<td>119</td>
</tr>
<tr>
<td>51690</td>
<td>Hochspannungs freileitungen</td>
<td>121</td>
</tr>
<tr>
<td>51730</td>
<td>Umweltrecht und Regulierung</td>
<td>122</td>
</tr>
<tr>
<td>56940</td>
<td>Seminar Netzentegration Erneuerbarer Energien</td>
<td>123</td>
</tr>
<tr>
<td>58110</td>
<td>Expertensysteme in der elektrischen Energieversorgung</td>
<td>124</td>
</tr>
<tr>
<td>67230</td>
<td>EMV- und Hochspannungs messstechnik</td>
<td>126</td>
</tr>
<tr>
<td>67530</td>
<td>Photovoltaische Inselsystemen</td>
<td>127</td>
</tr>
<tr>
<td>68280</td>
<td>Energetische Optimierung der Produktion</td>
<td>129</td>
</tr>
<tr>
<td>68400</td>
<td>Energiepolitik</td>
<td>131</td>
</tr>
<tr>
<td>69470</td>
<td>Energieeffizienz II - Branchen technologien</td>
<td>132</td>
</tr>
<tr>
<td>69490</td>
<td>Energieeffizienz I - Querschnittstechnologien</td>
<td>133</td>
</tr>
<tr>
<td>69500</td>
<td>Energiemanagement nach ISO 50001</td>
<td>134</td>
</tr>
<tr>
<td>71930</td>
<td>Elektrische Verbundssystemen</td>
<td>136</td>
</tr>
<tr>
<td>71950</td>
<td>Druckluft und Pneumatik</td>
<td>137</td>
</tr>
<tr>
<td>71970</td>
<td>Unternehmenssteuerung in der Energiewirtschaft</td>
<td>139</td>
</tr>
<tr>
<td>72150</td>
<td>Analyse und Optimierung industrieller Energiesysteme</td>
<td>141</td>
</tr>
<tr>
<td>240</td>
<td>Wahlkatalog aus Bachelor Elektro- und Informationstechnik</td>
<td>143</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungs technik I</td>
<td>144</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
<td>145</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td>146</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
<td>148</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
<td>150</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
<td>151</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>152</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
<td>153</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
<td>155</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td>156</td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td>158</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td>160</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td>162</td>
</tr>
</tbody>
</table>
11740 Elektromagnetische Verträglichkeit ... 163
11750 Numerische Feldberechnung I ... 165
12450 Wasserkraft und Wasserbau .. 167
13750 Technische Strömungslehre .. 169
14130 Kraftfahrzeugmechatronik I + II ... 170
14150 Leichtbau ... 172
17110 Entwurf digitaler Systeme .. 173
17130 Entwurf digitaler Filter .. 175
17170 Elektrische Antriebe .. 177
25940 Verstärkertechnik I+II ... 178
28550 Regelung von Kraftwerken und Netzen ... 180
38720 Meteorologie ... 182
39160 Grundlagen der Betriebswirtschaftslehre .. 184
41170 Speichertechnik für elektrische Energie I .. 186
41450 Grundzüge der Angewandten Chemie ... 188
46340 Signale und Systeme .. 189
69050 Technologien und Methoden der Softwaresysteme I .. 190
69450 Konstruktionslehre II (EE) .. 192
71750 Schaltungstechnik (Grundlagen) .. 193
250 Module aus anderen Master Studiengängen .. 194
30750 Meeresenergie .. 195
36880 Solartechnik II ... 196

80550 Masterarbeit Nachhaltige Elektrische Energieversorgung 197

81060 Forschungsarbeit Nachhaltige Elektrische Energieversorgung 199
Präambel
Qualifikationsziele

Die Absolventen des Masterstudiengangs NEE

- besitzen vertiefte Grundlagenkenntnisse der erneuerbaren Wind- und Solarenergie sowie dem Aufbau und der Funktionsweise eines intelligenten Verbindungssystems zwischen Energiequellen und Energienutzern (das sog. "Smart Grid"),
- besitzen vertiefte Grundlagenkenntnisse der energietechnischen Geräte, Systeme und Anlagen sowie der Energiewirtschaft und über Umweltbedingungen
- können selbständig komplexe Probleme strukturieren und mit wissenschaftlicher Methodik Lösungen erarbeiten und technisch umsetzen
- haben Erfahrungen in der forschungsnahen Entwicklungs- und Planungs-Tätigkeit, welche sie selbständig und im Team verantwortlich durchführten
- sind durch ausgewählte englischsprachige Lehrveranstaltungen und Dokumentationen für die im industriellen Umfeld vorherrschenden Arbeitsbedingungen und internationalen Tätigkeiten vorbereitet
100 Vertiefungsmodule

Zugeordnete Module:
110 Wahlpflichtkatalog NEE 1
21930 Photovoltaik II
29140 Smart Grids
29150 Windenergie 2 - Planung und Betrieb von Windparks
600 Praktische Übungen im Labor
110 Wahlpflichtkatalog NEE 1

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>21690</td>
<td>Elektrische Maschinen II</td>
<td></td>
</tr>
<tr>
<td>21700</td>
<td>Hochspannungstechnik II</td>
<td></td>
</tr>
<tr>
<td>21710</td>
<td>Leistungselectronik II</td>
<td></td>
</tr>
<tr>
<td>21730</td>
<td>Automatisierungstechnik II</td>
<td></td>
</tr>
<tr>
<td>21740</td>
<td>Regelungstechnik II</td>
<td></td>
</tr>
<tr>
<td>21760</td>
<td>Elektrische Energienetze II</td>
<td></td>
</tr>
<tr>
<td>29160</td>
<td>Photovoltaik III</td>
<td></td>
</tr>
<tr>
<td>30880</td>
<td>Windenergie 3 - Entwurf von Windenergieanlagen</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 21690 Elektrische Maschinen II

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 → Wahlkatalog NEE 2 --> Spezialisierungsmodul
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
 • Grundlagen der Elektrotechnik
 • Elektrische Energietechnik
 • Elektrische Maschinen I

12. Lernziele:
 Studierende vertiefen ihre Kenntnisse über die elektrisch erregte und
 permanentmagnetisch erregte Synchronmaschine und
 Asynchronmaschine. Sie lernen das dynamische Verhalten dieser
 Maschinen kennen. Es werden auch Grundkenntnisse über
 den Aufbau und die Funktionsweise von Reluktanzmaschinen
 erworben.

13. Inhalt:
 • Drehfeld: Raumzeigertheorie, Stator- und Rotorfestes
 Koordinatensystem
 • Asynchronmaschine: vollständiges dynamisches
 Ersatzschaltbild, Rotorflussorientiertes Modell
 • Synchronmaschine: Vollständiges dynamisches Ersatzschaltbild,
 Rotorflussorientiertes Modell
 • Reluktanzmaschine: Aufbau und Funktion, mathematische
 Zusammenhänge, Bauformen und Einsatzgebiete

14. Literatur:
 • Schröder, Dierk: Elektrische Antriebe - Grundlagen ISBN-10:
 • Fischer, Rolf: Elektrische Maschinen ISBN-10: 3446425543
 • Müller, Germain: Grundlagen elektrischer Maschinen,ISBN-10:
 • Kleinrath, Hans: Grundlagen Elektrischer Maschinen, Akad.
 Verlagsgesellschaft, Wien, 1975
 • Seinsch, H. O.: Grundlagen elektrischer Maschinen und
 Antriebe, B.G. Teubner, Stuttgart, 1988
 • Richter, Rudolf: Elektrische Maschinen, Verlag von Julius
 Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
 • 216901 Vorlesung Elektrische Maschinen II
 • 216902 Übung Elektrische Maschinen II
<table>
<thead>
<tr>
<th>Absatz</th>
<th>Inhalt</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | **Präsenzzeit:** 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 21691 Elektrische Maschinen II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Tafel, Visualizer, ILIAS |
| 20. Angeboten von: | Elektrische Energiewandlung |
Modul: 21700 Hochspannungstechnik II

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, ➔ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodulte
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester ➔ Wahlkatalog NEE 2 --> Spezialisierungsmodulte

11. Empfohlene Voraussetzungen: - Elektrische Energetechnik

13. Inhalt:
- Schaltvorgänge und Schaltgeräte
- Die Blitzentladung
- Repräsentative Spannungsbeanspruchungen
- Darstellung von Wanderwellenvorgängen
- Begrenzung von Überspannungen
- Isolationsbemessung und Isolationskoordination

14. Literatur:
- Küchler: Hochspannungstechnik, Springer-Verlag, Berlin, 2005
- Hasse, Wiesinger: Handbuch für Blitzschutz und Erdung Pflaum Verlag, München, 1989
- Dorsch Überspannungen und Isolationsbemessung bei Drehstrom Hochspannungsanlagen, Siemens AG, Berlin, München, 1981

15. Lehrveranstaltungen und -formen:
• 217001 Vorlesung Hochspannungstechnik II
• 217002 Übung Hochspannungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 54 Stunden
Selbststudium: 126 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 21701 Hochspannungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 21710 Leistungselektronik II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtkatalog NEE 1 --→ Vertiefungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtkatalog NEE 1 --→ Spezialisierungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 2 --→ Spezialisierungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse vergleichbar Leistungselektronik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenntnisse vergleichbar Elektrische Energietechnik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Studierende...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...können die wichtigsten Schaltungen und die Betriebsweisen fremdgeführter Stromrichter und Resonanzkonverter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...können die wichtigsten Schaltungen und die Betriebsweisen von Stromrichtern in Anwendungen zur Nutzung erneuerbarer Energien.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>1) Übersicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Fremdgeführte Stromrichter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Resonant schaltentlastete Wandler (Resonanzkonverter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Anwendungen für erneuerbare Energien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>217102 Übung Leistungselektronik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>217101 Vorlesung Leistungselektronik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Frontalvorlesung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>21711 Leistungselektronik II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung (PL), Schriftlich, 120 Min., 2x pro Jahr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
Modul: 21730 Automatisierungstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501007</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
</tbody>
</table>
 → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 → Wahlkatalog NEE 2 --> Spezialisierungsmodelle
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 → Zusatzmodule |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Automatisierungstechnik, Informatik und Mathematik, Automatisierungstechnik I |
| 12. Lernziele: | Die Studierenden
 • sind in der Lage Automatisierungsprojekte fachgerecht durchzuführen
 • beherrschen die dazu benötigten Entwicklungsmethoden
 • verwenden die benötigten Automatisierungsverfahren und Rechnerwerkzeuge |
| 13. Inhalt: | Automatisierungsprojekte
 • Automatisierungsverfahren
 • Methoden für die Entwicklung von Automatisierungssystemen
 • Automatisierung mit qualitativen Modellen
 • Sicherheit und Zuverlässigkeit von Automatisierungssystemen |
| 14. Literatur: | Vorlesungsskript
 • Lauber, R., Göhner, P.: Prozessautomatisierung 1 Springer-Verlag, 1999
 • Lauber, R., Göhner, P.: Prozessautomatisierung 2 Springer-Verlag, 1999
 • Lunze, J.: Automatisierungstechnik Oldenbourg Verlag, 2003
 • Litz, L.: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004
 • Kahlert, J., Frank, H.: Fuzzy-Logik und Fuzzy-Control Vieweg, 1994
 • Halang, W., Konakovskyy, R.: Sicherheitsgerichtete Echtzeitsysteme Oldenbourg Verlag, 1999
 • Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at2 |
15. Lehrveranstaltungen und -formen:
- 217301 Vorlesung Automatisierungstechnik II
- 217302 Übung Automatisierungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
21731 Automatisierungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
Automatisierungs- und Softwaretechnik
Modul: 21740 Regelungstechnik II

2. Modulkürzel: 051010022
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Vertiefungsmodul

11. Empfohlene Voraussetzungen:
• Kenntnisse vergleichbar Regelungstechnik I
• Kenntnisse zur z-Transformation
• Grundkenntnisse zum Operationsverstärker
• Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
Studyierende...
• ...können mit Störgrößen in Regelsystemen umgehen.
• ...können die wichtigsten Merkmale von Regelsystemen mit Zweipunktverhalten und von zeitdiskreten Regelsystemen.
• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.
• ...können Regler entwerfen und realisieren.

13. Inhalt:
• Behandlung von Störgrößen in Regelkreisen
• Methoden zur Ermittlung von Störgrößen
• Regelkreise mit Stellgliedern, die Zweipunktverhalten aufweisen
• Realisierung von Reglerkomponenten mit Hilfe von Operationsverstärkern
• Realisierung von Reglern mit Hilfe von Mikroprozessoren
• Beschreibung von Übertragungsstrecken mit Hilfe der z-Transformation

14. Literatur:
• Föllinger, Otto: Regelungstechnik, Hüthig, Heidelberg, 1992
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Föllinger, Otto: Nichtlineare Regelungen I, Oldenbourg, München, 1998

15. Lehrveranstaltungen und -formen:
• 217401 Vorlesung Regelungstechnik II
• 217402 Übung Regelungstechnik II

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>21741 Regelungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 21760 Elektrische Energienetze II

2. Modulkürzel: 050310022
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen Ulrich Schärli

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
➞ Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
➞ Wahlplikatalog NEE 1 --> Vertiefungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
➞ Wahlplikatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
➞ Vertiefungsmodule

11. Empfohlene Voraussetzungen: "Elektrische Energienetze I" oder vergleichbare externe Vorlesung

12. Lernziele:
Studierende können die Leitungsbeläge von Drehstrom-Freileitungen und -Kabeln bestimmen.
Unsymmetrische, insbesondere einpolige Kurzschlüsse bzw. Erdschlüsse können sie berechnen und die dabei auftretenden Vorgänge beurteilen.
Darauf aufbauend können sie Fragen zur elektromagnetischen Kopplung und Beeinflussung durch Freileitungen beantworten.
Sie können die thermische Belastbarkeit von Kabeln berechnen und kennen wichtige Einflussparameter.
Sie können die Lastflussberechnung nach Newton-Raphson anwenden und deren Ergebnisse beurteilen.
Oberschwingungen und Spannungsschwankungen können sie abschätzen.
Sie kennen die aktuellen HGÜ-Techniken und deren Anwendungsfälle.

13. Inhalt:
• Kennwerte von Drehstrom-Freileitungen und -Kabeln
• Belastbarkeit von Kabeln
• Vorgänge bei Erdschluss und Erdkurzschluss
• Sternpunktbehandlung
• Beeinflussung
• Lastflussberechnung
• Zustandserkennung
• Netzrückwirkungen
• Hochspannungs-Gleichstrom-Übertragung (HGÜ)

14. Literatur:
• Oeding, Oswald: Elektrische Kraftwerke und Netze, Springer-Verlag
• Heuck, Dettmann: Elektrische Energieversorgung. Vieweg-Verlag
• Hosemann (Hg.): Hütte Taschenbücher der Technik. Elektrische Energietechnik. Band 3: Netze. Springer-Verlag
| 15. Lehrveranstaltungen und -formen: | • 217602 Übung Elektrische Energienetze II
• 217601 Vorlesung Elektrische Energienetze II |
|--|---|
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 21761 Elektrische Energienetze II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Overhead, Tafelanschrieb, Powerpointpräsentation |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 29160 Photovoltaik III

2. Modulkürzel: 050513027
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten: Jürgen Heinz Werner

 → Wahlkatalog NEE 2 --> Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule

11. Empfohlene Voraussetzungen: Photovoltaik I (z.B. aus BSc EEN oder ETIT)

12. Lernziele:
 - Vertiefte Kenntnisse der Funktionsweise von Solarzellen
 - Verständnis der theoretischen und praktischen Begrenzung von Wirkungsgraden
 - Kenntnis der wichtigsten Rekombinationsprozesse in Halbleitern

13. Inhalt:
 1. Absorption von Strahlung in Halbleitern
 2. Elektrische und optische Kenngrößen von Solarzellen
3. Lebensdauer von Ladungsträgern/Rekombinationsprozesse
4. Tiefe Störstellen in Halbleitern
5. Maximale Wirkungsgrade
6. Wie optimiert man eine Solarzelle? (Hocheffizienzprozesse)
7. Ohmsche Kontakte, Schottky-Kontakte, Silizide
8. Photovoltaische Messtechnik, Überblick
9. Simulationsprogramme für Solarzellen

14. Literatur:
- P. Würfel, Physik der Solarzellen (Spektrumverlag, Berlin, 2000)
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications (Centre for Photovoltaic Devices and Systems, Sydney, 1986)
- M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003)

15. Lehrveranstaltungen und -formen:
• 291601 Vorlesung Photovoltaik III
• 291602 Übung Photovoltaik III

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h

17. Prüfungsnummer/n und -name:
29161 Photovoltaik III (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
2x pro Jahr

18. Grundlage für ...

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 30880 Windenergie 3 - Entwurf von Windenergieanlagen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester → Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>060320011 Windenergie 1 - Grundlagen Windenergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sie können numerisch und experimentell Belastungen an Windenergieanlagen ermitteln.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sie können Lastrechnungen zur Auslegung der wichtigsten Komponenten und des Gesamtsystems anwenden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden sind in der Lage, Simulationsprogramme am Beispiel einer typischen Multi-MW Windenergieanlage anzuwenden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Entwurf von Windenergieanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Auslegungsmethodik und Richtlinien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Windfeldmodellierung (Begriffe, Turbulenzenmodellierung, Extremereignisse)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dynamik des Gesamtsystems (Campbell-Diagramm, Simulation, Strukturdynamik, Modellierung, Messtechnik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Blattentwurf mit Nachlaufdrall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Blattelement-Impulstheorie (BEM-Algorithmus, empirische Korrekturen, dynamische Effekte, Schräganströmung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hydrodynamische Belastungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Anlagenregelung und Betriebsführung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Lastfälle und Nachweise nach IEC 61400-1 ed. 3 (Auslegungsprozess, Lastfälle und Nachweise)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Messung von Belastungen und Leistung nach IEC 61400-12/-13 am Beispiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Betriebsfestigkeit (Nachweiskonzepte für WEA, Rainflow, Palmgren-Miner, schädigungs-äquivalente Lasten, Lastverweildauer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Software: Einführung in Benutzung der Programme und die Grundlagen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
aeroelastischer Berechnungen bzw. Mehrkörpersimulation Übung und Seminar

14. Literatur:
- Vorlesungsfolien im ILIAS
- Übungsblätter im ILIAS
- Windkraftanlagen (R. Gasch, J. Twele)

15. Lehrveranstaltungen und -formen:
• 308801 Vorlesung Entwurf von Windenergieanlagen I (WEA I)
• 308802 Übung Entwurf von Windenergieanlagen I (WEA I)
• 308803 Simulationsseminar

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit Entwurf von Windenergieanlagen I, Vorlesung: 24 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Vorlesung: 62 Stunden
- Präsenzzeit Entwurf von Windenergieanlagen I, Übung: 8 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Übung: 60 Stunden
- Präsenzzeit Simulationsseminar: 9 Stunden
- Selbststudium Simulationsseminar: 17 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30881 Windenergie 3 - Entwurf von Windenergieanlagen (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...:
Windenergie 4 - Windenergie-Projekt

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Windenergie
Modul: 21930 Photovoltaik II

2. Modulkürzel: 050513020
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten: Jürgen Heinz Werner
Markus Schubert

→ Vertiefungsmodule

11. Empfohlene Voraussetzungen: Photovoltaik I

12. Lernziele: Kenntnisse über den Aufbau, die Leistungsfähigkeit, Charakterisierung und Wirtschaftlichkeit von Photovoltaikanlagen

13. Inhalt:
1) Solarstrahlung
2) Solarzellen: Alternativen zu konventionellem, kristallinem Silizium
3) Markt und Wirtschaftlichkeit von Photovoltaikanlagen
4) Module: Temperatur, Verschaltung, Schutzdioden
5) Standort und Verschattung
6) Komponenten von Photovoltaikanlagen
7) Planung und Dimensionierung
8) Simulationen
9) Installation und Inbetriebnahme
10) Betrieb, Wartung, Monitoring
11) Photovoltaische Messtechnik

- DGS-Leitfaden, Photovoltaische Anlagen (Deutsche Gesellschaft für Sonnenenergie, Berlin, 2012)

15. Lehrveranstaltungen und -formen: • 219301 Vorlesung Photovoltaik II
• 219302 Übung Photovoltaik II

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 21931 Photovoltaik II (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Physikalische Elektronik
Modul: 29140 Smart Grids

2. Modulkürzel: 050310030
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Krzysztof Rudion
9. Dozenten: Krzysztof Rudion
11. Empfohlene Voraussetzungen: Elektrische Energienetze I
12. Lernziele:

13. Inhalt:
 • Regelmöglichkeiten dezentraler Erzeuger, Speicher, Elektrofahrzeuge und Lasten
 • Aggregation, Virtuelle Kraftwerke, Mikronetze
 • Smart Metering, Informations- und Kommunikationstechnik
 • Netzanschlussbedingungen und Systemdienstleistungen (z.B. Spannungs- und Frequenzhaltung)
 • Verteilnetzplanung
 • Netzmodellierung
 • Netzberechnung
 • Verteilnetzbetrieb

14. Literatur:
 • V. Quaschning, Regenerative Energiesysteme, 5. Aufl., Hanser Verlag
 • VDE-Studie: Smart Distribution 2020, ETG, 2008
 • VDE-Studie: Smart Energy 2020, ETG, 2010
 • ILIAS, Online-Material
 • dena Studie Systemdienstleistungen 2030
 • Buchholz, B. M., Styczynski, Z.: Smart Grids - Grundlagen und Technologien der elektrischen Netze der Zukunft

15. Lehrveranstaltungen und -formen:
 • 291401 Vorlesung Smart Grids
 • 291402 Übung Smart Grids

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 29141 Smart Grids (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
 Tafel, Beamer, ILIAS

20. Angeboten von:
 Netzintegration erneuerbarer Energien

Stand: 19. Oktober 2017
Modul: 29150 Windenergie 2 - Planung und Betrieb von Windparks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>060320011 Windenergie 1 - Grundlagen Windenergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>After attending the class the students should have the basic technical understanding for the planning and realization of a wind park and the necessary knowledge on the regulatory, economic and environmental issues related to the construction and operation of wind farms.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Preliminary site assessment
• Extreme wind distribution
• Wake models for loads and park efficiency
• Site specific load assessment
• Environmental impact (noise, shadow)
• Onshore: foundation and logistics
• Grid connection and integration
• Reliability of wind turbines
• Load monitoring of wind turbine components
• Offshore wind energy |
| 14. Literatur: | • PowerPoint slides available in ILIAS
• classroom exercise material available in ILIAS
• text book: R. Gasch, J. Twele, Windkraftanlagen, Teubner
• http://www.wind-energie.de/infocenter/technik |
| 15. Lehrveranstaltungen und -formen: | • 291501 Vorlesung Windenergie II
• 291502 Übung Windenergie II |
| 16. Abschätzung Arbeitsaufwand: | Time of lecture attendance: 28 hours
Self-study time for lectures: 62 hours
Time of classroom exercise attendance: 16 hours
Self-study time for exercises: 74 hours |
| 17. Prüfungsnummer/n und -name: | 29151 Windenergie 2 - Planung und Betrieb von Windparks (PL), Schriftlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ...: | |
| 19. Medienform: | PowerPoint slides and blackboard |
| 20. Angeboten von: | Windenergie |
600 Praktische Übungen im Labor

Zugeordnete Module:
- 14590 Praktische Übungen im Labor "Hochspannungstechnik"
- 22270 Praktische Übungen im Labor "Automatisierungstechnik"
- 22330 Praktische Übungen im Labor "Elektromechanische Energiewandlung II"
- 22350 Praktische Übungen im Labor "Leistungselectronik und Regelungstechnik"
- 22360 Praktische Übungen im Labor "Simulation gekoppelter Feldprobleme"
- 28400 Praktische Übungen im Labor "Energieübertragung"
- 30890 Windenergie 4 - Windenergie-Projekt
- 70080 Praktische Übungen im Labor "Messtechnik für Energiewandler und -speicher"
Modul: 14590 Praktische Übungen im Labor "Hochspannungstechnik"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310013</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Elektrische Energietechnik • Hochspannungstechnik 1</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende kann eine hochspannungstechnische Problemstellung strukturiert und selbständig lösen. (Definition eines komplexen Problems, Aufteilung in einzelne Teilaufgaben, Zeitplanung und Schnittstellendefinitionen) Der Studierende kann im Team arbeiten und die Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Vortrag präsentieren.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Unterschiedliche parallel angebotene Entwicklungs- oder Forschungsprojekte aus dem Gebiet der Hochspannungstechnik/Hochspannungsmesstechnik • Wird von Gruppen aus i.d.R. 3-4 Studierenden im Team durchgeführt • Projektdefinition, • Einarbeitung in die Aufgabenstellung durch Literaturrecherche • Aufteilung des Projektes in Teilprojekte mit definierten Schnittstellen • einzelne Gruppenmitglieder bearbeiten Teilprojekte parallel • praktische Realisierung und Inbetriebnahme des Systems • praxisnahes Arbeiten mit "state-of-the-art" Entwurfswerkzeugen • Präsentation der Ergebnisse in einem Abschlusskolloquium</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsmanuskript zu "Hochspannungstechnik I" • Selbständiges Auffinden von Literatur-/Informationsstellen (Bücher, Zeitschriften, Internet)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 145901 Praktische Übungen im Labor "Hochspannungstechnik"</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenz: 40 h Selbststudium: 140 h Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14591 Praktische Übungen im Labor "Hochspannungstechnik" (LBP), Sonstige, Gewichtung: 1 Lehrveranstaltungs begleitende Prüfung, die aus besteht aus: aktive Teilnahme und selbstständiges Arbeiten Qualität der erzielten Ergebnisse Schriftliche Ausarbeitung Präsentation der Ergebnisse im Seminarvortrag</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 22270 Praktische Übungen im Labor "Automatisierungstechnik"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501009</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulda.</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungsp.</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Automatisierungstechnik I bzw. vergleichbare Kenntnisse</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• besitzen fortgeschrittene Kenntnisse in den aktuellen Themen der Automatisierungstechnik (z. B. Konzipierung und Realisierung von Bussystemen, Entwicklung von Echtzeitautomatisierungssystemen und Rapid Prototyping-Entwicklungsprozess)</td>
</tr>
<tr>
<td></td>
<td>• haben einen Überblick über die aktuellen industriellen Entwicklungswerkzeuge in der Automatisierungstechnik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung in CAN</td>
</tr>
<tr>
<td></td>
<td>• Echtzeitprogrammierung mit Ada95</td>
</tr>
<tr>
<td></td>
<td>• Mikrocontroller-Programmierung</td>
</tr>
<tr>
<td></td>
<td>• Rapid-Prototyping mit ASCET-MD und ASCET-RP</td>
</tr>
<tr>
<td></td>
<td>• Speicherprogrammierbare Steuerungen (SPS)</td>
</tr>
<tr>
<td></td>
<td>• Einführung in FlexRay</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 222701 Praktische Übungen im Labor "Automatisierungstechnik"</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 40 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 140 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>22271 Praktische Übungen im Labor "Automatisierungstechnik" (LBP), Schriftlich und Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Hardware Demonstratoren für die Versuchs durchführung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
Modul: 22330 Praktische Übungen im Labor "Elektromechanische Energiewandlung II"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Vorlesung Elektrische Maschinen I Vorlesung Elektrische Maschinen II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Vertiefte Kenntnisse über das Verhalten und die Einsatzgebiete der konventionellen und modernen elektrischen Maschinen sowie der berührungslosen Energieübertragung durch praktische Übungen im Labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>siehe Module Elektrische Maschinen I und Elektrische Maschinen II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 223301 Praktische Übung Elektrische Maschinen, Experimente und Übungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>22331 Praktische Übungen im Labor "Elektromechanische Energiewandlung II" (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Umdrucke zur Versuchsvorbereitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 22350 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010024</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Studierende...</td>
</tr>
</tbody>
</table>

- ...können eine konkrete Aufgabenstellung aus dem Bereich der Leistungselektronik und Regelungstechnik in einer Kleingruppe strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen.
- ...können die erzielten Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Kolloquium darüber berichten.

13. Inhalt:

Projekt-Beispiele:
- Netzgeführte Stromrichter
- Störgrößen in Regelkreisen
- Resonanzwandler
- Zeitdiskrete Regelsysteme

Vorgehen:
- Vorbereitung, Berechnungen
- Strukturierung der Aufgabe, Gliederung in Arbeitspakete, Arbeitsplanung.
- Durchführung der Arbeitsschritte
- Dokumentation der Ergebnisse
- Abschlusskolloquium

14. Literatur:

siehe Module "Leistungselektronik I, II und "Regelungstechnik I, II

15. Lehrveranstaltungen und -formen:

- 223501 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 22351 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik" (LBP), Schriftlich oder Mündlich, Gewichtung: 1

Lehrveranstaltungsbegleitende Prüfung (LBP), die aus 4 Teilen besteht:
- Aktive Teilnahme und selbständiges Arbeiten
- Qualität der erzielten Ergebnisse
- Qualität der Dokumentation

Stand: 19. Oktober 2017
• Ergebnis der Befragung im Kolloquium

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Leistungselektronik und Regelungstechnik
Modul: 22360 Praktische Übungen im Labor "Simulation gekoppelter Feldprobleme"

2. Modulkürzel: 051800012
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 4
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Dr.-Ing. Andre Buchau
9. Dozenten: Prof. Dr. Jens Anders

12. Lernziele:
Die Studierenden:
• besitzen vertiefte Kenntnisse auf dem Gebiet der Modellierung und der numerischen Simulation elektrotechnischer Problemstellungen unter Berücksichtigung elektromagnetischer, thermischer sowie quantenmechanischer Effekte,
• sind in der Lage, komplexe Fragestellungen mithilfe von Modellierungs-, Simulations- und Visualisierungswerkzeugen im Team zu analysieren, zu lösen und die Ergebnisse zu präsentieren.

13. Inhalt:
14. Literatur:
15. Lehrveranstaltungen und -formen: • 223601 Praktische Übungen im Labor "Simulation gekoppelter Feldprobleme"
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 22361 Praktische Übungen im Labor "Simulation gekoppelter Feldprobleme" (LBP), Mündlich, Gewichtung: 1
Lehrveranstaltungsbegleitende Prüfung (LBP), die aus folgenden Teilen besteht:
• aktive Teilnahme und selbstständiges Arbeiten
• Qualität und Diskussion der im Team durchgeführten numerischen Simulationen
• Präsentation der Ergebnisse im Seminarvortrag
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Theorie der Elektrotechnik
Modulhandbuch: Master of Science Nachhaltige Elektrische Energieversorgung

Modul: 28400 Praktische Übungen im Labor "Energieübertragung"

2. Modulkürzel: 050310028

5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Wintersemester/Sommersemester

4. SWS: 4

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Krzysztof Rudion

9. Dozenten: Krzysztof Rudion

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, Zusatzmodule
 → Praktische Übungen im Labor --> Vertiefungsmodule

11. Empfohlene Voraussetzungen: Elektrische Energienetze I

12. Lernziele:

Der Studierende kann eine Problemstellung aus dem Bereich der Energieübertragung strukturiert und selbständig lösen. (Definition eines komplexen Problems, Aufteilung in einzelne Teilaufgaben, Zeitplanung und Schnittstellendefinitionen).

Der Studierende kann im Team arbeiten und die Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Vortrag präsentieren.

13. Inhalt:

Unterschiedliche parallel angebotene Entwicklungs- oder Forschungsprojekte aus dem Gebiet der Energieübertragung/Smart Grids

Wird von Gruppen aus i.d.R. 3-4 Studierenden im Team durchgeführt

- Projektdefinition
- Einarbeitung in die Aufgabenstellung durch Literaturrecherche
- Aufteilung des Projektes in Teilprojekte mit definierten Schnittstellen
- einzelne Gruppenmitglieder bearbeiten Teilprojekte parallel
- praktische Realisierung und Inbetriebnahme des Systems
- praxisnahes Arbeiten mit "state-of-the-art Entwurfswerkzeugen
- Präsentation der Ergebnisse in einem Abschlusskolloquium

14. Literatur:

- Selbständiges Auffinden von Literatur-/Informationsstellen (Bücher, Zeitschriften, Internet)

15. Lehrveranstaltungen und -formen:

- 284001 Praktische Übungen im Labor Elektrische Energieübertragung

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 40 Stunden
- Selbststudium: 140 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 28401 Praktische Übungen im Labor "Energieübertragung" (LBP), Sonstige, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Netzintegration erneuerbarer Energien

Stand: 19. Oktober 2017
Modul: 30890 Windenergie 4 - Windenergie-Projekt

2. Modulkürzel: 060320014
5. Moduldaue: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Po Wen Cheng
9. Dozenten: Po Wen Cheng

 → Praktische Übungen im Labor --> Vertiefungsmoduln

11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie
 060320013 Windenergie 3 - Entwurf von Windenergieanlagen

12. Lernziele:
 - Die Studierenden können in Teamarbeit ein Projekt entwickeln, das die Anforderungen eines praxisnahen Produktentwicklungsprozesses erfüllt.
 - Die Studierenden sind in der Lage einen industrienahren Entwicklungsprozess beispielhaft und in den wesentlichen Elementen umzusetzen.
 - Das theoretische Wissen das in den Modulen Windenergie 1 und Windenergie 3 erworben wurde, setzen die Studierenden in Teamarbeit praktisch um. Sie sind damit in der Lage ihre Entwurfsentscheidungen zu reflektieren und ingenieurwissenschaftlich zu untermauern.

13. Inhalt:
 Entwurf von Windenergieanlagen II
 - Teambildung, Ressourcenverteilung, Projektplanung
 - Marktdarstellung und Festlegen von Standortbedingungen
 - Definition des Pflichtenhefts
 - Aerodynamische Rotorauslegung und Anlagenregelung
 - Konzeptionierung und Layout
 - Analyse der Wirtschaftlichkeit und Kostenmodellierung
 - Dokumentation und Präsentation der Ergebnisse

14. Literatur:
 - Unterlagen zur Vorlesung
 - Übung unter ILIAS
 - http://www.wind-energie.de/infocenter/technik

15. Lehrveranstaltungen und -formen:
 • 308901 Vorlesung Entwurf von Windenergieanlagen II (WEA II)

16. Abschätzung Arbeitsaufwand:
 Präsenzeit Entwurf von Windenergieanlagen II, Vorlesung: 20 Stunden
 Selbststudium Entwurf von Windenergieanlagen II, Vorlesung: 160 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30891 Windenergie 4 - Windenergie-Projekt (PL), Sonstige, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: PowerPoint, Tafelanschrieb, Gruppenarbeit
20. Angeboten von: Windenergie
Modul: 70080 Praktische Übungen im Labor "Messtechnik für Energiewandler und -speicher"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513026</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke, Jürgen Heinz Werner, Renate Zapf-Gottwick</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Kenntnisse über die wichtigsten Techniken zur Charakterisierung von optischen, elektrischen und strukturellen Eigenschaften von Halbleitern und modernen elektrischen Energiespeichern</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Eigenschaften von Minoritäten und Majoritäten in Halbleitern und dünnen Schichten, Aufbau sowie elektrochemische, thermische und mechanische Charakterisierung von modernen wiederaufladbaren Zellen (z. B. Li-Ionen, Na-Ionen, Superkondensatoren)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>700801 Übung im Labor Messtechnik für Energiewandler und -speicher</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>70081 Praktische Übungen im Labor "Messtechnik für Energiewandler und -speicher" (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Photovoltaik</td>
</tr>
</tbody>
</table>
200 Spezialisierungsmodule

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Wahlverpflichtkatalog NEE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Wahlkatalog NEE 1</td>
</tr>
<tr>
<td>220</td>
<td>Wahlkatalog NEE 2</td>
</tr>
<tr>
<td>230</td>
<td>Wahlkatalog NEE 3</td>
</tr>
<tr>
<td>240</td>
<td>Wahlkatalog aus Bachelor Elektro- und Informationstechnik</td>
</tr>
<tr>
<td>250</td>
<td>Module aus anderen Master Studiengängen</td>
</tr>
</tbody>
</table>
210 Wahlpflichtkatalog NEE 1

Zugeordnete Module:

- 21690 Elektrische Maschinen II
- 21700 Hochspannungstechnik II
- 21710 Leistungselektronik II
- 21730 Automatisierungstechnik II
- 21740 Regelungstechnik II
- 21760 Elektrische Energienetze II
- 29160 Photovoltaik III
- 30880 Windenergie 3 - Entwurf von Windenergieanlagen
Modul: 21690 Elektrische Maschinen II

2. Modulkürzel: 052601021
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour

9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 ➔ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 ➔ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 ➔ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
 • Grundlagen der Elektrotechnik
 • Elektrische Energietechnik
 • Elektrische Maschinen I

12. Lernziele:
 Studierende vertiefen ihre Kenntnisse über die elektrisch erregte
 und permanentmagnetisch erregte Synchronmaschine und
 Asynchronmaschine. Sie lernen das dynamische Verhalten dieser
 Maschinen kennen. Es werden auch Grundkenntnisse über
 den Aufbau und die Funktionsweise von Reluktanzmaschinen
 erworben.

13. Inhalt:
 • Drehfeld: Raumzeigertheorie, Stator- und Rotorfestes
 Koordinatensystem
 • Asynchronmaschine: vollständiges dynamisches
 Ersatzschaltbild, Rotorflussorientiertes Modell
 • Synchronmaschine: Vollständiges dynamisches Ersatzschaltbild,
 Rotorflussorientiertes Modell
 • Reluktanzmaschine: Aufbau und Funktion, mathematische
 Zusammenhänge, Bauformen und Einsatzgebiete

14. Literatur:
 • Schröder, Dierk: Elektrische Antriebe - Grundlagen ISBN-10:
 • Fischer, Rolf: Elektrische Maschinen ISBN-10: 3446425543
 • Müller, Germar: Grundlagen elektrischer Maschinen, ISBN-10:
 • Kleinrath, Hans: Grundlagen Elektrischer Maschinen, Akad.
 Verlagsgesellschaft, Wien, 1975
 • Seinsch, H. O.: Grundlagen elektrischer Maschinen und
 Antriebe, B.G. Teubner, Stuttgart, 1988
 • Richter, Rudolf: Elektrische Maschinen, Verlag von Julius
 Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
 • 216901 Vorlesung Elektrische Maschinen II
 • 216902 Übung Elektrische Maschinen II
16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 Stunden
Selbststudium:	138 Stunden
Summe:	180 Stunden

17. Prüfungsnummer/n und -name:

| 21691 | Elektrische Maschinen II (PL), Schriftlich, 120 Min., Gewichtung: 1 |

18. Grundlage für ... :

19. Medienform:

| Tafel, Visualizer, ILIAS |

20. Angeboten von:

| Elektrische Energiewandlung |
Modul: 21700 Hochspannungstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>- Elektrische Energietechnik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 217001 Vorlesung Hochspannungstechnik II • 217002 Übung Hochspannungstechnik II</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>21701 Hochspannungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 21710 Leistungselektronik II

2. Modulkürzel: 051010021
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, ➞ Zusatzmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 ➞ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 ➞ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 ➞ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
 • Kenntnisse vergleichbar Leistungselektronik I
 • Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
 Studierende...
 ...kennen die wichtigsten Schaltungen und die Betriebsweisen fremdgeführter Stromrichter und Resonanzkonverter.
 ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
 ...kennen die wichtigsten Schaltungen und die Betriebsweisen von Stromrichtern in Anwendungen zur Nutzung erneuerbarer Energien.
 ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.

13. Inhalt:
 1) Übersicht
 2) Fremdgeführte Stromrichter
 3) Resonant schaltentlastete Wandler (Resonanzkonverter)
 4) Anwendungen für erneuerbare Energien

14. Literatur:
 • Heumann, K.: Grundlagen der Leistungselektronik B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
 • 217102 Übung Leistungselektronik II
 • 217101 Vorlesung Leistungselektronik II

16. Abschätzung Arbeitsaufwand:
 Frontalvorlesung

17. Prüfungsnummer/n und -name:
 21711 Leistungselektronik II (PL), Schriftlich, 120 Min., Gewichtung: 1
 Prüfungsleistung (PL), Schriftlich, 120 Min., 2x pro Jahr

18. Grundlage für ...

19. Medienform:
 Tafel, Folien, Beamer

20. Angeboten von:
 Leistungselektronik und Regelungstechnik
Modul: 21730 Automatisierungstechnik II

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Wahlkatalog NEE 3 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Zusatzmodule

11. Empfohlene Voraussetzungen:
Grundlagen der Automatisierungstechnik, Informatik und Mathematik, Automatisierungstechnik I

12. Lernziele:
Die Studierenden
 • sind in der Lage Automatisierungsprojekte fachgerecht durchzuführen
 • beherrschen die dazu benötigten Entwicklungsmethoden
 • verwenden die benötigten Automatisierungsverfahren und Rechnerwerkzeuge

13. Inhalt:
 • Automatisierungsprojekte
 • Automatisierungsverfahren
 • Methoden für die Entwicklung von Automatisierungssystemen
 • Automatisierung mit qualitativen Modellen
 • Sicherheit und Zuverlässigkeit von Automatisierungssystemen

14. Literatur:
 • Vorlesungsskript
 • Lauber, R., Göhner, P.: Prozessautomatisierung 1 Springer-Verlag, 1999
 • Lauber, R., Göhner, P.: Prozessautomatisierung 2 Springer-Verlag, 1999
 • Lunze, J.: Automatisierungstechnik Oldenbourg Verlag, 2003
 • Litz, L.: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004
 • Kahlert, J., Frank, H.: Fuzzy-Logik und Fuzzy-Control Vieweg, 1994
 • Halang, W., Konakovskiy, R.: Sicherheitsgerichtete Echtzeitssysteme Oldenbourg Verlag, 1999
 • Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at2
15. Lehrveranstaltungen und -formen:
 • 217301 Vorlesung Automatisierungstechnik II
 • 217302 Übung Automatisierungstechnik II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungszahl/n und -name:
 21731 Automatisierungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
 Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
 Automatisierungs- und Softwaretechnik
Modul: 21740 Regelungstechnik II

2. Modulkürzel: 051010022
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
- Wahlkatalog NEE 2 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Wahlkatalog NEE 1 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Vertiefungsmodul

11. Empfohlene Voraussetzungen:
- Kenntnisse vergleichbar Regelungstechnik I
- Kenntnisse zur z-Transformation
- Grundkenntnisse zum Operationsverstärker
- Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
- ...können mit Störgrößen in Regelsystemen umgehen.
- ...kennen die wichtigsten Merkmale von Regelsystemen mit Zweipunktverhalten und von zeitdiskreten Regelsystemen.
- ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.
- ...können Regler entwerfen und realisieren.

13. Inhalt:
- Behandlung von Störgrößen in Regelkreisen
- Methoden zur Ermittlung von Störgrößen
- Regelkreise mit Stellgliedern, die Zweipunktverhalten aufweisen
- Realisierung von Reglerkomponenten mit Hilfe von Operationsverstärkern
- Realisierung von Reglern mit Hilfe von Mikroprozessoren
- Beschreibung von Übertragungsstrecken mit Hilfe der z-Transformation

14. Literatur:
- Föllinger, Otto: Regelungstechnik, Hüthig, Heidelberg, 1992
- Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
- Föllinger, Otto: Nichtlineare Regelungen I, Oldenbourg, München, 1998

15. Lehrveranstaltungen und -formen:
- 217401 Vorlesung Regelungstechnik II
- 217402 Übung Regelungstechnik II

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>21741 Regelungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 21760 Elektrische Energienetze II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Ulrich Schärli</td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 2 --> Spezialisierungsmodule</td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 1 --> Vertiefungsmodul</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>"Elektrische Energienetze I" oder vergleichbare externe Vorlesung</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Kennwerte von Drehstrom-Freileitungen und -Kabeln</td>
</tr>
<tr>
<td></td>
<td>• Belastbarkeit von Kabeln</td>
</tr>
<tr>
<td></td>
<td>• Vorgänge bei Erdschluss und Erdkurzschluss</td>
</tr>
<tr>
<td></td>
<td>• Sternpunktbehandlung</td>
</tr>
<tr>
<td></td>
<td>• Beeinflussung</td>
</tr>
<tr>
<td></td>
<td>• Lastflussberechnung</td>
</tr>
<tr>
<td></td>
<td>• Zustandserkennung</td>
</tr>
<tr>
<td></td>
<td>• Netzrückwirkungen</td>
</tr>
<tr>
<td></td>
<td>• Hochspannungs-Gleichstrom-Übertragung (HGÜ)</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Oeding, Oswald: Elektrische Kraftwerke und Netze, Springer-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Heuck, Dettmann: Elektrische Energieversorgung. Vieweg-Verlag</td>
</tr>
<tr>
<td></td>
<td>• Hosemann (Hg.): Hütte Taschenbücher der Technik. Elektrische Energietechnik. Band 3: Netze. Springer-Verlag</td>
</tr>
</tbody>
</table>
- Brakelmann: Belastbarkeiten der Energiekabel. VDE-Verlag
- Schwab, A.: Elektroenergiesysteme, Springer-Verlag

| 15. Lehrveranstaltungen und -formen: | • 217602 Übung Elektrische Energienetze II
 | • 217601 Vorlesung Elektrische Energienetze II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 Stunden
 | Selbststudium: 124 Stunden
 | Summe: 180 Stunden |
17. Prüfungsnummer/n und -name:	21761 Elektrische Energienetze II (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :	
19. Medienform:	Overhead, Tafelanschrieb, Powerpointpräsentation
20. Angeboten von:	Energieübertragung und Hochspannungstechnik
Modul: 29160 Photovoltaik III

2. Modulkürzel: 050513027
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule

11. Empfohlene Voraussetzungen:
Photovoltaik I (z.B. aus BSc EEN oder ETIT)

12. Lernziele:
- Vertiefte Kenntnisse der Funktionsweise von Solarzellen
- Verständnis der theoretischen und praktischen Begrenzung von Wirkungsgraden
- Kenntnis der wichtigsten Rekombinationsprozesse in Halbleitern

13. Inhalt:
1. Absorption von Strahlung in Halbleitern
2. Elektrische und optische Kenngrößen von Solarzellen
3. Lebensdauer von Ladungsträgern/Rekombinationsprozesse
4. Tiefe Störstellen in Halbleitern
5. Maximale Wirkungsgrade
6. Wie optimiert man eine Solarzelle? (Hocheffizienzprozesse)
7. Ohmsche Kontakte, Schottky-Kontakte, Silizide
8. Photovoltaische Messtechnik, Überblick
9. Simulationsprogramme für Solarzellen

14. Literatur:
 - P. Würfel, Physik der Solarzellen (Spektrumverlag, Berlin, 2000)
 - M. A. Green, Solar Cells - Operating Principles, Technology and System Applications (Centre for Photovoltaic Devices and Systems, Sydney, 1986)
 - M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003)

15. Lehrveranstaltungen und -formen:
 • 291601 Vorlesung Photovoltaik III
 • 291602 Übung Photovoltaik III

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 138 h

17. Prüfungsnummer/n und -name:
 29161 Photovoltaik III (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
 2x pro Jahr

18. Grundlage für ... :

19. Medienform:
 Powerpoint, Tafel

20. Angeboten von:
 Physikalische Elektronik
Modul: 30880 Windenergie 3 - Entwurf von Windenergieanlagen

2. Modulkürzel: 060320013
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Po Wen Cheng
9. Dozenten: Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule

11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie

12. Lernziele:
- Die Studierenden verfügen über das Systemverständnis einer gesamten Windenergieanlage (WEA).
- Sie können numerisch und experimentell Belastungen an Windenergieanlagen ermitteln.
- Sie können Lastrechnungen zur Auslegung der wichtigsten Komponenten und des Gesamtsystems anwenden.
- Die Studierenden sind in der Lage, Simulationsprogramme am Beispiel einer typischen Multi-MW Windenergieanlage anzuwenden.

13. Inhalt:
Entwurf von Windenergieanlagen
 - Auslegungsmethodik und Richtlinien
 - Windfeldmodellierung (Begriffe, Turbulenzmodellierung, Extremereignisse)
 - Dynamik des Gesamtsystems (Campbell-Diagramm, Simulation, Strukturdynamik, Modellierung, Messtechnik)
 - Blattentwurf mit Nachlaufdrall
 - Blattelement-Impulstheorie (BEM-Algorithmus, empirische Korrekturen, dynamische Effekte, Schräganströmung)
 - Hydrodynamische Belastungen
 - Anlagenregelung und Betriebsführung
 - Lastfälle und Nachweise nach IEC 61400-1 ed. 3 (Auslegungsprozess, Lastfälle und Nachweise)
 - Messung von Belastungen und Leistung nach IEC 61400-12/-13 am Beispiel
 - Betriebsfestigkeit (Nachweiskonzepte für WEA, Rainflow, Palmgren-Miner, schädigungs-äquivalente Lasten, Lastverweildauer)
 - Software: Einführung in Benutzung der Programme und die Grundlagen
aeroelastischer Berechnungen bzw. Mehrkörpersimulation
Übung und Seminar
- Es werden Hörsaalübungen angeboten. Zusätzlich findet im
wöchentlichen Wechsel zu den Übungen das Simulationsseminar
statt. In diesem wird ein aktuelles Tool zur Auslegung von
Windturbinen vorgestellt und unter Anleitung angewendet.

14. Literatur:
- Vorlesungsfolien im ILIAS
- Übungsblätter im ILIAS
- Windkraftanlagen (R. Gasch, J. Twele)
- Wind Energy Explained: Theory, Design and Application (James
 F. Manwell, Jon G. McGowan, Anthony L. Rogers)

15. Lehrveranstaltungen und -formen:
- 308801 Vorlesung Entwurf von Windenergieanlagen I (WEA I)
- 308802 Übung Entwurf von Windenergieanlagen I (WEA I)
- 308803 Simulationsseminar

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit Entwurf von Windenergieanlagen I, Vorlesung: 24
 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Vorlesung: 62
 Stunden
- Präsenzzeit Entwurf von Windenergieanlagen I, Übung: 8
 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Übung: 60
 Stunden
- Präsenzzeit Simulationsseminar: 9 Stunden
- Selbststudium Simulationsseminar: 17 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30881 Windenergie 3 - Entwurf von Windenergieanlagen (PL),
 Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... : Windenergie 4 - Windenergie-Projekt

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Windenergie
220 Wahlkatalog NEE 2

Zugeordnete Module:

16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme
21690 Elektrische Maschinen II
21700 Hochspannungstechnik II
21710 Leistungselektronik II
21730 Automatisierungstechnik II
21740 Regelungstechnik II
21760 Elektrische Energienetze II
22040 Numerik
29160 Photovoltaik III
29190 Planungsmethoden in der Energiewirtschaft
29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen
30880 Windenergie 3 - Entwurf von Windenergieanlagen
30920 Elektronikmotor
41750 Speichertechnik für elektrische Energie II
41760 Aspekte der Elektromobilität
46710 Umweltsoziologie und Technikfolgenabschätzung
50520 Environmental Aspects
56950 Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung
68180 Ausgewählte Kapitel der Leistungselektronik
68390 Energiemärkte und Energiehandel
69480 Energieeffizienz in Industrie, Gewerbe, Handel und Dienstleistung
70010 Technologien und Methoden der Softwaresysteme II
72350 Nachhaltige Energieversorgung und Rationelle Energienutzung
79220 Finite Element Methods
Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Friedrich
9. Dozenten: Andreas Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
→ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
→ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
→ Wahlkatalog NEE 2 --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen: Abgeschlossenes Grundstudium und Grundkenntnisse Ingenieurwesen

13. Inhalt:
- Einführung in die Energietechnik, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie, Energieumwandlungsketten, Elektrochemische Energieerzeugung: - Systematik -
- Thermodynamische Grundlagen der elektrochemischen Energieumwandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie DeltaG, Wirkungsgrad der elektrochemischen Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
- Technischer Wirkungsgesetz, Strom-Spannungskennlinien von Brennstoffzellen, U(i)-Kennlinien, Transportphänomen
und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohmscher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

- **Überblick**: Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel
- **Brennstoffzellensysteme**, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen, Polymerelektrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen
- **Einsatzbereiche von Brennstoffzellensystemen**, Verkehr: Automobilsystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung
- **Brenngasbereitstellung und Systemtechnik**, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen,
- **Ganzheitliche Bilanzierung**, Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

14. Literatur:

- Vorlesungszusammenfassungen,

empfohlene Literatur:

15. Lehrveranstaltungen und -formen:

- 160201 Vorlesung Grundlagen Brennstoffzellentechnik
- 160202 Vorlesung Brennstoffzellentechnik, Technik und Systeme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

16021 Brennstoffzellentechnik - Grundlagen, Technik und Systeme (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

Kombination aus Multimediapräsentation, Tafelanschrieb und Übungen.

20. Angeboten von:

Brennstoffzellentechnik
Modul: 21690 Elektrische Maschinen II

2. Modulkürzel: 052601021
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour

9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
→ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
→ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
→ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
• Grundlagen der Elektrotechnik
• Elektrische Energietechnik
• Elektrische Maschinen I

12. Lernziele:
Studierende vertiefen ihre Kenntnisse über die elektrisch erregte
und permanentmagnetisch erregte Synchronmaschine und
Asynchronmaschine. Sie lernen das dynamische Verhalten dieser
Maschinen kennen. Es werden auch Grundkenntnisse über
den Aufbau und die Funktionsweise von Reluktanzmaschinen
erworben.

13. Inhalt:
• Drehfeld: Raumzeigertheorie, Stator- und Rotorfestes
 Koordinatensystem
• Asynchronmaschine: vollständiges dynamisches
 Ersatzschaltbild, Rotorflussorientiertes Modell
• Synchronmaschine: Vollständiges dynamisches Ersatzschaltbild,
 Rotorflussorientiertes Modell
• Reluktanzmaschine: Aufbau und Funktion, mathematische
 Zusammenhänge, Bauformen und Einsatzgebiete

14. Literatur:
• Schröder, Dierk: Elektrische Antriebe - Grundlagen ISBN-10:
• Fischer, Rolf: Elektrische Maschinen ISBN-10: 3446425543
• Müller, Germar: Grundlagen elektrischer Maschinen,ISBN-10:
• Kleinrath, Hans: Grundlagen Elektrischer Maschinen, Akad.
 Verlagsgesellschaft, Wien, 1975
• Seinsch, H. O.: Grundlagen elektrischer Maschinen und
 Antriebe, B.G. Teubner, Stuttgart, 1988
• Richter, Rudolf: Elektrische Maschinen, Verlag von Julius
 Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
• 216901 Vorlesung Elektrische Maschinen II
• 216902 Übung Elektrische Maschinen II
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>21691 Elektrische Maschinen II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Visualizer, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 21700 Hochspannungstechnik II

2. Modulkürzel: 050310021
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
➞ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
➞ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
➞ Wahlkatalog NEE 2 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen: - Elektrische Energietechnik

13. Inhalt:
- Schaltvorgänge und Schaltgeräte
- Die Blitzentladung
- Repräsentative Spannungsbeanspruchungen
- Darstellung von Wanderwellenvorgängen
- Begrenzung von Überspannungen
- Isolationsbemessung und Isolationskoordination

14. Literatur:
- Küchler: Hochspannungstechnik, Springer-Verlag, Berlin, 2005
- Hasse, Wiesinger: Handbuch für Blitzschutz und Erdung Pflaum Verlag, München, 1989
- Dorsch Überspannungen und Isolationsbemessung bei Drehstrom Hochspannungsanlagen, Siemens AG, Berlin, München, 1981

15. Lehrveranstaltungen und -formen:
• 217001 Vorlesung Hochspannungstechnik II
• 217002 Übung Hochspannungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 54 Stunden
Selbststudium: 126 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 21701 Hochspannungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 21710 Leistungselektronik II

2. Modulkürzel: 051010021
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modul dauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 ➞ Zusatzmodule
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester ➞ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester ➞ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester ➞ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:

- Kenntnisse vergleichbar Leistungselektronik I
- Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:

- Studierende...
- ...kennen die wichtigsten Schaltungen und die Betriebsweisen fremdgeführter Stromrichter und Resonanzkonverter.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
- ...kennen die wichtigsten Schaltungen und die Betriebsweisen von Stromrichtern in Anwendungen zur Nutzung erneuerbarer Energien.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.

13. Inhalt:

1) Übersicht
2) Fremdgeführte Stromrichter
3) Resonant schaltentlastete Wandler (Resonanzkonverter)
4) Anwendungen für erneuerbare Energien

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 217102 Übung Leistungselektronik II
- 217101 Vorlesung Leistungselektronik II

16. Abschätzung Arbeitsaufwand:

Frontalvorlesung

17. Prüfungsnummer/n und -name:

- 21711 Leistungselektronik II (PL), Schriftlich, 120 Min., Gewichtung: 1
- Prüfungsleistung (PL), Schriftlich, 120 Min., 2x pro Jahr

18. Grundlage für ...

19. Medienform:

- Tafel, Folien, Beamer

20. Angeboten von:

- Leistungselektronik und Regelungstechnik

Stand: 19. Oktober 2017
Modul: 21730 Automatisierungstechnik II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
- Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Wahlkatalog NEE 3 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
- Zusatzmodule

11. Empfohlene Voraussetzungen:
Grundlagen der Automatisierungstechnik, Informatik und Mathematik, Automatisierungstechnik I

12. Lernziele:
- Die Studierenden
 - sind in der Lage Automatisierungsprojekte fachgerecht durchzuführen
 - beherrschen die dazu benötigten Entwicklungsmethoden
 - verwenden die benötigten Automatisierungsverfahren und Rechnerwerkzeuge

13. Inhalt:
- Automatisierungsprojekte
- Automatisierungsverfahren
- Methoden für die Entwicklung von Automatisierungssystemen
- Automatisierung mit qualitativen Modellen
- Sicherheit und Zuverlässigkeit von Automatisierungssystemen

14. Literatur:
- Vorlesungsskript
- Lauber, R., Göhner, P.: Prozessautomatisierung 1 Springer-Verlag, 1999
- Lauber, R., Göhner, P.: Prozessautomatisierung 2 Springer-Verlag, 1999
- Litz, L.: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004
- Kahlerl, J., Frank, H. Fuzzy-Logik und Fuzzy-Control Vieweg, 1994
- Halang, W., Konakovksy, R.: Sicherheitsgerichtete Echtzeitsysteme Oldenbourg Verlag, 1999
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at2
15. Lehrveranstaltungen und -formen:
- 217301 Vorlesung Automatisierungstechnik II
- 217302 Übung Automatisierungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
21731 Automatisierungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
Automatisierungs- und Softwaretechnik
Modul: 21740 Regelungstechnik II

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➔ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
 ➔ Wahlpflichtkatalog NEE 2 --> Spezialisierungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➔ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➔ Zusatzmodule
 ➔ Vertiefungsmodul

11. Empfohlene Voraussetzungen:
- Kenntnisse vergleichbar Regelungstechnik I
- Kenntnisse zur z-Transformation
- Grundkenntnisse zum Operationsverstärker
- Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
- Studierende...
 - ...können mit Störgrößen in Regelsystemen umgehen.
 - ...kennen die wichtigsten Merkmale von Regelsystemen mit Zweipunktverhalten und von zeitdiskreten Regelsystemen.
 - ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.
 - ...können Regler entwerfen und realisieren.

13. Inhalt:
- Behandlung von Störgrößen in Regelkreisen
- Methoden zur Ermittlung von Störgrößen
- Regelkreise mit Stellgliedern, die Zweipunktverhalten aufweisen
- Realisierung von Reglerkomponenten mit Hilfe von Operationsverstärkern
- Realisierung von Reglern mit Hilfe von Mikroprozessoren
- Beschreibung von Übertragungsstrecken mit Hilfe der z-Transformation

14. Literatur:
- Föllinger, Otto: Regelungstechnik, Hüthig, Heidelberg, 1992
- Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
- Föllinger, Otto: Nichtlineare Regelungen I, Oldenbourg, München, 1998

15. Lehrveranstaltungen und -formen:
- 217401 Vorlesung Regelungstechnik II
- 217402 Übung Regelungstechnik II

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>21741 Regelungstechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 21760 Elektrische Energienetze II

2. Modulkürzel: 050310022
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulduer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen, Ulrich Schärli
 ➞ Wahlkatalog NEE 2 --> Spezialisierungsmodule
 ➞ Wahlkatalog NEE 1 --> Vertiefungsmodule
11. Empfohlene Voraussetzungen: "Elektrische Energienetze I" oder vergleichbare externe Vorlesung
13. Inhalt:
 • Kennwerte von Drehstrom-Freileitungen und -Kabeln
 • Belastbarkeit von Kabeln
 • Vorgänge bei Erdschluss und Erdkurzschluss
 • Sternpunktbehandlung
 • Beeinflussung
 • Lastflussberechnung
 • Zustandserkennung
 • Netzrückwirkungen
 • Hochspannungs-Gleichstrom-Übertragung (HGÜ)
14. Literatur:
 • Oeding, Oswald: Elektrische Kraftwerke und Netze, Springer-Verlag
 • Heuck, Dettmann: Elektrische Energieversorgung. Vieweg-Verlag
 • Hosemann (Hg.): Hütte Taschenbücher der Technik. Elektrische Energietechnik. Band 3: Netze. Springer-Verlag
• Handschin: Elektrische Energieübertragungssysteme. Teil 1: Stationärer Betriebszustand. Hüthig-Verlag
• Brakelmann: Belastbarkeiten der Energiekabel. VDE-Verlag
• Schwab, A.: Elektroenergiesysteme, Springer-Verlag

| 15. Lehrveranstaltungen und -formen: | 217602 Übung Elektrische Energienetze II
| | 217601 Vorlesung Elektrische Energienetze II |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 Stunden
| | Selbststudium: 124 Stunden
| | Summe: 180 Stunden |

| 17. Prüfungsnummer/n und -name: | 21761 Elektrische Energienetze II (PL), Schriftlich, 120 Min., Gewichtung: 1 |

| 18. Grundlage für ... : |
| 19. Medienform: | Overhead, Tafelanschrieb, Powerpointpräsentation |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 22040 Numerik

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Wolfgang Rucker
11. Empfohlene Voraussetzungen: Grundkenntnisse der numerischen Mathematik werden empfohlen
12. Lernziele: Die Studierenden:
 • besitzen die Grundkenntnisse der diskreten Modellierung und der numerischen Lösung der in der Elektrotechnik auftretenden partiellen Differentialgleichungen und Integralgleichungen,
 • besitzen einen Überblick über verschiedene Optimierungsverfahren,
 • beherrschen den Umgang mit Computer-Algebra-Systemen.
13. Inhalt:
 • Numerische Lösung partieller Differentialgleichungen mittels der Finite-Differenzen-Methode
 • Numerische Lösung von Integralgleichungen mittels der Momentenmethode
 • Effiziente Lösung linearer Gleichungssysteme
 • Matrixkompressionsverfahren (z.B. schnelle Multipolemethode)
 • Optimierungsverfahren
14. Literatur:
 • Meister A.: Numerik linearer Gleichungssysteme, Vieweg, Wiesbaden, 2005
15. Lehrveranstaltungen und -formen: 220402 Übung Numerik
 220401 Vorlesung Numerik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name: 22041 Numerik (PL), Mündlich, 45 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform: Tafel, Beamer
20. Angeboten von: Theorie der Elektrotechnik
Modul: 29160 Photovoltaik III

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513027</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>
→ Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodule |
| 11. Empfohlene Voraussetzungen: | Photovoltaik I (z.B. aus BSc EEN oder ETIT) |
| 12. Lernziele: | - Vertiefte Kenntnisse der Funktionsweise von Solarzellen
- Verständnis der theoretischen und praktischen Begrenzung von Wirkungsgraden
- Kenntnis der wichtigsten Rekombinationsprozesse in Halbleitern |
| 13. Inhalt: | 1. Absorption von Strahlung in Halbleitern
2. Elektrische und optische Kenngrößen von Solarzellen |
3. Lebensdauer von Ladungsträgern/Rekombinationsprozesse
4. Tiefe Störstellen in Halbleitern
5. Maximale Wirkungsgrade
6. Wie optimiert man eine Solarzelle? (Hocheffizienzprozesse)
7. Ohmsche Kontakte, Schottky-Kontakte, Silizide
8. Photovoltaische Messtechnik, Überblick
9. Simulationsprogramme für Solarzellen

14. Literatur:
- P. Würfel, Physik der Solarzellen (Spektrumverlag, Berlin, 2000)
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications (Centre for Photovoltaic Devices and Systems, Sydney, 1986)
- M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003)

15. Lehrveranstaltungen und -formen:
- 291601 Vorlesung Photovoltaik III
- 291602 Übung Photovoltaik III

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h

17. Prüfungsnummer/n und -name:
29161 Photovoltaik III (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
2x pro Jahr

18. Grundlage für ...

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 29190 Planungsmethoden in der Energiewirtschaft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Hufendiek

11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul Energiewirtschaft und Energieversorgung)

13. Inhalt:

15. Lehrveranstaltungen und -formen:
 - 291901 Vorlesung mit Übung Systemtechnische Planungsmethoden in der Energiewirtschaft
 - 291902 Workshop Derzeitige und zukünftige Energieversorgung und Umweltbelastung in Deutschland

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 70 h
Selbststudium: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 29191 Planungsmethoden in der Energiewirtschaft (PL), Mündlich, 40 Min., Gewichtung: 1
Zur erfolgreichen Absolvierung des Moduls gehört neben der bestandenen Modulprüfung ein Nachweis über 5 Teilnahmen am Seminar Energiemodelle (Unterschriften auf Seminarschein). Das Seminar kann sowohl im Sommersemester als auch im Wintersemester besucht werden.

18. Grundlage für ... :

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript, PC - Übungen

20. Angeboten von: Energiewirtschaft Energiesysteme
Modul: 29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Strömungslehre und Regelungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Instationäre Vorgänge in Rohrleitungssystemen, Numerische Verfahren zur Lösung transientes Strömungsvorgänge, Oszillierende Strömungen, Kraftwerksregelung, Netzregelung mit Wasserkraftanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 292102 Übung Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>29211 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen (PL), Schriftlich oder Mündlich, 40 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Strömungsmechanik und Hydraulische Strömungsmaschinen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 30880 Windenergie 3 - Entwurf von Windenergieanlagen

2. Modulkürzel: 060320013
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Po Wen Cheng
9. Dozenten: Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlkatalog NEE 2 --> Spezialisierungsmodulle
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodulle
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlpflichtkatalog NEE 1 --> Vertiefungsmodulle

11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie

12. Lernziele:
- Die Studierenden verfügen über das Systemverständnis einer gesamten Windenergieanlage (WEA).
- Sie können numerisch und experimentell Belastungen an Windenergieanlagen ermitteln.
- Sie können Lastrechnungen zur Auslegung der wichtigsten Komponenten und des Gesamtsystems anwenden.
- Die Studierenden sind in der Lage, Simulationsprogramme am Beispiel einer typischen Multi-MW Windenergieanlage anzuwenden.

13. Inhalt:
Entwurf von Windenergieanlagen
- Auslegungsmethodik und Richtlinien
- Windfeldmodellierung (Begriffe, Turbulenzmodellierung, Extremereignisse)
- Dynamik des Gesamtsystems (Campbell-Diagramm, Simulation, Strukturdynamik, Modellierung, Messtechnik)
- Blattentwurf mit Nachlaufdrall
- Blattelement-Impulstheorie (BEM-Algorithmus, empirische Korrekturen, dynamische Effekte, Schräganströmung)
- Hydrodynamische Belastungen
- Anlagenregelung und Betriebsführung
- Lastfälle und Nachweise nach IEC 61400-1 ed. 3 (Auslegungsprozess, Lastfälle und Nachweise)
- Messung von Belastungen und Leistung nach IEC 61400-12/-13 am Beispiel
- Betriebsfestigkeit (Nachweiskonzepte für WEA, Rainflow, Palmgren- Miner, schädigungs-äquivalente Lasten, Lastverweildauer)
- Software: Einführung in Benutzung der Programme und die Grundlagen
aeroelastischer Berechnungen bzw. Mehrkörpersimulation
Übung und Seminar

14. Literatur:
- Vorlesungsfolien im ILIAS
- Übungsblätter im ILIAS
- Windkraftanlagen (R. Gasch, J. Twele)

15. Lehrveranstaltungen und -formen:
- 308801 Vorlesung Entwurf von Windenergieanlagen I (WEA I)
- 308802 Übung Entwurf von Windenergieanlagen I (WEA I)
- 308803 Simulationsseminar

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit Entwurf von Windenergieanlagen I, Vorlesung: 24 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Vorlesung: 62 Stunden
- Präsenzzeit Entwurf von Windenergieanlagen I, Übung: 8 Stunden
- Selbststudium Entwurf von Windenergieanlagen I, Übung: 60 Stunden
- Präsenzzeit Simulationsseminar: 9 Stunden
- Selbststudium Simulationsseminar: 17 Stunden
- Summe: 180 Stunden

17. Prüfungszahl/n und -name: 30881 Windenergie 3 - Entwurf von Windenergieanlagen (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... : Windenergie 4 - Windenergie-Projekt

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Windenergie
Modul: 30920 Elektronikmotor

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601024</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulterme:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA Enzo Cardillo</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Elektrische Maschinen I</td>
</tr>
</tbody>
</table>
• N. Parspour: Bürstenlose Gleichstrommaschine mit Fuzzy Regelung für ein Herzunterstützungssystem, Shaker Verlag, Aachen, 1996 |
| 15. Lehrveranstaltungen und -formen: | • 309201 Vorlesung Elektronikmotor |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 30921 Elektronikmotor (PL), Schriftlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Beamer, Tafel, ILIAS |
| 20. Angeboten von: | Elektrische Energiewandlung |
Modul: 41750 Speichertechnik für elektrische Energie II

2. Modulkürzel: 050513062
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Peter Birke
9. Dozenten: Kai Peter Birke
 → Wahlkatalog NEE 2 --> Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Zusatzmodule
11. Empfohlene Voraussetzungen: Speichertechnik für elektrische Energie I (optional, keine zwingende Voraussetzung)
12. Lernziele:
 • Vertieftes Verständnis der mikroskopischen Abläufe in elektrochemischen Energiespeichern
 • Wichtige Messverfahren
 • Diskussion elektrischer Speichertechniken insbesondere in Bezug auf ihre Eignung zur nachhaltigen elektrischen Energieversorgung
 • Die Studenten erlangen ein vertieftes Verständnis und Auslegungskompetenz für elektrische Energiespeicher für unterschiedliche aktuelle und zukünftige Anwendungsgebiete.
13. Inhalt:
 VL1: Grundlagen der Thermodynamik und Elektrochemie
 VL2: Ausgewählte Aspekte der Elektrochemie für elektrische Energiespeicherung
 VL3: Elektrochemie in der praktischen Anwendung
 VL4: Ladungstransport in Feststoffen und Flüssigkeiten, Festkörperbatterien (nächste Generation)
 VL5: Messverfahren und Überwachung I (Zellebene)
 VL6: Messverfahren und Überwachung II (Batterieebene)
 VL7: Brennstoffzellen
 VL8: Wasserstoffelektrolyse, moderne Verfahren der Wasserstoffspeicherung und -verteilung
 VL9: Photokatalytische Reaktoren
 VL10: Power to X
 VL11: Stationäre Energiespeicher (MWh-Bereich) auf der Basis von Batterien
 VL12: Elektrische Energiespeicher in Insellösungen und Smart Grids
 VL13: Alternative Speichertechniken für elektrische Energie
 VL14: Zukünftige Speichertechniken für elektrische Energie
 VL15: Repetitorium
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 417501 Vorlesung Speicher für Elektrische Energie II
 • 417502 Übung Speicher für Elektrische Energie II
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 60 h
Selbststudium: ca. 120 h
Summe: 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>41751 Speichertechnik für elektrische Energie II (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiespeichersysteme</td>
</tr>
</tbody>
</table>
Modul: 41760 Aspekte der Elektromobilität

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten erhalten Einblicke in die verschiedenen Themenschwerpunkte der Elektromobilität. Sie kennen und verstehen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Den Aufbau und die Funktionsweise des Antriebstranges eines Elektrofahrzeuges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verschiedene Antriebskonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Anforderungen an die Fahrzeugdynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Den Energiefluss von der Erzeugung bis zum Fahrzeug</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mobile Energiespeicherkonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Auswirkung verschiedener Ladekonzepte auf das Energienetz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektronische Assistenzsysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Für die einzelnen Studienschwerpunkte "Elektrischer Antrieb, "Infrastruktur und "Assistenzsysteme werden technologische Gegebenheiten und Herausforderungen analysiert, sowie ein Überblick über den aktuellen Stand der Technik und Forschung gegeben. Es wird ein Überblick gegeben über:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrische Antriebskonzepte für Fahrzeuge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrische Maschinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leistungselektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrische Netze und Smart-Grids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fahrzeugtechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Speichertechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sensorik und Signalverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kommunikation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 417601 Vorlesung Aspekte der Elektromobilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 417602 Übung Aspekte der Elektromobilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>41761 Aspekte der Elektromobilität (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, I LIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 46710 Umweltsoziologie und Technikfolgenabschätzung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Cordula Kropp

9. Dozenten: Cordula Kropp, Jürgen Hampel, Michael Zwick

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, → Wahlpflichtkatalog NEE 1 --> Spezialisierungsmodule
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, → Wahlpflichtkatalog NEE 1 --> Vertiefungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester → Wahlkatalog NEE 2 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden können auf Basis der wichtigsten Konzepte der Umwelt- und Techniksoziologie, der science-technology-studies, der Risiko- und Infrastrukturforschung eigene Fragen und Forschungsansätze formulieren und fremde Untersuchungen beurteilen. Sie sind mit aktuellen theoretischen Debatten und Forschungsfeldern vertraut.

Die Studierenden sind in der Lage, das interdependente Verhältnis von Gesellschaft, Technik und Natur konzeptionell und themenspezifisch zu beschreiben und verfügen über Kenntnisse unterschiedlicher Konzepte und Herangehensweisen für die gesellschaftliche Gestaltung der Wechselwirkungen, bspw. aus der Technikfolgenabschätzung, der Risiko-Governance oder der experimentellen Entwicklung soziotechnischer Konstellationen (Reallabore etc.).

Sie kennen Forschungsbefunde zu Umwelteinstellungen, Technikakzeptanz und typischen Konflikten um gesellschaftliche Natur- und Technikverhältnisse. Sie verstehen die Bedingungen für umweltgerechtes Verhalten und können die Klüfte zwischen Umweltbewusstsein und umweltschonendem Handeln erklären.

Sie kennen zentrale Untersuchungsgebiete und Herangehensweisen der Forschung für nachhaltige Entwicklung und können diese mit modernen politischen Maßnahmen und Governance-Verfahren verknüpfen, die zu einer Verbesserung des umweltbezogenen Handelns und Entscheidens und der Akzeptabilität nachhaltigkeitsbezogener politischer Maßnahmen führen.

Sie kennen die Unterschiede zwischen der klassischen, konstruktiven und partizipativen Technikfolgenabschätzung und sind mit neueren Ansätzen der Diskussion und Bewertung soziotechnischer Zukünfte vertraut.

13. Inhalt:
Das Modul befasst sich mit den zentralen Themen der Technik- und Umweltsoziologie. Diese reichen von der sozialwissenschaftlichen Innovationsforschung, der Risikoforschung über die science-technology-studies, die sozialwissenschaftliche Nachhaltigkeitsforschung und die
Analyse der Ursachen und Verlaufsformen von Technikkonflikten bis hin zur Frage der Governance von sozio-technischen Innovationsprozessen und Infrastruktursystemen.

In der Vorlesung werden diese Inhalte im Überblick vorgestellt. Die dazu gehörenden Seminare des Moduls vertiefen ausgewählte Themenbereiche, so etwa Risikoforschung, Techniksoziologie, Wissenschafts- und Technikkommunikation oder sozialwissenschaftliche Umwelt- und Transformationsforschung.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 467101 Vorlesung Umweltsoziologie und Technikfolgenabschätzung
- 467102 Seminar Umweltsoziologie und Technikfolgenabschätzung

16. Abschätzung Arbeitsaufwand:

Vorlesung
Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden

Seminar
Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 46711 Umweltsoziologie und Technikfolgenabschätzung (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Technik- und Umweltsoziologie
Modul: 50520 Environmental Aspects

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Hans-Georg Schwarz-von Raumer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lydia Seitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manuel Krauß</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 2 --> Spezialisierungsmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>The students have basic knowledge about basic environmental aspects in infrastructure planning concerning soils, species and biotopes, air quality and hydro systems. They know how to include environmental aspects in spatial planning and to assess environmental impacts of strategies and projects. They are aware and have gained skills in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ecological evaluation methods (e.g. land suitability) and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Environmental Impact Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students have first experiences in project exercises.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>A: Lecture "Ecological aspects of infrastructure planning" Introduction to the environment factors and goods: geological resources, species and biotopes, ecosystem functioning, Air quality, hydro systems, impact of land use systems (especially agriculture and urbanisation, ecological landscape design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B: Seminar "Environmental impact assessment" In the seminar students have the task to prepare a presentation and a paper about:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Structuring and evaluation of environmental impacts of strategies and projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Legislative aspects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modelling and evaluation methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tools for impact modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Case study examples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternatively the students work on case study exercises covering strategic regional and urban planning as well as road, housing, industrial, water, sports, tourism and other infrastructure projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Information will be provided during the lectures Additional material can be downloaded from ILIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 505201 Vorlesung Ecological aspects of infrastructure planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 505202 Seminar Environmental impact assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Sum 204 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 17. Prüfungsnummer/n und -name: | • 50521 Environmental Aspects (PL), Schriftlich, 120 Min., Gewichtung: 1
| | • V Vorleistung (USL-V), Schriftlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Landschaftsplanung und Ökologie |
Modul: 56950 Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung

2. Modulkürzel: 050310032
5. Moduldaauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Krzysztof Rudion
9. Dozenten: Krzysztof Rudion
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
➞ Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
➞ Wahlkatalog NEE 2 --> Spezialisierungsmodule
11. Empfohlene Voraussetzungen: Elektrische Energienetze I, Smart Grids
12. Lernziele:
13. Inhalt:
Grundlagen der Netzplanung mit DEA
Grundlagen des Netzbetriebes
Modellierung der relevanten Betriebsmittel
Windparkmodellierung
Zuverlässigkeitsanalyse der elektrischen Netze
Aspekte der Elektrizitätswirtschaft und Investitionsbewertung
Liberalisierter Energiemarkt
Systembeobachtbarkeit und PMU
DSA (dynamic security assessment) und Blackout-Prävention
NSM (Netzsicherheitsmanagement) und Versorgungsicherheit
Netzsimulation
14. Literatur:
B. Oswald - Netzberechnung, Berechnung stationärer und quasi-stationärer Betriebszustände in Elektroenergieversorgungsnetzen, vde-verlag, 1992
B. Oswald - Netzberechnung 2, Berechnung transater Vorgänge Elektroenergieversorgungsnetzen, vde-verlag, 1996
K. Heuck, K.-D. Dettmann, D. Schulz - Elektrische Energieversorgung, 8. Auflage, Vieweg+Teubner 2010
ILIAS, Online-Material

| 15. Lehrveranstaltungen und -formen: | • 569501 Vorlesung Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung
• 569502 Übung Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit: 138 h
Gesamt: 180 h |
17. Prüfungsnummer/n und -name:	56951 Planung und Betrieb elektrischer Netze mit dezentraler Einspeisung (PL), Schriftlich, 90 Min., Gewichtung: 1
18. Grundlage für ... :	
19. Medienform:	Beamer, Overhead-Projektor, Tafel, ILIAS
20. Angeboten von:	Netzintegration erneuerbarer Energien
Modul: 68180 Ausgewählte Kapitel der Leistungselektronik

4. SWS: 4 7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ingmar Kallfass

9. Dozenten: Ingmar Kallfass

11. Empfohlene Voraussetzungen: Grundlagenvorlesungen zu Halbleitertechnologien und Leistungselektronik sind hilfreich. Introductory courses on semiconductor technology and power electronics are helpful.

12. Lernziele: Studierende erlangen vertiefte Kenntnisse über ausgewählte aktuelle Themen der Leistungselektronik. Der Studierende erlernt die Ausarbeitung und Präsentation eines ausgewählten Themas der Vorlesung in Form einer wissenschaftlichen Publikation. Students gain thorough knowledge of selected topics on power electronics. The student is able to prepare a concise essay and presentation on a selected topic of the lecture in the form of a scientific publication.

13. Inhalt: Die Vorlesung behandelt aktuelle Forschungsthemen aus den Gebieten
 • Halbleitertechnologien für die Leistungselektronik
 • Wide-Bandgap Halbleiter-basierte (z.B. GaN, SiC) Leistungselektronik, integrierte Schaltungen und Anwendungen
 • Charakterisierung und Modellierung von Leistungshalbleiterbauelementen
 • Messtechnik in der Leistungselektronik

Im angeleiteten Selbststudiumsteil (Seminar) vertiefen die Studierenden ein ausgewähltes Thema der Vorlesung und fertigen eine wissenschaftliche Ausarbeitung in Form eines Konferenzpapers an und stellen dieses in einer Abschlusspräsentation vor.
 • The lecture deals with selected research topics from the areas of
 • Semiconductor technologies for power electronics
 • Wide bandgap semiconductor-based (e.g. GaN, SiC) power electronics, circuits and applications
 • Characterisation and modelling of power semiconductor devices
 • Measurement techniques in power electronics

In the tutored self-study part (seminar) the student delves into a selected topic of the lecture and prepares a scientific essay in the form of a conference paper and gives an oral presentation of the paper.

14. Literatur: Course material made available at the onset of the course

15. Lehrveranstaltungen und -formen: • 681801 Vorlesung Ausgewählte Kapitel der Leistungselektronik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 68181 Ausgewählte Kapitel der Leistungselektronik (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
Schriftliche Ausarbeitung und Abschlussvortrag (20 Min.), Prüfung wird einmal im Jahr angeboten. Die schriftliche Ausarbeitung ist in englischer Sprache abgefasst, der Abschlussvortrag kann auf Englisch oder Deutsch gehalten werden.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Robuste Leistungshalbleitersysteme
Modul: 68390 Energiemärkte und Energiehandel

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Hufendiek
9. Dozenten: Kai Hufendiek
11. Empfohlene Voraussetzungen: Grundkenntnisse der Energiewirtschaft (z.B. Modul Energiewirtschaft und Energieversorgung)

12. Lernziele:

Darüber hinaus lernen Sie die Organisation von Handelshäusern kennen, die in Commodity-Märkten agieren.

Die in den Vorlesungen vermittelten theoretischen Grundlagen werden mittels eines Planspiels zum Thema Energiehandel interaktiv getestet.

13. Inhalt:
- Aufbau und Funktion von Energiemärkten
- Rolle von Energiemärkten im Energiesystem
- Produkte auf Energiemärkten
- Regulierung von Märkten
- Marktmacht von Unternehmen
- Zusammenhang zwischen Information, Marktpreisregeln, Marktstrukturen und Preisbildung
- Aufgabe und Funktion von Risikomanagement und Risiko Controlling
- Positionsbestimmung, Mark-to-Market, Risikomaße wie Value at Risk und ihre Aufgabe
- Handels- und Risikomanagementstrategien wie Spekulation und Hedging
14. Literatur:
- Online-Unterlagen zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 683901 Vorlesung Energiemärkte und Energiehandel
- 683902 Projektseminar Planspiel Energiehandel

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbstdstudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 68391 Energiemärkte und Energiehandel (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 69480 Energieeffizienz in Industrie, Gewerbe, Handel und Dienstleistung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041211010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Peter Radgen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Blesl, Alois Kessler, Peter Radgen</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, ➔ Wahlkatalog NEE 2 --> Spezialisierungsmodule

Empfohlene Voraussetzungen:
Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

Lernziele:

Inhalt:
- Energieverbrauch und Energieeinsparpotentiale
- Einflussfaktoren des Energieverbrauchs
- Querschnittstechnologien (Elektromotoren, Druckluft, Pumpen, Kälte, Ventilatoren, Trockner und Öfen, Wärmeübertrager und Abwärmenutzung, Beleuchtung, Dampf- und Warmwassererzeugung, Transformatoren)
- Branchentechnologien (Metallerzeugung und -verarbeitung, Chemische Industrie, Steine und Erden (Zement, Glas, Keramik), Holz-/Papierindustrie, Lebensmittelindustrie, Galvanik, Lackierung, Rechenzentren)
- Übertragung auf andere Branchen oder Prozesse

Literatur:
- Skript

Lehrveranstaltungen und -formen:
- 694801 Vorlesung Energieeffizienz I - Querschnittstechnologien
- 694802 Vorlesung Energieeffizienz II - Branchentechnologien

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h
| 17. Prüfungsnummer/n und -name: | 69481 Energieeffizienz in Industrie, Gewerbe, Handel und Dienstleistung (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | schriftlich 120 min oder mündlich 40 min |
| 19. Medienform: | |
| 20. Angeboten von: | Energiewirtschaft und Rationelle Energieanwendung |
Modul: 70010 Technologien und Methoden der Softwaresysteme II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Objektorientierung aus Modul "Grundlagen der Softwaretechnik" und Kenntnis der Phasen des Softwareentwicklungsprozesses aus Modul "Softwaretechnik I"</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Kenntnisse über Softwarequalität für technische Systeme, Softwaretechniken für bestehende technische Systeme und aktuelle Themen der Softwaretechnik</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsskript</td>
</tr>
<tr>
<td></td>
<td>• Henning, W., Wolf-Gideon, B.: Agile Softwareentwicklung, dpunkt-Verlag, 2010</td>
</tr>
<tr>
<td></td>
<td>• Robra, Ch.: Modellierung komponentenbasierter Software-Architekturen: Grundlagen, Konzepte und Methoden, VDM Verlag Dr. Müller, 2007</td>
</tr>
<tr>
<td></td>
<td>• Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st2</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 700101 Vorlesung Technologien und Methoden der Softwaresysteme II</td>
</tr>
<tr>
<td></td>
<td>• 700102 Übung Technologien und Methoden der Softwaresysteme II</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 Stunden</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 180 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>70011 Technologien und Methoden der Softwaresysteme II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
Modul: 72350 Nachhaltige Energieversorgung und Rationelle Energienutzung

2. Modulkürzel: 041210010
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Hufendiek

9. Dozenten: Kai Hufendiek
Peter Radgen

11. Empfohlene Voraussetzungen: Thermodynamik, Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul Energiewirtschaft und Energieversorgung)

12. Lernziele:
Die Studierenden kennen die Grundlagen der rationellen Energieanwendung und können die wichtigsten Methoden zur quantitativen Bilanzierung und Analyse von Energiesystemen anwenden und sind damit in der Lage, Energiesysteme zu bewerten.

13. Inhalt:
• Konzepte der Nachhaltigkeit
• Analysemethoden des energetischen Zustandes von Anlagen und Systemen
• Pinch-Analyse
• Exergoökonomische Methode
• Abwärmenutzungsoptimierung
• Wärmerückgewinnung
• Einsatz von Wärmepumpen
• Systemvergleiche von Energieanlagen
• Systeme mit Kraft-Wärme-Kopplung
• Energiemanagementsysteme und Energie-Audits, Organisation von Energieeffizienz in Unternehmen

14. Literatur: line-Manuskript, Daten- und Arbeitsblätter

15. Lehrveranstaltungen und -formen:
• 723501 Vorlesung und Übung Techniken der rationellen Energieanwendung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium und Prüfungsvorbereitung: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
72351 Nachhaltige Energieversorgung und Rationelle Energienutzung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Energiewirtschaft und Rationelle Energieanwendung

Stand: 19. Oktober 2017
Modul: 79220 Finite Element Methods

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache: Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Andre Buchau</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andre Buchau</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Basic knowledge in electrodynamics</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Learn concept of numerical field computations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Learn fundamentals of finite element methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Learn application of finite element methods for the solution of practical problems in electrical engineering</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fundamentals of numerical methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Process of numerical field computations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geometrical modelling using finite elements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mathematical model of electric and magnetic field problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Finite element method (FEM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Boundary element method (BEM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Application of FEM and BEM in science and engineering</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lecture notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numerical models of examples and exercises</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 792201 Finite element methods - lecture with exercise</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Presence time: 56 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Self-study: 124 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total: 180 h</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>79221 Finite Element Methods Oral Exam (PL), Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Projector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Computer laboratory</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Theorie der Elektrotechnik</td>
<td></td>
</tr>
</tbody>
</table>
230 Wahlkatalog NEE 3

Zugeordnete Module:

- 18320 Solartechnik II
- 22110 Diagnostik und Schutz elektrischer Netzkomponenten
- 22180 Wissenschaftliches Vortragen und Schreiben II
- 22220 Konstruktion elektrischer Maschinen
- 24790 Elektrochemische Energiespeicherung in Batterien
- 29180 Dynamik elektrischer Verbundsysteme
- 30610 Regelungstechnik für Kraftwerke
- 30750 Meeresenergie
- 30770 Planung von Wasserkraftanlagen
- 30950 Mobile Energiespeicher
- 36800 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik
- 36830 Lithiumbatterien: Theorie und Praxis
- 37010 Netzentwicklung von Windenergie
- 37300 Technische Akustik
- 40510 Der Ingenieur als innovativer Unternehmer
- 41770 Induktives Laden
- 45420 Windenergie 5 - Windenergie-Labor
- 51690 Hochspannungs freileitungen
- 51730 Umweltrecht und Regulierung
- 56940 Seminar Netzintegration Erneuerbarer Energien
- 58110 Expertensysteme in der elektrischen Energieversorgung
- 67230 EMV- und Hochspannungsmesstechnik
- 67530 Photovoltaische Inselsysteme
- 68280 Energetische Optimierung der Produktion
- 68400 Energiepolitik
- 69470 Energieeffizienz II - Branchentechnologien
- 69490 Energieeffizienz I - Querschnittstechnologien
- 69500 Energiemanagement nach ISO 50001
- 71930 Elektrische Verbundsysteme
- 71950 Druckluft und Pneumatik
- 71970 Unternehmenssteuerung in der Energiewirtschaft
- 72150 Analyse und Optimierung industrieller Energiesysteme
Modul: 18320 Solartechnik II

2. Modulkürzel:	042410025
5. Moduldauer:	Einsemestrig
3. Leistungspunkte:	3 LP
6. Turnus:	Wintersemester
4. SWS:	2
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Dr.-Ing. Harald Drück
9. Dozenten:	Tobias Hirsch
11. Empfohlene Voraussetzungen:	Vordiplom und Grundkenntnisse Ingenieurwesen, Technische Thermodynamik
13. Inhalt:	Einführung und allgemeine Technikübersicht
• Potential und Markt solarthermischer Kraftwerke	
• Grundlagen der Umwandlung konzentrierter Solarstrahlung	
• Übersicht zur Parabol-Rinnen Kraftwerkstechnik	
• Übersicht zur Solar Turm Kraftwerkstechnik	
• Auslegungskonzepte für Rinnenkollektoren und Absorber	
• Auslegungskonzepte für Receiver	
• Grundlagenvon Hochtemperatur-Wärmespeicher	
• Auslegungskonzepte ausgewählter Speichertechniken	
• Übersicht zu aktuellen Kraftwerksprojekten	
14. Literatur:	Kopie der Powerpoint-Präsentation
15. Lehrveranstaltungen und -formen:	• 183201 Vorlesung Solartechnik II
• 183202 Seminar Solarkraftwerke	
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h	
Gesamt: 90h	
17. Prüfungsnummer/n und -name:	18321 Solartechnik II (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
18. Grundlage für ...:	
19. Medienform:	Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb
20. Angeboten von:	Thermodynamik und Wärmetechnik
Modul: 22110 Diagnostik und Schutz elektrischer Netzkomponenten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Thomas Rudolph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 3 --> Spezialisierungsmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>- Elektrische Energienetze I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hochspannungstechnik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>1 Monitoring und Diagnose von Betriebsmitteln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Einführung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Allgemeine Messverfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Diagnoseverfahren für Betriebsmittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Asset Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Wartungs- und Instandhaltsstrategien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Einführung in die Schutztechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Digitale Schutztechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Leittechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Kommunikationstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gremmel: Schaltanlagen, ABB Calor Emag, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Doemeland: Handbuch der Schutztechnik, VDE Verlag, Berlin, 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 221101 Vorlesung Diagnostik und Schutz elektrischer Netzkomponenten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 62 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>22111 Diagnostik und Schutz elektrischer Netzkomponenten (BSL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 22180 Wissenschaftliches Vortragen und Schreiben II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulprüfung:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten:
Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
→ Wahlkatalog NEE 3 --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen:
Wissenschaftliches Vortragen und Schreiben I

12. Lernziele:
Die Studierenden können
- den Aufbau einer wissenschaftlichen Arbeit erkennen
- eine eigene wissenschaftliche Arbeit schreiben
- Bilder, Tabellen und Referenzen mit hoher Qualität selbst machen

13. Inhalt:
- Kernbotschaften
- Aufbau und Elemente einer Publikation
- Bilder, Tabellen und Referenzen

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 221801 Vorlesung Wissenschaftliches Vortragen und Schreiben II

16. Abschätzung Arbeitsaufwand:
Preiszeit: 28 h
Selbststudium: 62 h
Gesamt: 90

17. Prüfungsnummer/n und -name:
22181 Wissenschaftliches Vortragen und Schreiben II (BSL), Schriftlich oder Mündlich, Gewichtung: 1
Erstellen eines wissenschaftlichen Berichtes von 6 Seiten Länge (benotet) mit Bildern, Tabellen, Gleichungen und Referenzen

18. Grundlage für ...

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 22220 Konstruktion elektrischer Maschinen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden lernen Grundlagen der konstruktiven Auslegung von elektromechanischen Energiewandlern. Dabei lernen sie sowohl die Analyseverfahren als auch die Analysewerkzeuge zu verstehen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Aufbau und Modellierung elektromagnetischer Kreise, Analytische Berechnung und numerische Simulation elektromagnetischer Anordnungen, elektromagnetische Auslegung von elektromechanischen Energiewandlern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 222201 Vorlesung Konstruktion elektrischer Maschinen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>22221 Konstruktion elektrischer Maschinen (BSL), Schriftlich, 90 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 24790 Elektrochemische Energiespeicherung in Batterien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042411045</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulsdauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr. Andreas Friedrich |

| 10. Zuordnung zum Curriculum in diesem Studiengang: |
|-----------------|----------------------|
| M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester |
| Wahlkatalog NEE 3 --> Spezialisierungsmodul M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester |
| Zusatzmodule |

| 11. Empfohlene Voraussetzungen: |
|-----------------|-----------------|

| 13. Inhalt: |
|-----------------|-----------------|
| • Grundlagen: Elektrochemische Thermodynamik, elektrochemische Kinetik |
| • Batteriesysteme: Alkali-Mangan-Batterien, Lithium-Ionen-Batterien, Blei-Säure-Batterien, Nickel-Metallhydrid-Batterien, Batteriesystemtechnik, Sicherheitstechnik |
| • Anwendungen: Portable Anwendungen, mobile Anwendungen, Fahrzeugtechnik und Hybridisierung, stationäre Anwendungen, Herstellung und Entsorgung |

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

| 15. Lehrveranstaltungen und -formen: |
|-----------------|-----------------|
| • 247901 Vorlesung Elektrochemische Energiespeicherung in Batterien |

| 16. Abschätzung Arbeitsaufwand: |
|-----------------|-----------------|
| Präsenzzeit: | 28 h |
| Selbststudium / Nacharbeitszeit: | 62 h |
| Gesamt: | 90 h |

| 17. Prüfungsnummer/n und -name: |
|-----------------|-----------------|
| 24791 Elektrochemische Energiespeicherung in Batterien (PL), Schriftlich, 60 Min., Gewichtung: 1 |

| 18. Grundlage für ... : |
|-----------------|-----------------|

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafelanschrieb und Powerpoint-Präsentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennstoffzellentechnik</td>
</tr>
</tbody>
</table>
Modul: 29180 Dynamik elektrischer Verbundsysteme

2. Modulkürzel: 042500041
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Hendrik Lens
9. Dozenten: Hendrik Lens
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
➞ Wahlkatalog NEE 3 --> Spezialisierungsmodule
11. Empfohlene Voraussetzungen: Empfohlen: Grundlagen der Elektrotechnik, Grundlagen der Regelungstechnik, Mathematik
13. Inhalt: Einführung:
• Bedeutung des Verbundnetzbetriebs
• Teilnehmer im Verbundnetzbetrieb
• Randbedingungen für einen stabilen Netzbetrieb

Grundlegende Zusammenhänge der Netzdynamik
• Leitungs-Frequenzverhalten
• Einfluss der Schwungmassen (Netzanlaufzeit)
• Einfluss des Netzes (Netzselbsregeleffekt)
• Automatisierte Regeleinrichtungen (Primär- und Sekundärregelung)

Dynamik der Betriebsmittel im Verbundnetz
• Zusammenhang der Netzdynamik mit den dyn. Eigenschaften der Betriebsmittel
• Dynamische Eigenschaften aller wesentlichen Betriebsmittel im Verbundnetz, d.h.
• Dynamik konventioneller Kraftwerke inkl. Regeleinrichtungen
• Dynamische Eigenschaften neuer Erzeuger: WKAs, PV-Anlagen, etc.

Netzregelung
• Konzept der Leistungs-Frequenz-Regelung: Primär-, Sekundär- sowie Minuten-Reserve
• Technische Umsetzung der Leistungs-Frequenz-Regelung in Kraftwerken: Primär-, Sekundär- und Tertiär-Regelung sowie Drehzahlregelung
• Richtlinien: Rahmenbedingungen für die Leistungs-Frequenz-Regelung

Stand: 19. Oktober 2017
• Auswirkungen unterschiedlicher Regler-Einstellungen auf das Frequenzverhalten
• Konzept und technische Umsetzung weiterer Regeleinrichtungen (z.B. Spannungsregelung)

Netzstabilität
• Einführung in die Wesentlichen Stabilitätsaspekte in elektrischen Verbundsystemen

Ursachen von Netzpendelungen
• Pendelung des Synchrongenerators am Netz und der Einfluss weiterer Einflussgrößen wie Leitungsimpedanzen, Lastflüsse, Spannung und Generatorleistung
• Elektromechanische Ausgleichsbewegung (Netzpendelungen) und elektromechanische Wellenausbreitung
• Dämpfung von Netzpendelungen (Power System Stabilizer und Leistungselektronik)

Analyse von Netzpendelungen
• Simulationsbasierte Methoden im Zeit- und Frequenzbereich am Beispiel des Kontinentaleuropäischen Verbundsystems
• Messdatenbasierte Methoden zur Analyse von Netzpendelungen
• Online-Monitoring Systeme

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 291801 Vorlesung Dynamik elektrischer Verbundsysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 h

17. Prüfungsnummer/n und -name:
29181 Dynamik elektrischer Verbundsysteme (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PPT-Präsentation, Tafelanschrieb, ILIAS

20. Angeboten von:
Thermische Kraftwerkstechnik
Modul: 30610 Regelungstechnik für Kraftwerke

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500043</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Hendrik Lens</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hendrik Lens</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Thermodynamik, Grundlagen der Regelungstechnik, Mathematik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen der Prozessautomatisierung • Verschiedene Blockführungskonzepte • Kraftwerksprozesse: Kohlekraftwerke und kombinierte Gas- und Dampfkraftwerke • Einsatz klassischer Regelungskonzepte • Einsatz von Zustandsregelung und -Beobachtung • Einsatz modellbasierter Steuerungen • Besuch des Heizkraftwerks der Uni Stuttgart</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 306101 Vorlesung Regelungstechnik für Kraftwerke</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30611 Regelungstechnik für Kraftwerke (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>ILIAS, PPT-Präsentationen, Tafelanschrieb, Besuch des Heizkraftwerks</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Thermische Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 30750 Meeresenergie

2. Modulkürzel: 042000600
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Albert Ruprecht
9. Dozenten: Albert Ruprecht
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Module aus anderen Master Studiengängen --> Spezialisierungsmodul
→ Wahlkatalog NEE 3 --> Spezialisierungsmodul
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Wahlkatalog NEE 2 --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen: keine
13. Inhalt:
- Einführung in Meeresenergie
- Gezeitenkraftwerke
- Strömungskraftwerke
- Wellenenergienutzung
- Osmose-Kraftwerke
- Nutzung thermischer Meeresenergie
- Projektbeispiele
14. Literatur: Vorlesungsmanuskript "Meeresenergie"
15. Lehrveranstaltungen und -formen:
• 307501 Vorlesung Meeresenergie
• 307502 Seminar Meeresenergie (1Tag)
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
Selbststudium: 69 h
Summe: 90 h
17. Prüfungsnummer/n und -name: 30751 Meeresenergie (BSL), Mündlich, 20 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform: PPT-Präsentationen, Tafelanschrieb
20. Angeboten von: Strömungsmechanik und Hydraulische Strömungsmaschinen
Modul: 30770 Planung von Wasserkraftanlagen

2. Modulkürzel: 042000700
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch
9. Dozenten: Stephan Heimerl

 → Wahlkatalog NEE 3 --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen: keine

15. Lehrveranstaltungen und -formen: • 307702 Exkursion Planung von Wasserkraftanlagen (1Tag) • 307701 Verlesung Planung von Wasserkraftanlagen

17. Prüfungsnummer/n und -name: 30771 Planung von Wasserkraftanlagen (BSL), Schriftlich oder Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ...

Stand: 19. Oktober 2017
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PPT-Präsentationen, Tafelanschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Strömungsmechanik und Hydraulische Strömungsmaschinen</td>
</tr>
</tbody>
</table>
Modul: 30950 Mobile Energiespeicher

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513063</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Speichertechnik für elektrische Energie I (optional)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>309501 Vorlesung Mobile Energiespeicher</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30951 Mobile Energiespeicher (BSL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
</tbody>
</table>
20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 36800 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Hon.-Prof. Dr. Michael Doser |
| 9. Dozenten: | Thomas Stegmaier |

| 11. Empfohlene Voraussetzungen: | Grundlagenkenntnisse aus der Biologie und Technik |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Studierenden haben einen Überblick über verschiedene biologisch inspirierte Entwicklungen und mögliche technische Anwendungen in der Verfahrenstechnik, Maschinenbau, etc.</td>
</tr>
<tr>
<td>• Sie kennen die Grundbegriffe, verstehen biologische Lösungsansätze und die Vorgehensweisen zur Umsetzung biologischer Prinzipien in die Technik.</td>
</tr>
<tr>
<td>• Die Studierenden sind in die Lage die erworbenen Kenntnisse über Bionik selbstständig weiter zu vertiefen und zu erweitern.</td>
</tr>
<tr>
<td>• Die Absolventen/innen des Moduls sind befähigt die Entwicklung innovativer bionischer Produkte anzustoßen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In den Vorträgen dieser Ringvorlesung werden unter anderem folgende Inhalte vermittelt:</td>
</tr>
<tr>
<td>- Einführung (Geschichte, Grundbegriffe, Vorgehensweisen, Anwendungsbeispiele)</td>
</tr>
<tr>
<td>- Bauteiloptimierung nach dem Vorbild der Natur</td>
</tr>
<tr>
<td>- Selbstreparatur in Biologie und Technik</td>
</tr>
<tr>
<td>- Unbenetzbare Oberflächen (Lotus-Effekt etc.)</td>
</tr>
<tr>
<td>- Bionische Strukturoptimierung im Automobilbau (Bionic-Car etc.)</td>
</tr>
<tr>
<td>- Bionik und textiles Bauen</td>
</tr>
<tr>
<td>- Klebungen bei Insekten als Vorbild für biphasische viskose Klebstoffe</td>
</tr>
<tr>
<td>- Pflanzen als Ideengeber für technische Lösungen</td>
</tr>
<tr>
<td>- Technischer Pflanzenhalm</td>
</tr>
<tr>
<td>- Faserverbundmaterialien auf bionischen Prinzipien</td>
</tr>
<tr>
<td>- Baubotanik</td>
</tr>
<tr>
<td>- Zugseile und 45, Winkel in der Natur und Leichtbau</td>
</tr>
<tr>
<td>- Energiebionik</td>
</tr>
<tr>
<td>- Interaktionen von pflanzlichen Strukturen mit Fluiden</td>
</tr>
<tr>
<td>- Pneumatischer Muskel und Bionic Learning Network</td>
</tr>
<tr>
<td>- Biomimetische haftende und nichthaftende Oberflächen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgehändigte Vorlesungsunterlagen (Skripte bzw. Präsentationsfolien in gedruckter Form, Infoblätter etc.) mit weiterführenden Internet-Adressen und Literaturrempfehlungen zu den Vortragsthemen</td>
</tr>
<tr>
<td>Bücher zum Thema Bionik, z. B.:</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
15. Lehrveranstaltungen und -formen: 368001 Ringvorlesung Bionik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden (10,5 Stunden pro Semester)
- Selbststudiumszeit: 21 Stunden (10,5 Stunden pro Semester)
- Prüfungsvorbereitung: 48 Stunden (24 Stunden pro Semester)
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 36801 Bionik - Ausgewählte Beispiele für die Umsetzung biologisch inspirierter Entwicklungen in die Technik (BSL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

20. Angeboten von: Deutsche Institute für Textil- und Faserforschung

- Kuhn, B., Brück J.: Bionik - Der Natur abgeschaut, Naumann und Göbel Verlag, 224 S., 2008
Modul: 36830 Lithiumbatterien: Theorie und Praxis

2. Modulkürzel: 042411047
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Friedrich
9. Dozenten: Andreas Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
➞ Wahlkatalog NEE 3 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
➞ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
1) Grundlagen und Hintergrund: Materialien und Elektrochemie, Zell- und Batteriekonzepte, Systemtechnik, Anwendungen
2) Praxis: Messung von Kennlinien, Rasterelektronenmikroskopie, Hybridisierung
3) Theorie: Elektrochemische Simulationen, Wärmemanagement, Systemauslegung

14. Literatur:
Skript zur Veranstaltung,

15. Lehrveranstaltungen und -formen:
• 368301 Vorlesung mit theoretischen und praktischen Übungen Lithiumbatterien: Theorie und Praxis

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium und Prüfungsvorbereitung: 62 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
36831 Lithiumbatterien: Theorie und Praxis (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
a) Grundlagen und Hintergrund: Tafelanschrieb und Powerpoint-Präsentation
b) Praxis: Experimentelles Arbeiten im Labor
c) Theorie: Computersimulationen

20. Angeboten von: Brennstoffzellentechnik
Modul: 37010 Netzintegration von Windenergie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Markus Pöller

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Wahlkatalog NEE 3 --> Spezialisierungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 2. Semester
 → Zusatzmodule

11. Empfohlene Voraussetzungen: Elektrische Energieversorgung 1

13. Inhalt:
- Physikalische Grundlagen der Windturbine
- Aerodynamische Grundlagen
- Generatorkonzepte
- Netznachwirkungen
- Betrieb von Netzen mit hohem Windenergieanteil
- Einfluss der Windenergie auf die Netzstabilität
- Fallbeispiele

14. Literatur:
- Heier, Windkraftanlagen - Systemauslegung, Integration und Regelung, 4. Aufl., 2005
- Hormann/Just/Schlabbach, Netznachwirkungen, 3. Aufl., 2008
- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- V. Crastan, Elektrische Energieversorgung II, 2 Aufl., 2008

15. Lehrveranstaltungen und -formen: • 370101 Vorlesung Netzintegration von Windenergie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 28 Stunden
- Selbststudium: 62 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 37011 Netzintegration von Windenergie (BSL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 37300 Technische Akustik

2. Modulkürzel: 020800012
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Philip Leistner

9. Dozenten: Philip Leistner

11. Empfohlene Voraussetzungen: Grundkenntnisse in Höherer Mathematik

13. Inhalt:
Die Lehrveranstaltung vermittelt die Grundlagen der technischen Akustik in folgender Gliederung:

- Schallfeldgrößen - Grundlegende Größen (Luft- und Körperschall), Pegel, komplexe und spektrale Darstellung
- Schallquellen - Grundtypen, Abstrahlung, Wellenarten, strömungsinduzierte Schallquellen
- Schallfelder - Schallreflexion, -absorption und -beugung, Kanal- und Raumakustik, Schalldämpfung und -dämmung
- Beeinflussung von Schallfeldern - Schallabsorber, Schalldämpfer, Schalldämmende Elemente, Aktive Systeme
- Messung und Analyse von Schallfeldern - Sensoren und Aktoren, Signalverarbeitung, Bestimmung der Schallleistung, Schallmessaug und Strömungen
- Wahrnehmung und Wirkung von Schall - Begriffe und Größen, Bewertung von Schall, Schallwirkungen, Psychoakustik und Sound Design
- Technische Geräuschquellen - Kenngrößen und ihre Bestimmung, Typen und Bauformen, Wege zur Geräuschminderung
- Akustische Behandlung technischer Systeme - Methodik, Normen und Grenzwerte, Beispiele

14. Literatur:

- Vorlesungsskript

Welterführende Literatur:

15. Lehrveranstaltungen und -formen:
- 373001 Vorlesung Grundlagen der technischen Akustik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
37301 Technische Akustik (BSL), Schriftlich, 60 Min., Gewichtung: 1
Klausur

18. Grundlage für ...:

19. Medienform:
Powerpointpräsentation

20. Angeboten von:
Fraunhofer Institut für Bauphysik
Modul: 40510 Der Ingenieur als innovativer Unternehmer

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051100201</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Hans Kuebler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hans Kuebler</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
</tbody>
</table>
• Das Verhalten von Geschäften, abgeleitet aus empirischen Untersuchungen
• Die Erfahrungskurve als Grundlage moderner Geschäftsstrategie
• Das Phänomen der Geschäftskomplexität
• Das Verhalten von Branchen
Zur Mitte des Semesters wird die erste Übung (ca. 2 Stunden) in Präsenz abgehalten, anschließend werden weitere 5 Vorlesungsdoppelstunden online zugänglich gemacht mit den Themen:
• Wettbewerbsanalyse
• Anwenderwirtschaftlichkeitsbetrachtungen und - Berechnungen
• Strategisches Entw,cklungsmanagement
• Technische Unternehmensstrategie
• Überblick zur Finanzierung von Start-Up-Unternehmen.

14. Literatur:

- Skript.

15. Lehrveranstaltungen und -formen:

- 405101 Vorlesung und Übung Der Ingenieur als innovativer Unternehmer

16. Abschätzung Arbeitsaufwand:

Präsenz 8 h, Online-Veranstaltung 20 h, Selbststudium 62 h

17. Prüfungsnr/n und -name:

40511 Der Ingenieur als innovativer Unternehmer (BSL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

Nachrichtenübertragung

20. Angeboten von:

Nachrichtenübertragung
Modul: 41770 Induktives Laden

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Nejila Parspour |
| 9. Dozenten: | Nejila Parspour |

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
- Wahlkatalog NEE 3 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
- Zusatzmodule

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
- Funktionsweise von induktiven Ladesystemen
- Spulensysteme
- Blindleistungskompensation
- Topologien und Umrichter
- Eigenschaften und Regelstrategien
- Sicherheitsaspekte

15. Lehrveranstaltungen und -formen:
- 417701 Vorlesung Induktives Laden

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: ca. 62 h
Summe: 90h

17. Prüfungsnummer/n und -name: 41771 Induktives Laden (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Elektrische Energiewandlung
Modul: 45420 Windenergie 5 - Windenergie-Labor

2. Modulkürzel: 060320015
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Po Wen Cheng
9. Dozenten: Po Wen Cheng
Martin Hofsäß

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
1. Semester
➞ Wahlkatalog NEE 3 --> Spezialisierungs module

11. Empfohlene Voraussetzungen: 060320011 Windenergie 1 - Grundlagen Windenergie

12. Lernziele:
Die Studierenden verfügen über das Systemverständnis einer gesamten Windenergieanlage (WEA).
Sie lernen anhand von praxisnahen Experimenten den direkten Zusammenhang zwischen theoretischer Grundlagen, messtechnischen Größen, Auswertung und Analyse kennen.
Sie verfügen über messtechnische Grundkenntnisse hinsichtlich Dehnungsmesstreifen, Strom, Spannung, Beschleunigung und Schall.
Sie können experimentell Belastungen (Kräfte und Momente), elektrische Eigenschaften sowie Schallausbreitung an Windenergieanlagen ermitteln.
Sie können ihre Auswerteschritte und Ergebnisse vor der Gruppe präsentieren und die einzelnen Rechenwege reflektieren und diskutieren

13. Inhalt:
Alternierend finden theoretische Vorlesungen und praktische Experimente in verschiedenen Laborversuchen anhand einer Klein-Windenergieanlage zu folgenden Themen statt:
Leistungskurvenmessung Fehlerrechnung Experimentelle Strukturanalyse eines Rotorblattes (statische und dynamische Belastungstests) Generatorkennlinie Leistungsbegrenzung und Leistungsregelung

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 454201 Vorlesung Windenergie 5 - Windenergie-Labor

16. Abschätzung Arbeitsaufwand:
90 h (Präsenzzeit 21 h, Selbststudium 69 h)

17. Prüfungsnummer/n und -name:
• 45421 Windenergie 5 - Windenergie-Labor (BSL), Mündlich, 20 Min., Gewichtung: 1
• V Vorlesung (USL-V), Mündlich

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Windenergie
Modul: 51690 Hochspannungsfreileitungen

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Konstantin Papailiou

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
➞ Wahlkatalog NEE 3 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Elektrische Energiernetze I

12. Lernziele:
Studierende kennen die Übertragungscharakteristika von Hochspannungsfreileitungen und können Massnahmen zur Erhöhung der Übertragungsfähigkeit einordnen. Sie kennen ihre verschiedenen baulichen Komponenten. Sie haben die Fähigkeit, verschiedene Umweltaspekte von Freileitungen zu bewerten.

13. Inhalt:
• Einführung, Netzentwicklungsplan, Europäische Grossprojekte
• Planung, Wirtschaftlichkeit, Verlustberechnungen
• Leitungskonstanten, natürliche Leistung, HGÜ
• Maste und Fundamente, Erdungsfragen
• Seile und Armaturen, Hochtemperaturseile, Monitoring
• Seilschwingungen
• Isolatoren, Kompaktleitungen mit Silikonverbundisolatoren
• Bau und Unterhalt, AUS (Arbeiten unter Spannung)
• Umweltaspekte, EMV, Korona, Designer-Maste, Hybridleitungen
• Vergleich Kabel/Freileitung

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 516901 Vorlesung Hochspannungsfreileitungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
51691 Hochspannungsfreileitungen (BSL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Energieübertragung und Hochspannungs technik
Modul: 51730 Umweltrecht und Regulierung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden lernen die rechtlichen Grundlagen zu ihren künftigen Forschungs- und Produktionsbereichen (insb. Elektromobilität und nachhaltige Energieversorgung). Die Studierenden sollen ein Problembewusstsein für die zu beachtenden rechtlichen Vorgaben entwickeln und die Wirkungen von rechtlichen Rahmenbedingungen auf die Entwicklung künftiger Märkte verstehen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Energiewirtschaftsrecht, • Anlagen- und Produktbezogenes Umweltrecht, • Eichrecht und Datenschutz, • Rechtliche Vorgaben zum Netzausbau • Öffentliches Straßen-, Verkehrs- und Baurecht, • Ggf. weitere, tagesaktuelle Themen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 517301 Vorlesung Umweltrecht und Regulierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>51731 Umweltrecht und Regulierung (BSL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 56940 Seminar Netzintegration Erneuerbarer Energien

2. Modulkürzel: 050310031
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Krzysztof Rudion
9. Dozenten: Krzysztof Rudion
11. Empfohlene Voraussetzungen: Elektrische Energienetze I, Smart Grids
13. Inhalt: Technologien im Bereich Energieverteilung und Übertragung mit dezentralen und erneuerbaren Energieerzeugungsanlagen
Planungsmethoden im Bereich Energieverteilung und Übertragung mit dezentralen und erneuerbaren Energieerzeugungsanlagen
Methoden und Ansätze im Bereich Netzmonitoring, Zustandserkennung und optimale Betriebsführung
Energiemanagement-Systeme
IKT-Lösungen für die Integration von dezentralen und erneuerbaren Energieerzeugungsanlagen
15. Lehrveranstaltungen und -formen: • 569401 Vorlesung Seminar Netzintegration Erneuerbarer Energien
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudiumszeit: 62 h
Gesamt: 90 h
17. Prüfungsnummer/n und -name: 56941 Seminar Netzintegration Erneuerbarer Energien (BSL), Schriftlich, 90 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Netzintegration erneuerbarer Energien
Modul: 58110 Expertensysteme in der elektrischen Energieversorgung

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Krzysztof Rudion
9. Dozenten: Krzysztof Rudion

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Wahlkatalog NEE 3 --> Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
 ➞ Zusatzmodule

11. Empfohlene Voraussetzungen: Elektrische Energienetze I, empfehlenswert auch Smart Grids

12. Lernziele:
 Studierende kennen die grundlegenden Ziele des Einsatzes von auf künstlicher Intelligenz basierenden Systemen in der elektrischen Energieversorgung.

 Sie kennen die Grundidee der Expertensysteme sowie deren Vorteile und Nachteile in Bezug auf die Unterstützung des Betriebes elektrischer Netze.

13. Inhalt:
 Einführung in die künstliche Intelligenz
 Wissensbasierte Systeme (Expertensysteme in der Energieversorgung)
 Logische Grundbegriffe
 Wissensrepräsentation
 Deklaratives Programmieren
 Inferenzmechanismen
 Behandlung von Ungenauigkeiten
 Fuzzy-Logik
 Fuzzy-Algebra
 Künstliche Neuronale Netze
 Genetische Algorithmen
 Beispiele der Expertensysteme

14. Literatur:
 ILIAS, Online-Material
 weitere Literaturquellen werden zum Vorlesungsanfang angegeben

15. Lehrveranstaltungen und -formen:
 • 581101 Vorlesung Expertensysteme in der elektrischen Energieversorgung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 58111 Expertensysteme in der elektrischen Energieversorgung (BSL), Mündlich, Gewichtung: 1
ggf. andere Leistungen (z.B. Schriftlicher Bericht zum vorgegebenen Thema, Präsentation, Poster, etc.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Netzintegration erneuerbarer Energien
Modul: 67230 EMV- und Hochspannungsmesstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse der Elektromagnetischen Verträglichkeit und Hochspannungstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | - Einführung
 - Oszilloskop
 - Messung von Spannungen und Strömen
 - Spektrum-/Netzwerkanalysator
 - Messung feldgebundener Größen
 - Messung dielektrischer Eigenschaften (Widerstand, Verlustfaktor, Teilentladungen)
 - Messunsicherheit, Reduktion von Rauschen und Störeinkopplungen
 - Prüfvorgänge und statistische Auswerteverfahren |
| 14. Literatur: | • ILIAS, Online-Material
 • Boek, Beyer, Moeller: Hochspannungstechnik, Springer Verlag, 1998
 • Küchler, A.: Hochspannungstechnik, Springer-Verlag, Berlin, 2005
 • Feser, K., Kind, D.: Hochspannungsversuchstechnik Vieweg Verlag 1995
 • Schwab, A.: Elektromagnetische Verträglichkeit, Springer Verlag |
| 15. Lehrveranstaltungen und -formen: | • 672301 Vorlesung EMV- und Hochspannungsmesstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 67231 EMV- und Hochspannungsmesstechnik (BSL), Mündlich, 30 Min., Gewichtung: 1 | | |
| 18. Grundlage für ... : | | |
| 19. Medienform: | | |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik | | |
Modul: 67530 Photovoltaische Inselsysteme

2. Modulkürzel: 050513030
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner
9. Dozenten: Bastian Zinßer
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, → Zusatzmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, → Wahlkatalog NEE 3 --> Spezialisierungsmodule
11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
 Typen von Inselsystemen:
 Gleichstrom, Wechselstrom, Hybrid
 Komponenten:
 Solarmodule, Gestell, Kabel, Batterien, Laderegler, Wechselrichter
 Auslegung:
 Solargenerator, Batterie, Kabel, Wechselrichter, Generator, Netz
 Simulation:
 Zeitschrittsimulation, Verbraucher, Wetterdaten
 Praxis:
 Netz/Inselsystem in Äthiopien, Netz/Inselsystem in Ghana, Inselsystem in Tansania, Inselsystem für Gartenhaus
 Wirtschaftlichkeit:
 Stromkosten im Inselsystem, Vergleich mit Dieselsystem, Vergleich mit Stromnetz
14. Literatur:
 • Volker Quaschning, Regenerative Energiesysteme, Hanser Verlag, München
 • DGS, Photovoltaische Anlagen, DGS Berlin Brandenburg
15. Lehrveranstaltungen und -formen:
 • 675301 Vorlesung Photovoltaische Inselsysteme
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name:
 67531 Photovoltaische Inselsysteme (BSL), Schriftlich, 60 Min., Gewichtung: 1
18. Grundlage für ...

19. Medienform:
20. Angeboten von: Physikalische Elektronik
Modul: 68280 Energetische Optimierung der Produktion

3. Leistungspunkte: 3 LP 6. Turnus: Sommersemester
4. SWS: 2 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Alexander Sauer

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen, Grundlagen der Investitionsrechnung

12. Lernziele: Der Studierende kennt:

- die verschiedenen politischen und wirtschaftlichen Rahmenbedingungen zur Förderung von industriellen Effizienzmaßnahmen
- Methoden zur Wirtschaftlichkeitsbewertung von Investitionsprojekten in Energieeffizienzmaßnahmen und kann die geeignetste davon auswählen
- unterschiedliche Methoden zur Steigerung der betrieblichen Energieeffizienz und kann entsprechend den Gegebenheiten im Unternehmen eine geeignete Methode wählen, anwenden und Ergebnisse richtig deuten
- die grundlegenden Begriffe zur Beurteilung der energetischen Qualität
- verschiedene Effizienztechnologien (z.B.: Wärmepumpe, BHKW, usw) und versteht es diese unter Nutzung von Synergieeffekten geschickt in Produktionsprozesse zu integrieren
- die Vorteile einer intelligent verschalteten Produktion
- die Eigenschaften und Anwendungsbereiche verschiedener Energiespeichertechnologien und wie diese in Kombination mit erneuerbaren Energien verwendet werden können
- den Unterschied zwischen Lastmanagement, -verschiebung, -verzicht und -abwurf

13. Inhalt: Behandelte Inhalte:

- Energieeffizienz im internationalen Kontext
- Programme, Geschäftsmodelle und Finanzierung von Energieeffizienz
- Im Rahmen der Vorlesung führen die Vorlesungsteilnehmer eigenständig eine Energieeffizienzanalyse im Haushalt durch.
- Methoden zur Steigerung der Energieeffizienz
- Technologische Ansätze zur Steigerung der Energieeffizienz
- Ausgewählte Energiespeichertechnologien in der Produktion
- Lastmanagement ("Demand Side Management")
- Industrial Smart Grids

14. Literatur:

Online-Manuskript
Neugebauer, R., Handbuch Ressourcenorientierte Produktion, Carl Hanser Verlag
Bauernhansl, T., Energieeffizienz in Deutschland - eine Metastudie

15. Lehrveranstaltungen und -formen: 682801 Vorlesung Energetische Optimierung der Produktion
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium incl. Prüfungsvorbereitung: 62 h
Gesamt: 90 h |
|-------------------------------|---|
| 17. Prüfungsnummer/n und -name: | 68281 Energetische Optimierung der Produktion (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
schriftlich (60 min), eventuell oral (20 min.) |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Energieeffizienz in der Produktion |
Modul: 68400 Energiepolitik

2. Modulkürzel: 041210092
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Hufendiek
9. Dozenten: Joachim Pfeiffer

11. Empfohlene Voraussetzungen: Grundkenntnisse der Energiewirtschaft (z.B. Modul Energiewirtschaft und Energieversorgung, "Energiemärkte und Energiehandel")

12. Lernziele:
Die Teilnehmer/-innen kennen die politischen Rahmenbedingungen von Energiemärkten in Europa und Deutschland (Regulierung und Wettbewerb).

Die Teilnehmer/-innen kennen die zentrale Bedeutung sicherer, kostengünstiger und umweltverträglicher Energieversorgung vor dem Hintergrund nationaler Interessen sowie internationaler politischer und wirtschaftlicher Beziehungen. Sie benennen die Einflussfaktoren auf die langfristige Energiepreisentwicklung und verdeutlichen den Stellenwert von Wettbewerb auf den nationalen und internationalen Energimärkten. Die Teilnehmer/-innen verstehen die Instrumente, Funktionsweise und Wirkungen der Energiepolitik.

13. Inhalt:
- Grundlagen der Energiepolitik
- Entwicklung der Stromerzeugung in Deutschland und Europa
- EU-Energiepolitik
- Preisbildung in Energiemärkten - vom Monopol zum Wettbewerb
- Klimapolitik - Grundlagen, internationale Dimension und internationale Umsetzung
- Zusammensetzung und Entwicklung des deutschen Strommixes
- Der Wärmemarkt
- Verkehrspolitik als Energiepolitik
- Geopolitische Aspekte der Energieversorgung

14. Literatur: Online-Unterlagen
15. Lehrveranstaltungen und -formen:
- 684001 Vorlesung Energiepolitik im Spannungsfeld von Wettbewerbsfähigkeit, Versorgungssicherheit und Umweltschutz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 68401 Energiepolitik (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 69470 Energieeffizienz II - Branchentechnologien

2. Modulkürzel: 041211012
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Radgen

9. Dozenten: Markus Blesl
Markus Blesl
Alois Kessler
Peter Radgen

11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

13. Inhalt:
- Energieverbrauch und Energieeinsparpotentiale
- Einflussfaktoren des Energieverbrauchs
- Branchentechnologien (Metallerzeugung und -verarbeitung, Chemische Industrie, Steine und Erden (Zement, Glas, Keramik), Holz-/Papierindustrie, Lebensmittelindustrie, Galvanik, Lackierung, Rechenzentren)
- Übertragung auf andere Branchen oder Prozesse

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
- 694701 Vorlesung Energieeffizienz II - Branchentechnologien

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 28 h
- Selbststudium: 62 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:
- 69471 Energieeffizienz II - Branchentechnologien (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1
 schriftlich 60 min oder mündlich 20 min

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Energiewirtschaft und Rationelle Energieanwendung
Modul: 69490 Energieeffizienz I - Querschnittstechnologien

2. Modulkürzel: 041211011
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Radgen
9. Dozenten: Peter Radgen
11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")
12. Lernziele:
13. Inhalt:
 • Energieverbrauch und Energieeinsparpotentiale
 • Einflussfaktoren des Energieverbrauchs
 • Querschnittstechnologien (Elektromotoren, Druckluft, Pumpen, Kälte, Ventilatoren, Trockner und Öfen, Wärmeübertrager und Abwärmennutzung, Beleuchtung, Dampf- und Warmwassererzeugung, Transformatoren)
14. Literatur:
15. Lehrveranstaltungen und -formen: • 694901 Vorlesung Energieeffizienz I - Querschnittstechnologien
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name: 69491 Energieeffizienz I - Querschnittstechnologien (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1 schriftlich 60 min
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Energiewirtschaft und Rationelle Energieanwendung
Modul: 69500 Energiemanagement nach ISO 50001

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Radgen
9. Dozenten: Peter Radgen
12. Lernziele:

Durch eine Kooperation mit einer Zertifizierungsorganisation wird angestrebt, dass Studenten das Zertifikat zum Energiemanagementbeauftragen erwerben können. Nähere Informationen dazu gibt es in der ersten Vorlesung. Vorraussetzung ist in diesem Fall zusätzlich die Teilnahme an der Vorlesung Energieeffizienz I.

13. Inhalt:
Einführung zur Bedeutung der Energieeffizienz im Hinblick auf Emissionsminderung und Kostensenkung
Managementnormen ISO 9001, 14001, 50001
Ziel und Aufgaben der ISO 50001
Grundsätzlicher Aufbau von EnMS
Erklärungen und Erfassung Ist-Situation
Maßnahmenplan
Fortschreibung EnMS
Rechtlicher Rahmen

14. Literatur:
UBA: Energiemanagementsysteme in der Praxis. Umweltbundesamt, Dessau, Juni 2012

15. Lehrveranstaltungen und -formen: • 695001 Vorlesung Energiemanagement nach ISO 50001

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamt: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>69501 Energiemanagement nach ISO 50001 (BSL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1 mündlich 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energiewirtschaft und Rationelle Energieanwendung</td>
</tr>
</tbody>
</table>
Modul: 71930 Elektrische Verbundsysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Stefan Tenbohlen |

| 11. Empfohlene Voraussetzungen: |

| 12. Lernziele: |

| 13. Inhalt: |

| 14. Literatur: |

| 15. Lehrveranstaltungen und -formen: | • 719301 Vorlesung Elektrische Verbundsysteme |

| 16. Abschätzung Arbeitsaufwand: |

| 17. Prüfungsnummer/n und -name: | 71931 Elektrische Verbundsysteme (BSL), , Gewichtung: 1 |

| 18. Grundlage für ... : |

| 19. Medienform: |

| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 71950 Druckluft und Pneumatik

2. Modulkürzel: 041211032
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Radgen

9. Dozenten: Peter Radgen

Die Studierenden kennen die unterschiedlichen Verdichtertypen, verstehen die Stärken und Schwächen der eingesetzten Kompressoren und sind in der Lage die geeigneten Verdichtungsverfahren in Abhängigkeit von den Anforderungen auszuwählen.

Sie verstehen die Anforderungen an die Druckluftqualität und sind in der Lage geeignete Komponenten für die Druckluftaufbereitung zu spezifizieren und diese Qualitäten zu erreichen.

Die Studierenden sind befähigt den Druckluftverbrauch von Betrieben zu analysieren, Schwachstellen zu identifizieren und Verbesserungsmaßnahmen zu erarbeiten.

Die Studierenden kennen die typischen Schwachstellen in der Druckluftversorgung und sind in der Lage die Auswirkungen der Schwachstellen zu bewerten. Sie sind in der Lage die komplexen Wechselwirkungen zwischen den einzelnen Teilsystemen und den Druckluftverbrauchern einzuschätzen und ganzheitliche Konzepte für die energieeffiziente Druckluftversorgung zu erarbeiten.

Sie verstehen die unterschiedlichen Steuerungen von Kompressoren und kennen die verfügbare Messtechnik für die Analyse des Ist-Zustandes von Druckluftanlagen.

Sie können die Ergebnisse Messtechnischer Analysen bewerten und daraus den erforderlichen Handlungsbedarf für die Optimierung ableiten

13. Inhalt:
- Bedeutung der Druckluft als Energieträger im Unternehmen
- Thermodynamische Grundlagen
- Drucklufterzeugung
- Druckluftaufbereitung (trocknen, filtern, Ölfreiwerden)
- Kondensat Aufbereitung
- Druckluftspeicherung
- Steuerungskonzepte für Druckluftanlagen
• Druckluftverteilung (Dimensionierung, Rohrleitungsmaterialien, Leckagen und Leckage Beseitigung
• Druckluftanwendungen (steuern, schrauben, bewegen, spannen, reinigen, Vakuum erzeugen, kühlen)
• Auditierung von Druckluftsystemen

14. Literatur:
• Ruppelt, E. (Hrsg.): Drucklufthandbuch, Vulkanverlag
• Bierbaum: Druckluftkompendium, Espelkamp: Leidorf, 1997
• www.druckluft.ch

15. Lehrveranstaltungen und -formen:
• 719501 Vorlesung Druckluft und Pneumatik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
71951 Druckluft und Pneumatik (BSL), Mündlich, 20 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Beamer gestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript

20. Angeboten von:
Energiewirtschaft Energiesysteme
Modul: 71970 Unternehmenssteuerung in der Energiewirtschaft

2. Modulkürzel: 100150501
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Burkhard Pedell

9. Dozenten: Christoph Müller

11. Empfohlene Voraussetzungen: Modul Grundlagen der Energiewirtschaft und Energieversorgung oder Modul Arbeitswissenschaft oder Modul Fabrikbetriebslehre

12. Lernziele:

Die Studierenden haben ein Verständnis und Lösungskompetenz für komplexe Sachverhalte der Unternehmenssteuerung in der Energiewirtschaft.

Die Studierenden verstehen zentrale Entwicklungen in der Energiewirtschaft. Sie kennen und verstehen die unterschiedlichen Wertschöpfungsstufen der Energiewirtschaft und Möglichkeiten zu deren Steuerung.

Downstream: Sie unterscheiden Marktsegmente und die Säulen der Preisstrategie (Kosten, Markt und Strategieaspekte der Preisgestaltung) und erlangen einen breiten Überblick über den Energie-Markt und relevante Entwicklungen. Im Rahmen des Bilanzkreismanagements werden Typen, rechtliche Grundlagen und der Bilanzausgleich betrachtet.

13. Inhalt:

Grundlagen der Energiewirtschaft, Wertschöpfungsstufen, Preiskalkulation, Verrechnungspreise, Integrierte Steuerung und Unbundling, Kennzahlen, Rechnungslegung, Geschäftsmodelle und Strategien.
<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skripte zu der Veranstaltung sowie die dort aufgeführte Literatur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 719701 Vorlesung Unternehmenssteuerung in der Energiewirtschaft</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | • Präsenzzeit: 28 h
| | • Selbststudiumszeit: 62 h
| | • Gesamtzeitaufwand: 90 h |
| 17. Prüfungsnummer/n und -name: | 71971 Unternehmenssteuerung in der Energiewirtschaft (PL), Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Beamer Presentation |
| 20. Angeboten von: | ABWL und Controlling |
Modul: 72150 Analyse und Optimierung industrieller Energiesysteme

2. Modulkürzel: 041211033
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modul dauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Radgen
9. Dozenten: Peter Radgen
12. Lernziele:

Die Studierenden beherrschen die Grundlagen der energetischen Analyse industrieller Energiesysteme. Sie kennen die verfügbare Messtechnik zur Aufnahme der relevanten Prozessgrößen und sind in der Lage die Zuverlässigkeit und Robustheit der Messwerte zu beurteilen. Die Studierenden sind in der Lage sich eigenständig die Energieeffizienzpotentiale von Querschnittstechnologien zu erarbeiten und können die Effizienzpotentiale dieser Technologien bewerten.

Die Studierenden sind in der Lage das erlernte Wissen über Effizienzpotentiale in der Praxis in einem realen Unternehmen anzuwenden. Sie können die energetische Ist-Situation in einem realen Unternehmen erfassen, dokumentieren, Messwerte beurteilen und Optimierungspotentiale identifizieren.

Die Studierenden können eine wirtschaftliche Bewertung von Effizienzmaßnahmen durchführen und die Wechselwirkungen zwischen einzelnen Maßnahmen abschätzen.

Die Studierenden sind in der Lage in einem Team zusammenzuarbeiten und gemeinsam eine Fragestellung zu bearbeiten. Sie können die Ergebnisse überzeuengend präsentieren und in auch für nicht Techniker verständlicher Form dokumentieren.

Die Studierenden erkennen die nicht technischen Herausforderungen bei der realen Umsetzung von Energieeffizienzmaßnahmen und sind in der Lage Lösungen zu entwickeln und Entscheider von der Vorteilhaftigkeit der Maßnahmen zu überzeugen.

13. Inhalt:

- Energieverbrauchstrukturerkennen in Unternehmen
- Energiekosten und Kosteneinsparpotentiale
- Erarbeitung von Checklisten für die Identifikation von Einsparoptionen in Betrieben
- Überschlägige Abschätzung von Effizienzpotentiale
- Messtechnik für Temperatur, Druck, Volumen
- Einsatz von Datenloggern zur Erfassung von Messwertzeitreihen
- Hemmnisse und Erfolgsfaktoren bei der Umsetzung von Effizienzmaßnahmen
14. Literatur:

Die Studenten recherchieren und nutzen verfügbare Quellen (Fachbücher, Internet) um Effizienzpotentiale für Querschnitts- und Prozesstechnologien zu identifizieren und zu beurteilen.

15. Lehrveranstaltungen und -formen:

• 721501 Seminar Analyse und Optimierung industrieller Energiesysteme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:

72151 Analyse und Optimierung industrieller Energiesysteme (BSL), Mündlich, 20 Min., Gewichtung: 1
schriftliche / mündliche Prüfung: 60 / 20 Minuten, Gewichtung 0,5, Ergebnisbericht der Gruppenarbeit 0,5

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Energiewirtschaft Energiesysteme
240 Wahlkatalog aus Bachelor Elektro- und Informationstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td></td>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td></td>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td></td>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td></td>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
</tr>
<tr>
<td></td>
<td>11660</td>
<td>Übertragungstechnik I</td>
</tr>
<tr>
<td></td>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
<tr>
<td></td>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td></td>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
</tr>
<tr>
<td></td>
<td>11700</td>
<td>Halbleitertechnik I</td>
</tr>
<tr>
<td></td>
<td>11710</td>
<td>Optoelectronics I</td>
</tr>
<tr>
<td></td>
<td>11720</td>
<td>Halbleitertechnologie I</td>
</tr>
<tr>
<td></td>
<td>11730</td>
<td>Flachbildschirme</td>
</tr>
<tr>
<td></td>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td></td>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
</tr>
<tr>
<td></td>
<td>12450</td>
<td>Wasserkraft und Wasserbau</td>
</tr>
<tr>
<td></td>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td></td>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td></td>
<td>14150</td>
<td>Leichtbau</td>
</tr>
<tr>
<td></td>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
</tr>
<tr>
<td></td>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
</tr>
<tr>
<td></td>
<td>17170</td>
<td>Elektrische Antriebe</td>
</tr>
<tr>
<td></td>
<td>25940</td>
<td>Verstärkertechnik I+II</td>
</tr>
<tr>
<td></td>
<td>28550</td>
<td>Regelung von Kraftwerken und Netzen</td>
</tr>
<tr>
<td></td>
<td>38720</td>
<td>Meteorologie</td>
</tr>
<tr>
<td></td>
<td>39160</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
<tr>
<td></td>
<td>41450</td>
<td>Grundzüge der Angewandten Chemie</td>
</tr>
<tr>
<td></td>
<td>46340</td>
<td>Signale und Systeme</td>
</tr>
<tr>
<td></td>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
</tr>
<tr>
<td></td>
<td>69450</td>
<td>Konstruktionslehre II (EE)</td>
</tr>
<tr>
<td></td>
<td>71750</td>
<td>Schaltungstechnik (Grundlagen)</td>
</tr>
</tbody>
</table>
Modul: 11570 Hochspannungstechnik I

2. Modulkürzel: 050310003
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, ➔ Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, ➔ Wahlkatalog NEE 2 --> Spezialisierungsmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester ➔ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- > Spezialisierungsmodule

11. Empfohlene Voraussetzungen:
• Elektrische Energietechnik

12. Lernziele:
Studierender hat Kenntnisse der Grundlagen der Versuchs- und Messtechnik für Hochspannungsprüfungen, Verständnis der Zusammenhänge Festigkeit und Beanspruchung eines Isolierstoffsystems und des Aufbaus eines Isolationssystems.

13. Inhalt:
• Auftreten und Anwendung hoher Spannungen bzw. Ströme
• Einführung in die Hochspannungsversuchstechnik
• Berechnung elektrischer Felder
• Grundlagen der Hochspannungsisoliertechnik
• Isolierstoffsysteme in Hochspannungsgeräten

14. Literatur:
• Beyer, Boeck, Möller, Zaengl: Hochspannungstechnik Springer-Verlag, Berlin, 1986
• Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
• Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen:
• 115702 Übung Hochspannungstechnik 1
• 115701 Vorlesung Hochspannungstechnik 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11610 Technische Informatik I

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter
Matthias Meyer
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik --
> Spezialisierungsmodulle
11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen Informatik I und Informatik II
vermittelt werden.
12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-
Ebene entwerfen, Mikroprogrammierung anwenden, kennt
Konzepte und Mechanismen von Betriebssystemen und versteht
den Aufbau von Rechnersystemen einschließlich der Ein- und
Ausgabemechanismen.
13. Inhalt:
• Einfache Einadressmaschine, Elemente und Mechanismen der
 Register-Transfer-Ebene
• Prozessorbaugruppen und Mikroprogrammierung,
 Grundkonzepte von RISC-Prozessoren
• Grundkonzepte und Mechanismen von Betriebssystemen
• Aufbau von Rechnersystemen einsch. Ein-/Ausgabe
Für nähere Informationen, aktuelle Ankündigungen und Material
siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_I
14. Literatur:
• Vorlesungsskript
• Hennessy, J. L., Patterson, D. A.: Computer Architecture: A
 Quantitative Approach, Morgan Kaufmann
• Tanenbaum, A.S., Goodman, J.: Computerarchitektur, Prentice
 Hall, 2001
15. Lehrveranstaltungen und -formen:
• 116102 Übung zu Technische Informatik I
• 116101 Vorlesung Technische Informatik I
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), Schriftlich, 120 Min.,
Gewichtung: 1
18. Grundlage für ...:
Praktische Übungen im Labor Rechnerarchitektur und
Kommunikationssysteme I
19. Medienform:
• Notebook-Präsentationen
• Overhead-Projektor
• Tafelanschriebe
20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

2. Modulkürzel: 050501003
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
Zusatzmodule
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
Wahlkatalog aus Bachelor Elektro- und Informationstechnik --
Spezialisierungsmodule

11. Empfohlene Voraussetzungen:
- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:
Die Studierenden
- besitzen grundlegende Kenntnisse über rechnerbasierte
Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der
Automatisierungstechnik aus
- wenden grundlegende Methoden und Verfahren der Echtzeit-
Programmierung an
- lernen spezifische Programmiersprachen der
Automatisierungstechnik kennen

13. Inhalt:
- Grundlegende Begriffe der Prozessautomatisierung
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie - Schnittstellen zwischen dem
Automatisierungscomputersystem und dem technischen Prozess
- Kommunikationssysteme
- Echtzeitprogrammierung (synchron und asynchron
Programmierung, Scheduling-Algorithmen,
Synchronisationskonzepte)
- Echtzeitbetriebssysteme, Entwicklung eines Mini-Echtzeit-
Betriebssystems
- Programmiersprachen für die Prozessautomatisierung (SPS-
Programmierung)

14. Literatur:
- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage),
Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage)
Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg,
2005
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://
www.ias.uni-stuttgart.de/at1/

15. Lehrveranstaltungen und -formen:
- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Automatisierungstechnik II</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
Modul: 11640 Digitale Signalverarbeitung

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Bin Yang

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik Grundkenntnisse über Signale und Systeme

12. Lernziele: Die Studierenden
 • beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
 • besitzen die notwendigen Grundfähigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
 • können einfache Signale und Systeme selbstständig analysieren,
 • können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:
 • A/D- und D/A-Umwandlung, Abtastung, Quantisierung
 • Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
 • Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
 • Analyse von Signalen und LTI-Systemen im Frequenzbereich
 • Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbbfilter, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter
 • Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
 • Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
 • Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:
 • Vorlesungsunterlagen, Videobildung der Vorlesung
 • M. Mandal und A. Asif, “Continuous and discrete time signals and systems”, Cambridge, 2008

15. Lehrveranstaltungen und -formen:
 • 116401 Vorlesung Digitale Signalverarbeitung
 • 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:
 • Präsenzzeit: 56 h
 • Selbststudium: 124 h
Module

Gesamt: 180 h

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Angabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ...</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Netzwerk- und Systemtheorie</td>
</tr>
</tbody>
</table>
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr. Jan Hesselbarth |
| 9. Dozenten: | Jan Hesselbarth |

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- Spezialisierungsmodul

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

12. Lernziele:

13. Inhalt:

Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:

- Vorlesungsskript,
- Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:

- 116501 Vorlesung Hochfrequenztechnik I
- 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

Hochfrequenztechnik II

19. Medienform:

Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:

Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vorlesungsbegleitendes Material, Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>• Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart</td>
</tr>
<tr>
<td></td>
<td>• Weitere Literaturangaben im vorlesungsbegleitenden Material.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 116602 Übungen Übertragungstechnik I</td>
</tr>
<tr>
<td></td>
<td>• 116601 Vorlesung Übertragungstechnik I</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Nachrichtenübertragung</td>
</tr>
</tbody>
</table>
Modul: 11670 Grundlagen integrierter Schaltungen

2. Modulkürzel: 050200002
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Manfred Berroth

11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrerter Schaltungen
- 116702 Übung Grundlagen Integrerter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | **Grundprinzipien von Kommunikationsnetzen und -protokollen:**
• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle
Spezifikation mit Hilfe der Specification and Description Language (SDL)
Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
Ausgewählte Dienste und Anwendungen im Internet
Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I |
| 14. Literatur: | • Skript zur Vorlesung
• Tanenbaum: Computer Networks, Prentice-Hall, 2003
• Kurose, Ross: Computer Networking, Addison-Wesley, 2009
| 15. Lehrveranstaltungen und -formen: | • 116802 Übung zu Kommunikationsnetze I
• 116801 Vorlesung Kommunikationsnetze I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
17. Prüfungsnummer/n und -name: 11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... : Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform: Notebook-Präsentation

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Nachrichtentechnik Grundlagend der Hochfrequenztechnik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116901 Vorlesung Antennas • 116902 Übung Antennas</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer, Projektor, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Hochfrequenztechnik</td>
</tr>
</tbody>
</table>
Modul: 11700 Halbleitertechnik I

2. Modulkürzel: 050500002
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldaauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Schulze
9. Dozenten: Jörg Schulze
12. Lernziele:
 Die Studierenden besitzen die Kenntnis und das Verständnis der mathematisch-physikalischen Grundlagen der Bauelement-Modellierung, kennen die ideale und die reale Funktionsweise und den Aufbau diverser Halbleiterdioden und haben ein umfassendes Verständnis vom Aufbau und vom idealen/realen Verhalten eines Bipolar- und eines Heterobilateraltransistors. Darüber hinaus kennen sie die prinzipielle Funktionsweise von Thyristoren und haben erste Grundkenntnisse von der Funktionsweise von Leistungsbipolartransistoren mit isoliertem Gate und von BiCMOS-Schaltungen (BiCMOS: Schalttechnik, bei der Bipolar- und Feldeffektransistoren miteinander kombiniert werden). Außerdem kennen sie die prinzipiellen Herstellungsprozessabläufe moderner Bipolar- und BiCMOS-Prozesse.
13. Inhalt:
 Die Vorlesung Halbleitertechnik: Bipolartechnik (HL I) bildet zusammen mit der Vorlesung Halbleitertechnik: Nano-CMOS-Ära (HL II) den Halbleitertechnik-Zyklus des IHT. Die Vorlesung wird jedes zweite Semester immer im Wintersemester angeboten. Die folgenden Inhalte werden besprochen:
 • Beschreibung eines psn-Übergangs im thermodynamischen Gleichgewicht (Raumladungszenen, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
 • Beschreibung eines psn-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
 • Dioden-Spezialformen: Schottky-Diode und Ohmscher Kontakt, Z-Dioden (Zener-Diode und Avalanche-Diode), IMPATT-Diode (Impact-Ionization-Avalanche-Transit-Time-Diode), Gunn-Diode, Uni-Tunneldiode, Esaki-Tunneldiode, Shockley-Diode, DIAC (Diode for Alternating Current),
 • Aufbau und Funktionsweise von Bipolar- und Heterobilateraltransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
 • Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungsbipolartransistoren mit isoliertem Gate wie dem Gate-
Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
- Hoffmann: Systemintegration, Oldenbourg, 2003
- Löcherer: Halbleiterbauelemente, Teubner, 1992
- Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
- Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
- Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
- Thuselt: Physik der Halbleiterbauelemente, Springer, 2005

15. Lehrveranstaltungen und -formen:
- 117001 Vorlesung Halbleitertechnik 1
- 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
Halbleitertechnik
Modul: 11710 Optoelectronics I

2. Modulkürzel: 050513001
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

 --> Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- Spezialisierungsmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
• Basics of incoherent and coherent radiation
• Semiconductor basics
• Excitation and recombination processes in semiconductors
• Light emitting diodes
• Semiconductor lasers
• Glass fibers
• Photodetectors

14. Literatur:
• W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
• W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).
• G. Winstel and C. Weyrich, Optoelektronik II (Springer-Verlag, Berlin, 1986).

15. Lehrveranstaltungen und -formen:
• 117102 Übung Optoelectronics I
• 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1 group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)</th>
</tr>
</thead>
</table>

18. Grundlage für ...:

19. Medienform: - Powerpoint, blackboard

20. Angeboten von: Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

2. Modulkürzel: 050500003
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulduauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Schulze
9. Dozenten: Jörg Schulze
11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) vermittelt werden.
 • Einführung in die Silizium-basierte Halbleitertechnologie,
 • Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
 • Substrat- und Waferherstellung (CZ-Wafer, FZ-Wafer und Silicon-On-Insulator-Wafer),
 • Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
 • Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
 • Herstellung und Strukturierung von Isolatorschichten (Standardelektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
 • Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische
Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:
- Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
- Hilleirnann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
- v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
- Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
- Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005

15. Lehrveranstaltungen und -formen:
- 117201 Vorlesung Halbleitertechnologie 1
- 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
Halbleitertechnik
Modul: 11730 Flachbildschirme

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Nesrine Kammoun
9. Dozenten: Norbert Frühauf
12. Lernziele: Die Studierenden
• kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
• können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
• kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen
13. Inhalt:
• Einsatzgebiete der Flachbildschirmtechnik
• Physiologie des menschlichen Sehens
• Farbdarstellung (Tri-Stimulus Theorie)
• Elektro-optische Eigenschaften von Flüssigkristallen
• Organische Lichtemittierende Dioden
• Elektrophoretische Medien
• Sonstige Elektro-optische Effekte
• Plasmabildschirme
• Passiv- und Aktiv-Matrix Ansteuerverfahren
• Ansteuerschaltungen
• Herstellungsverfahren
• Charakterisierung von Flachbildschirmen
14. Literatur:
• E. Lueder - Liquid Crystal Displays, Wiley, 2001
15. Lehrveranstaltungen und -formen:
• 117301 Vorlesung Flachbildschirme
• 117302 Übung Flachbildschirme
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
18. Grundlage für ...:
19. Medienform: Tafel, Projektor, Beamer, ILIAS
20. Angeboten von: Bildschirmtechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>050310006</th>
<th>Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</th>
</tr>
</thead>
</table>
| Leistungspunkte: | 6 LP | Dozenten: | Stefan Tenbohlen
Daniel Schneider |
| SWS: | 4 | Sprache: | Deutsch |
| Modulverantwortlicher: | 11740 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1 |
| Empfohlene Voraussetzungen: | Grundlagen der Elektrotechnik |
| Lernziele: | Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV |
| Inhalt: | • Einführung
• Begriffsbestimmungen
• EMV-Umgebung
• Allgemeine Maßnahmen zur Sicherstellung der EMV
• Aktive Schutzmaßnahmen
• Nachweis der EMV (Messverfahren, Messumgebung)
• Einwirkung elektromagnetischer Felder auf biologische Systeme
• EMV im Automobilbereich |
| Literatur: | • Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
• Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
• Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
• Köhling, A.: EMV von Gebäuden, Anlagen und Geräten VDE-Verlag, Dezember 1998
• Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004
| Lehrveranstaltungen und -formen: | • 117401 Vorlesung Elektromagnetische Verträglichkeit
• 117402 Übung Elektromagnetische Verträglichkeit |
| Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |

Stand: 19. Oktober 2017
18. Grundlage für ... :

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PowerPoint, Tafelanschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• beherrschen den Einsatz von Simulationswerkzeugen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundlagen der numerischen Simulation elektromagnetischer Felder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methode der finiten Elemente (FEM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ausgangsbeziehung der FEM für Potenzialprobleme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geometriemodellierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Erstellung und Lösung des FE-Gleichungssystems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FE-Formulierungen von elektromagnetischen Feldproblemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methode der Randelemente (BEM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Randintegraldarstellung, Randintegralgleichung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Erstellung und Lösung des BE-Gleichungssystems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BE-Formulierung von Elektrodenproblemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>117501 Vorlesung Numerische Feldberechnung I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>117502 Übung Numerische Feldberechnung I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von: Theorie der Elektrotechnik
Modul: 12450 Wasserkraft und Wasserbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021410004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Silke Wieprecht</td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- > Spezialisierungsmodule</td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>→ Wahlkatalog NEE 2 --> Spezialisierungsmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in der Strömungsmechanik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Einführend wird auf die notwendigen Voraussetzungen und Möglichkeiten der Wasserkraftnutzung sowie die genutzten und noch nutzbaren Potenziale der Wasserkraft eingegangen. Im Weiteren werden folgende Themen behandelt:</td>
</tr>
<tr>
<td></td>
<td>• Bauliche und maschinenbauliche Bestandteile einer Wasserkraftanlage</td>
</tr>
<tr>
<td></td>
<td>• Einteilung und Aufbau von Wasserkraftanlagen</td>
</tr>
<tr>
<td></td>
<td>• Wasserbauliche Anlagenteile und deren Funktionsfähigkeiten</td>
</tr>
<tr>
<td></td>
<td>• Speicherbewirtschaftung</td>
</tr>
<tr>
<td></td>
<td>• Turbinentypen und der Arbeitsweisen sowie deren Bemessung</td>
</tr>
<tr>
<td></td>
<td>• Auslegung der Leistung einer WKA</td>
</tr>
<tr>
<td></td>
<td>• Hydraulische Bemessung</td>
</tr>
<tr>
<td></td>
<td>• Umweltaspekte (Durchgängigkeit, Fischauf- und -abstiegsanlagen, Mindestwasser, Hochwasserschutz)</td>
</tr>
<tr>
<td></td>
<td>• Funktionsweise und Besonderheiten von Pumpspeicheranlagen</td>
</tr>
<tr>
<td></td>
<td>• Betrieb und Regelung von WKA</td>
</tr>
<tr>
<td></td>
<td>• Netzregelung mit WKA</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript zur Vorlesung</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 124502 Übung Wasserbau und Wasserkraft</td>
</tr>
<tr>
<td></td>
<td>• 124501 Vorlesung Wasserbau und Wasserkraft</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 135 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
17. Prüfungsnummer/n und -name: 12451 Wasserkraft und Wasserbau (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Wasserbau und Wassermengenwirtschaft
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Stefan Riedelbauch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td>Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | | | • Stoffeigenschaften von Fluiden
• Kennzahlen und Ähnlichkeit
• Statik der Fluide (Hydrostatik und Aerostatik)
• Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
• Elementare Anwendungen der Erhaltungsgleichungen
• Rohrhydraulik
• Differentialgleichungen für ein Fluidelement |
| 14. Literatur: | | | Vorlesungsmanuskript "Technische Strömungslehre
E. Truckenbrodt, Fluidmechanik, Springer Verlag
F.M. White, Fluid Mechanics, McGraw - Hill
E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher |
| 15. Lehrveranstaltungen und -formen: | | | • 137501 Vorlesung Technische Strömungslehre
• 137502 Übung Technische Strömungslehre
• 137503 Seminar Technische Strömungslehre |
| 16. Abschätzung Arbeitsaufwand: | | | Präsenzzeit: 42 h
Selbststudium: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | | | 13751 Technische Strömungslehre (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | | | Hydraulische Strömungsmaschinen in der Wasserkraft |
| 19. Medienform: | | | • Tafelanschrieb, Tablet-PC
• PPT-Präsentationen
• Skript zur Vorlesung |
| 20. Angeboten von: | | | Strömungsmechanik und Hydraulische Strömungsmaschinen |
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduladauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse aus den Fachsemestern 1 bis 4</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | **VL Kfz-Mech I:**
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)
VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)
Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik |
| 14. Literatur: | Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)
| 15. Lehrveranstaltungen und -formen: |
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II |
<p>| 16. Abschätzung Arbeitsaufwand: | Vorlesung, Laborübungen, Selbststudium |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
</tbody>
</table>
Modul: 14150 Leichtbau

2. Modulkürzel: 041810002
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Michael Seidenfuß

9. Dozenten: Stefan Weihe
Michael Seidenfuß

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
2. Semester
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- > Spezialisierungsmodule

11. Empfohlene Voraussetzungen:
• Einführung in die Festigkeitslehre
• Werkstoffkunde I und II

13. Inhalt:
• Werkstoffe im Leichtbau
• Festigkeitsberechnung
• Konstruktionsprinzipien
• Stabilitätsprobleme: Knicken und Beulen
• Verbindungstechnik
• Zuverlässigkeit
• Recycling

14. Literatur:
- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft

15. Lehrveranstaltungen und -formen:
• 141502 Leichtbau Übung
• 141501 Vorlesung Leichtbau

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszzeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14151 Leichtbau (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT auf Tablet PC, Animationen u. Simulationen

20. Angeboten von: Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 17110 Entwurf digitaler Systeme

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Matthias Meyer
 → Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- Spezialisierungsmodule
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden
12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.
13. Inhalt:
 • Entwurfsprozesse und Modularisierung
 • Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebenläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
 • Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
 • Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS
14. Literatur:
 • Vorlesungsskript
 • Ashenden, P. J.: The Student's Guide to VHDL, Morgan Kaufmann Publishers
 • Ashenden, P. J.: The Designer's Guide to VHDL, Morgan Kaufmann Publishers
15. Lehrveranstaltungen und -formen:
 • 171101 Vorlesung Entwurf digitaler Systeme
 • 171102 Übung Entwurf digitaler Systeme
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 17111 Entwurf digitaler Systeme (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
18. Grundlage für ...:
 Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I
19. Medienform:
 Notebook-Präsentationen
20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: PD Dr.-Ing. Markus Gaida
9. Dozenten: Markus Gaida
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- Spezialisierungsmodule

11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung Signale und Systeme vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflussgraph
- Entwurf von FIR-Filtern: linearpasaige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsräuschen, Signal-zu-Rausch-Abstand, Grenzzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
• 171301 Vorlesung Entwurf digitaler Filter
• 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ... :

19. Medienform:
Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von:
Institutsverbund Elektrotechnik und Informationstechnik
Modul: 17170 Elektrische Antriebe

2. Modulkürzel: 051010013
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

 → Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- > Spezialisierungsmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: Studierende...

- ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
- ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
- ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
- ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:

- Grundlagen der Antriebstechnik
- Elektronische Stellglieder
- Gleichstrommaschine
- Drehfeldmaschinen

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 171701 Vorlesung Elektrische Antriebe
- 171702 Übung Elektrische Antriebe

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
 Tafel, Folien, Beamer

20. Angeboten von:
 Leistungselektronik und Regelungstechnik

Stand: 19. Oktober 2017
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik Grundkenntnisse von elektronischen Bauelementen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Analoge Grundschaltungen
• Stromspiegel
• Innerer Aufbau von Operationsverstärkern
• Anwendung von Operationsverstärkern
• Rauscharme Verstärker
• Oszillatoren
• Frequenzumsetzung
• Leistungsverstärker |
| 14. Literatur: | • Zusatzblätter zum Selbststudium
• Aufgaben zur Selbstbearbeitung
Bücher:
• B. Razavi: RF Microelectronics, Prentice Hall, 1997 |
| 15. Lehrveranstaltungen und -formen: | • 259401 Vorlesung Verstärkertechnik I
• 259402 Vorlesung Verstärkertechnik II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | • 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
• 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1 |
| 18. Grundlage für ... : |
| 19. Medienform: | Tafel, Beamer |
20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel: 042500042
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Hendrik Lens
9. Dozenten: Hendrik Lens

10. Zuordnung zum Curriculum in diesem Studiengang:
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik --> Spezialisierungsmodule
→ Wahlkatalog NEE 2 --> Spezialisierungsmodule

Grundlagen der Systemdynamik und/oder der Regelungstechnik sind von Vorteil.

12. Lernziele:
Die Absolventen des Moduls kennen und verstehen die Zusammenhänge der Dynamik des Stromversorgungssystems in Bezug auf das Netz, die Erzeugung und die Verbraucher. Sie kennen und verstehen die Regelungsaufgaben im Bereich der Stromerzeugung. Sie sind mit dem aktuellen Stand der Technik in Bezug auf die Standard-Regelaufgaben in der Stromerzeugung vertraut und können bestehende Regelungen und ihre Auswirkungen auf das Verbundsystem bewerten.

13. Inhalt:
- Einführung
- Aufbau von elektrischen Energieversorgungssystemen
- Kontinentaleuropäisches Verbundsystem
- Kurzeinführung in dynamische Übertragungsglieder und Regelungen
- Leistungs-Frequenzregelung
- Spannungs-Blindleistungsregelung
- Lastflussrechnung
- Dynamik und Regelung von
 - thermischen Kraftwerken
 - Kernkraftwerken
 - Wasserkraftwerken
 - Windenergieanlagen
 - solarthermischen Kraftwerken
 - Verbrauchern
 - Netzbetriebsmitteln
 - Dezentrale Anlagen
 - Speicherung von elektrischer Energie

Es werden im Rahmen der Vorlesungen drei Übungen angeboten, davon findet eine Übung am Rechner statt.

14. Literatur:
Zur weiteren Vertiefung:
- VDI/VDE-Richtlinienreihe 35xx,
- Nationale und internationale Netzcodes (TransmissionCode, DistributionCode, UCTE Operation Handbook)
15. Lehrveranstaltungen und -formen:

- 285501 Vorlesung Regelung von Kraftwerken und Netzen

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 60 Stunden
- Selbststudium: 120 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

- 28551 Regelung von Kraftwerken und Netzen (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

- Präsentation, Tafelanschrieb, ILIAS

20. Angeboten von:

- Thermische Kraftwerkstechnik
Modul: 38720 Meteorologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Ulrich Vogt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt einwirken (Wasser, Vegetation) erforderlich sind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>In der Vorlesung "Meteorologie" werden die folgenden Themen behandelt: • Strahlung und Strahlungsbilanz, • Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftpfeuchtigkeit, Wind) und ihre Messung, • allgemeine Gesetze, • Aufbau der Erdatmosphäre, • klein- und großräumige Zirkulationssysteme in der Atmosphäre, • Wetterkarte und Wettervorschau, • Ausbreitung von Schadstoffen in der Atmosphäre, • Stadtklimatologie, • Globale Klimaveränderungen und ihre Auswirkungen, "Ozonloch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 387201 Vorlesung Meteorologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>38721 Meteorologie (BSL), Schriftlich, 60 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, ILIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Thermische Kraftwerkstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 39160 Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Wolfgang Burr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Burr, Micha Bosler, Xenia Schmidt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, Wahlkatalog NEE 3 --> Spezialisierungsmodul
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester Wahlkatalog aus Bachelor Elektro- und Informationstechnik --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

- Die Studierenden können die zentrale betriebswirtschaftliche Definitionen wiedergeben und lernen auf deren Basis zu argumentieren
- Die Studierenden können die verschiedene Teilbereiche der Betriebswirtschaft benennen und in das Gesamtkonzept der Betriebswirtschaft einordnen sowie dortige Problemstellungen angeben und eingesetzte Instrumente anwenden
- Die Studierenden sind in der Lage ausgewählte betriebswirtschaftlichen Theorien zu erklären und auf bestimmte Problemstellungen anzuwenden

13. Inhalt:

14. Literatur:

- Folien zu Vorlesungen und Übungen
- Übungsaufgaben im ILIAS

Die Basisliteratur umfasst die folgenden Werke:

- Burr, W.: Innovationen in Organisationen, aktuelle Auflage, Kohlhammer Verlag, Stuttgart.

| 15. Lehrveranstaltungen und -formen: | • 391601 Vorlesung Grundlagen der Betriebswirtschaftslehre
• 391602 Übung Grundlagen der Betriebswirtschaftslehre |

| 16. Abschätzung Arbeitsaufwand: | Vorlesung
- Präsenzzeit: 28 h
- Selbststudium: 32 h
Übung
- Präsenzzeit: 14 h
- Selbststudium: 16 h
Gesamt: 90 h |

| 17. Prüfungsnummer/n und -name: | 39161 Grundlagen der Betriebswirtschaftslehre (BSL), Schriftlich, 60 Min., Gewichtung: 1 |

| 18. Grundlage für ... : |

| 19. Medienform: | Tafel, Beamer, Overhead-Projektor |

| 20. Angeboten von: | ABWL, Innovations- und Dienstleistungsmanagement |
Modul: 41170 Speichertechnik für elektrische Energie I

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Peter Birke
9. Dozenten: Kai Peter Birke
10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 ➔ Wahlkatalog NEE 2 → Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 ➔ Wahlkatalog aus Bachelor Elektro- und Informationstechnik →
 Spezialisierungsmodule
 M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
 2. Semester
 ➔ Zusatzmodule

11. Empfohlene Voraussetzungen:
12. Lernziele:
 Die Studierenden lernen die Speichertechniken für elektrische
 Energie kennen.
13. Inhalt:
 Aufbau und Funktionsweise von:
 • Elektrochemischen Speichern: Primärzellen (Alkali-Mangan,...),
 Sekundärzellen wie Blei-Akkumulator, Nickel-basierte Systeme,
 Redox-Flow-Zellen, Lithium-Ionen, Post Lithium-Ionen Zellen,
 Brennstoffzellen, Elektrolyse
 • Elektrischen Speichern (Spule, supraleitende Spule,
 Kondensator, Doppelschichtkondensator)
 • Elektromechanischen Speichern (Schwungrad, Gas, Wasser)
 Charakterisierung der Speicher anhand charakteristischer Größen
 wie:
 • Energieinhalt
 • Leistung (dynamisch/stationär)
 • Kosten
 • Betriebssicherheit
 Überblick über die wichtigsten Messverfahren
 Einführung in Ersatzschaltbilder und Modellierung
14. Literatur:
 Skript zur Vorlesung, wird im ILIAS regelmäßig hochgeladen,
 ausführliche Literaturhinweise werden in der ersten Vorlesung
 bekannt gegeben und mit dem Skript hochgeladen.
15. Lehrveranstaltungen und -formen:
 • 411702 Übung Speicher für Elektrische Energie
 • 411701 Vorlesung Speicher für Elektrische Energie
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: ca. 124 h
 Summe: 180h
17. Prüfungsnummer/n und -name:
 41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90
 Min., Gewichtung: 1
18. Grundlage für ...
19. Medienform:
 Beamer, Tafel
| 20. Angeboten von: | Elektrische Energiespeichersysteme |

Stand: 19. Oktober 2017
Modul: 41450 Grundzüge der Angewandten Chemie

2. Modulkürzel: 030230906
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Rainer Niewa

9. Dozenten: Rainer Niewa

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden
 • kennen grundlegende Konzepte der Chemie wie Atombau, Periodensystem, Bindingstypen, Formelsprache und Stöchiometrie
 • kennen grundlegende chemische Stoffklassen sowie exemplarische Reaktionstypen
 • wissen um den Zusammenhang zwischen chemischem Aufbau und Eigenschaften wichtiger Materialien
 • erkennen wichtige Anwendungen der Chemie im eigenen Hauptfach

 G. Kickelbick: Chemie für Ingenieure, 2008

15. Lehrveranstaltungen und -formen: • 414501 Vorlesung Grundzüge der Angewandten Chemie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
 Selbststudium / Nacharbeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 41451 Grundzüge der Angewandten Chemie (BSL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Anorganische Chemie
Modul: 46340 Signale und Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051600044</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Bin Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester
→ Wahlkatalog aus Bachelor Elektro- und Informationstechnik -- > Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
Grundkenntnisse in höherer Mathematik
Grundkenntnisse in Elektrotechnik

12. Lernziele:
Die Studierenden besitzen Grundkenntnisse der Theorie von linearen Systemen und beherrschen die elementaren Methoden für die Analyse der Signale und Systeme im Zeit- und Frequenzbereich.

13. Inhalt:
Signal, Klassifikation von Signalen, zeitkontinuierliche und zeitdiskrete Signale, verschiedene Elementarsignale
System, zeitkontinuierliche und zeitdiskrete Systeme, linear, gedächtnislos, kausal, zeitenvariant, stabil
Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Zeitbereich, Impulsantwort, Faltung
Fourier-Reihe und Fourier-Transformation zeitkontinuierlicher und zeitdiskreter Signale
Abtastung, Abtasttheorem
Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Frequenzbereich, Frequenzgang, Amplitudengang, Phasengang, Gruppenlaufzeit, rationaler Frequenzgang

14. Literatur:
Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
H. P. Hsu: Schaum's outline of signals and systems, McGraw-Hill, 1995,
A. V. Oppenheim und A. S. Willsky: Signals and systems, 2. Auflage,
Prentice-Hall, 1997,
R. Unbehauen: Systemtheorie I, 7. Auflage, Oldenburg, 1997,

15. Lehrveranstaltungen und -formen:
• 463401 Vorlesung Signale und Systeme
• 463402 Übung Signale und Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
46341 Signale und Systeme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Laptop, Beamer, Videoaufzeichnung aller Vorlesungen

20. Angeboten von:
Netzwerk- und Systemtheorie

Stand: 19. Oktober 2017
Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduländer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Softwartechnik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundbegriffe der Softwartechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung, Softwareprüfung, Projektmanagement, Softwartechnikwerkzeuge, Dokumentation</td>
</tr>
<tr>
<td></td>
<td>Wiegers, K.: Software-Requirements, Microsoft Press, 2005</td>
</tr>
<tr>
<td></td>
<td>Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 690501 Vorlesung Technologien und Methoden der Softwaresysteme I</td>
</tr>
<tr>
<td></td>
<td>• 690502 Übung Technologien und Methoden der Softwaresysteme I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: ca. 124 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>• 69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
19. Medienform:

20. Angeboten von: Automatisierungs- und Softwaretechnik
Modulhandbuch: Master of Science Nachhaltige Elektrische Energieversorgung

Modul: 69450 Konstruktionslehre II (EE)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060300036</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Joachim Greiner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Greiner, Christian Koch, Stephan Staudacher</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:	Konstruktionslehre I (EE)
12. Lernziele:	Die Studierenden sind in der Lage
	- Funktionsanforderungen an Komponenten durch Konstruktionselemente zu verwirklichen und Bauausführungen zu begründen
	- eine Konstruktion aus verschiedenen Konstruktionselementen zu erstellen, zu berechnen, nachzuweisen, zu dokumentieren (Stückliste) und darzustellen
	- Konstruktionselemente und deren Einsatz anhand widersprüchlicher Kriterien (z.B. Kosten, Qualität) zu beurteilen

| | - Übungs-Manuskript zum Herunterladen |
| | - Lehrbuch: Roloff/Matek, Maschinenelemente, Viehweg-Verlag |

15. Lehrveranstaltungen und -formen:	• 694501 Seminar Konstruktionsseminar
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 28h
	Selbststudium/Nacharbeitszeit: 152h
	Gesamt: 180h

17. Prüfungsnummer/n und -name:	69451 Konstruktionslehre II EE (LBP), Sonstige, Gewichtung: 1
18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	Flugzeugbau
Modul: 71750 Schaltungstechnik (Grundlagen)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Elektrotechnik, Grundkenntnisse in höherer Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 717501 Vorlesung Schaltungstechnik I, • 717502 Übung Schaltungstechnik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>71751 Schaltungstechnik (PL), Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische und Optische Nachrichtentechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
250 Module aus anderen Master Studiengängen

Zugeordnete Module:
30750 Meeresenergie
36880 Solartechnik II
Modul: 30750 Meeresenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000600</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Dr.-Ing. Albert Ruprecht</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Albert Ruprecht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester</td>
</tr>
<tr>
<td>→ Module aus anderen Master Studiengängen --> Spezialisierungsmodule</td>
</tr>
<tr>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlkatalog NEE 3 --> Spezialisierungsmodul</td>
</tr>
<tr>
<td>M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlkatalog NEE 2 --> Spezialisierungsmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>keine</th>
</tr>
</thead>
</table>

|----------------|--|

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Einführung in Meeresenergie</td>
</tr>
<tr>
<td>-Gezeitenkraftwerke</td>
</tr>
<tr>
<td>-Strömungskraftwerke</td>
</tr>
<tr>
<td>-Wellenergienutzung</td>
</tr>
<tr>
<td>-Osmose-Kraftwerke</td>
</tr>
<tr>
<td>-Nutzung thermischer Meeresenergie</td>
</tr>
<tr>
<td>-Projektbeispiele</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Vorlesungsmanuskript "Meeresenergie"</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 307501 Vorlesung Meeresenergie</td>
</tr>
<tr>
<td>• 307502 Seminar Meeresenergie (1Tag)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td>Selbststudium: 69 h</td>
</tr>
<tr>
<td>Summe: 90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30751 Meeresenergie (BSL), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PPT-Präsentationen, Tafelanschrieb</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strömungsmechanik und Hydraulische Strömungsmaschinen</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
Modul: 36880 Solartechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr.-Ing. Klaus Spindler</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Tobias Hirsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011, Wahlkatalog NEE 3 --> Spezialisierungsmodule
 - Module aus anderen Master Studiengängen --> Spezialisierungsmodule
 - Zusatzmodule

12. Lernziele:

13. Inhalt:
- Einführung und allgemeine Technikübersicht
- Potential und Markt solarthermischer Kraftwerke
- Grundlagen der Umwandlung konzentrierter Solarstrahlung
- Übersicht zur Parabol-Rinnen Kraftwerkstechnik
- Übersicht zur Solar Turm Kraftwerkstechnik
- Auslegungskonzepte für Rinnenkollektoren und Absorber
- Auslegungskonzepte für Receiver
- Grundlagen von Hochtemperatur-Wärmespeicher
- Auslegungskonzepte ausgewählter Speichertechniken
- Übersicht zu aktuellen Kraftwerksprojekten

14. Literatur:
- Kopie der Powerpoint-Präsentation

15. Lehrveranstaltungen und -formen:
- 368801 Vorlesung Solartechnik II
- 368802 Seminar Solarkraftwerke

16. Abschätzung Arbeitsaufwand:
- Präsenzeit: 28 h
- Selbststudiumszeit / Nacharbeitszeit: 62 h
- Gesamt: 90h

17. Prüfungsnummer/n und -name:
- 36881 Solartechnik II (BSL), Schriftlich, 120 Min., Gewichtung: 1

19. Medienform:
Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:
Thermodynamik und Wärmetechnik
Modul: 80550 Masterarbeit Nachhaltige Elektrische Energieversorgung

3. Leistungspunkte: 30 LP 6. Turnus: Wintersemester/ Sommersemester
4. SWS: 0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Jürgen Heinz Werner
Nejila Parspour
Stefan Tenbohlen
Jörg Schulze
Peter Göhner
Jörg Roth-Stielow
Po Wen Cheng
Stefan Riedelbauch
Silke Wieprecht
Alfred Voß
Krzysztof Rudion

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Nachhaltige Elektrische Energieversorgung, PO 948-2011,
11. Empfohlene Voraussetzungen: Erwerb von mind. 72 Leistungspunkten im Master-Studiengang

Die Studierenden

• können eine wissenschaftliche Aufgabenstellung selbständig bearbeiten.

• sind in der Lage die Ergebnisse aus einer wissenschaftlichen Arbeit in einem Bericht zusammenzufassen und in Form eines kurzen Vortrages zu präsentieren.

13. Inhalt: • Einarbeitung in die Aufgabenstellung durch Literaturrecherche
• Erstellung eines Arbeitsplanes.
• Durchführung und Auswertung der eigenen Untersuchungen
• Diskussion der Ergebnisse
- Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit
- Präsentation und Verteidigung der Ergebnisse in einem Seminarvortag

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: Gesamtaufwand: 900h Dabei:
- 21 h (2 SWS) Präsenz im Kolloquium
- 49 h Erstellung des Kolloquiumsvortrags
- 830 h Erstellung der Master-Arbeit

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 81060 Forschungsarbeit Nachhaltige Elektrische Energieversorgung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050525001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>15 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>