Kontaktpersonen:

<table>
<thead>
<tr>
<th>Stuudiendekan/in:</th>
<th>Univ.-Prof. Bernd Zinn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Institut für Erziehungswissenschaft</td>
</tr>
<tr>
<td></td>
<td>E-Mail: <a href="mailto:bernd.zinn@ife.uni-stuttgart.de">bernd.zinn@ife.uni-stuttgart.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stuudiengangsmanager/in:</th>
<th>Dr. Annika Endreß</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Institut für Erziehungswissenschaft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsausschussvorsitzende/r:</th>
<th>Prof. Hans-Christian Möhring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Institut für Werkzeugmaschinen</td>
</tr>
<tr>
<td></td>
<td>Tel.: 0711 / 685 83773</td>
</tr>
<tr>
<td></td>
<td>E-Mail: <a href="mailto:moehring@ifw.uni-stuttgart.de">moehring@ifw.uni-stuttgart.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fachstudienberater/in:</th>
<th>Erziehungswissenschaft und allgemein: MSc. Stefan Behrend Email: <a href="mailto:stefan.behrendt@ife.uni-stuttgart.de">stefan.behrendt@ife.uni-stuttgart.de</a></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schulpraktika, Vorpraktikum u. Maschinenbau: Bernhard Stolzenburg Email: <a href="mailto:stolzenburg@ife.uni-stuttgart.de">stolzenburg@ife.uni-stuttgart.de</a></td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik u. Informatik: Andreas Mußotter E-Mail: <a href="mailto:andreas.mussotter@ife.uni-stuttgart.de">andreas.mussotter@ife.uni-stuttgart.de</a></td>
</tr>
<tr>
<td></td>
<td>Bautechnik: Janos Klaus Email: <a href="mailto:klaus@ife.uni-stuttgart.de">klaus@ife.uni-stuttgart.de</a></td>
</tr>
</tbody>
</table>
# Inhaltsverzeichnis

## Präambel

Inhaltsverzeichnis des Modulhandbuchs Bachelor of Science Technikpädagogik

## Qualifikationsziele

### 100 Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11450</td>
<td>Informatik I</td>
</tr>
<tr>
<td>11460</td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>11470</td>
<td>Schaltungen und Systeme</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energiotechnik</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
</tbody>
</table>

## 200 Hauptfach

### 210 Hauptfach Bautechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10570</td>
<td>Werkstoffe im Bauwesen I</td>
</tr>
<tr>
<td>10640</td>
<td>Geotechnik I</td>
</tr>
<tr>
<td>14400</td>
<td>Technische Mechanik I: Einführung in die Statik starrer Körper</td>
</tr>
<tr>
<td>14410</td>
<td>Technische Mechanik II: Einführung in die Elastostatik und in die Festigkeitslehre</td>
</tr>
</tbody>
</table>

### 211 Basismodule Bautechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11510</td>
<td>Informatik II</td>
</tr>
<tr>
<td>11520</td>
<td>Informatikpraktikum</td>
</tr>
<tr>
<td>11530</td>
<td>Informatik III</td>
</tr>
</tbody>
</table>

### 212 Kernmodule Bautechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10610</td>
<td>Baubetriebslehre I</td>
</tr>
<tr>
<td>10970</td>
<td>Grundlagen der Betriebswirtschaftslehre für Ingenieure</td>
</tr>
<tr>
<td>37150</td>
<td>Fertigungsverfahren in der Bauwirtschaft</td>
</tr>
</tbody>
</table>

### 213 Wahlbereich 1 Bautechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10960</td>
<td>Einführung in die Rechtsgrundlagen des Bauwesens</td>
</tr>
<tr>
<td>10990</td>
<td>Entwurf in Zusammenarbeit mit Architekturstudenten</td>
</tr>
<tr>
<td>42380</td>
<td>Angewandte Bauphysik</td>
</tr>
</tbody>
</table>

### 214 Wahlbereich 2 Bautechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>11490</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energietechnik</td>
</tr>
</tbody>
</table>

## 220 Hauptfach Elektrotechnik

### 221 Basismodule Elektrotechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11430</td>
<td>Mikroelektronik</td>
</tr>
<tr>
<td>11440</td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>11450</td>
<td>Informatik I</td>
</tr>
<tr>
<td>12220</td>
<td>Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2</td>
</tr>
</tbody>
</table>

### 222 Kernmodule Elektrotechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11460</td>
<td>Grundlagenpraktikum</td>
</tr>
<tr>
<td>11470</td>
<td>Schaltungen und Systeme</td>
</tr>
<tr>
<td>11510</td>
<td>Informatik II</td>
</tr>
<tr>
<td>11520</td>
<td>Informatikpraktikum</td>
</tr>
</tbody>
</table>

### 223 Ergänzungsmodul

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2231</td>
<td>Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energiotechnik</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
</tbody>
</table>

### 2232 Pflichtcontainer Schwerpunkt System- und Informationstechnik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11490</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>Kursnummer</td>
<td>Modulbeschreibung</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>301</td>
<td>Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td>11760</td>
<td>Analysis 1</td>
</tr>
<tr>
<td>11770</td>
<td>Analysis 2</td>
</tr>
<tr>
<td>11780</td>
<td>Lineare Algebra und Analytische Geometrie 1</td>
</tr>
<tr>
<td>11790</td>
<td>Lineare Algebra und Analytische Geometrie 2</td>
</tr>
<tr>
<td>55850</td>
<td>Proseminar Mathematik</td>
</tr>
<tr>
<td>302</td>
<td>Wahlpflichtfach Physik</td>
</tr>
<tr>
<td>27650</td>
<td>Mathematische Methoden der Physik</td>
</tr>
<tr>
<td>27660</td>
<td>Grundlagen der Experimentalphysik für Lehramt I + II</td>
</tr>
<tr>
<td>27670</td>
<td>Grundlagen der Experimentalphysik für Lehramt III</td>
</tr>
<tr>
<td>27680</td>
<td>Physikalisches Praktikum für Lehramt I</td>
</tr>
<tr>
<td>27690</td>
<td>Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik</td>
</tr>
<tr>
<td>303</td>
<td>Wahlpflichtfach Chemie</td>
</tr>
<tr>
<td>10230</td>
<td>Einführung in die Chemie</td>
</tr>
<tr>
<td>10340</td>
<td>Praktische Einführung in die Chemie</td>
</tr>
<tr>
<td>10380</td>
<td>Grundlagen der Anorganischen und Analytischen Chemie</td>
</tr>
<tr>
<td>10410</td>
<td>Instrumentelle Analytik</td>
</tr>
<tr>
<td>69530</td>
<td>Rechtskunde und Toxikologie für Chemiker</td>
</tr>
<tr>
<td>304</td>
<td>Wahlpflichtfach Deutsch</td>
</tr>
<tr>
<td>19500</td>
<td>Einführung in die Literaturwissenschaft</td>
</tr>
<tr>
<td>19530</td>
<td>Einführung in die Linguistik</td>
</tr>
<tr>
<td>19540</td>
<td>Literatur im kulturgeschichtlichen Kontext</td>
</tr>
<tr>
<td>19560</td>
<td>Grammatische Analyse (Kernmodul 3)</td>
</tr>
<tr>
<td>Modulhandbuch: Bachelor of Science Technikpädagogik</td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Englisch</th>
<th>..........................................................</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>27120 Grundlagen der Literaturwissenschaft und der Linguistik</td>
<td>..........................................................</td>
<td>176</td>
</tr>
<tr>
<td>27140 Textwissenschaft</td>
<td>..........................................................</td>
<td>178</td>
</tr>
<tr>
<td>27150 Formal Basis</td>
<td>..........................................................</td>
<td>179</td>
</tr>
<tr>
<td>27160 Sprachpraxis 2</td>
<td>..........................................................</td>
<td>180</td>
</tr>
<tr>
<td>31800 Text und Kontext (Technikpädagogik)</td>
<td>..........................................................</td>
<td>182</td>
</tr>
<tr>
<td>31810 Linguistic Levels (Technikpädagogik)</td>
<td>..........................................................</td>
<td>183</td>
</tr>
<tr>
<td>41610 Sprachpraxis 1</td>
<td>..........................................................</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Ethik</th>
<th>..........................................................</th>
<th>186</th>
</tr>
</thead>
<tbody>
<tr>
<td>27110 Grundlagen der Philosophie</td>
<td>..........................................................</td>
<td>187</td>
</tr>
<tr>
<td>30380 Einführung in die Praktische Philosophie</td>
<td>..........................................................</td>
<td>189</td>
</tr>
<tr>
<td>30980 Grundlagen der Praktischen Philosophie</td>
<td>..........................................................</td>
<td>191</td>
</tr>
<tr>
<td>31150 Ethische Bewertung</td>
<td>..........................................................</td>
<td>193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Politikwissenschaft</th>
<th>..........................................................</th>
<th>194</th>
</tr>
</thead>
<tbody>
<tr>
<td>3071 Grundlagen Politikwissenschaft</td>
<td>..........................................................</td>
<td>195</td>
</tr>
<tr>
<td>27410 Politisches System der BRD LA</td>
<td>..........................................................</td>
<td>196</td>
</tr>
<tr>
<td>27420 Analyse und Vergleich politischer Systeme LA</td>
<td>..........................................................</td>
<td>198</td>
</tr>
<tr>
<td>27430 Politische Theorie LA</td>
<td>..........................................................</td>
<td>200</td>
</tr>
<tr>
<td>27440 Internationale Beziehungen LA</td>
<td>..........................................................</td>
<td>202</td>
</tr>
<tr>
<td>3072 Ergänzungswahlbereich Politikwissenschaft 6LP</td>
<td>..........................................................</td>
<td>204</td>
</tr>
<tr>
<td>27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD</td>
<td>..........................................................</td>
<td>205</td>
</tr>
<tr>
<td>27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie</td>
<td>..........................................................</td>
<td>207</td>
</tr>
<tr>
<td>27560 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen</td>
<td>..........................................................</td>
<td>209</td>
</tr>
<tr>
<td>27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme</td>
<td>..........................................................</td>
<td>211</td>
</tr>
<tr>
<td>3073 Ergänzungswahlbereich Politikwissenschaft 9LP</td>
<td>..........................................................</td>
<td>213</td>
</tr>
<tr>
<td>28090 Analyse sozialer Strukturen und Prozesse</td>
<td>..........................................................</td>
<td>214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Sport</th>
<th>..........................................................</th>
<th>216</th>
</tr>
</thead>
<tbody>
<tr>
<td>16340 Naturwissenschaftliche Ansätze und Theorien</td>
<td>..........................................................</td>
<td>217</td>
</tr>
<tr>
<td>26700 Sportartspezifische Theorie und Praxis - Bereich B1</td>
<td>..........................................................</td>
<td>219</td>
</tr>
<tr>
<td>31200 Geisteswissenschaftliche Ansätze und Theorien</td>
<td>..........................................................</td>
<td>221</td>
</tr>
<tr>
<td>31220 Sozialwissenschaftliche Ansätze und Theorien</td>
<td>..........................................................</td>
<td>223</td>
</tr>
<tr>
<td>69920 Sportartspezifische Theorie und Praxis - Bereich A1</td>
<td>..........................................................</td>
<td>225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Evangelische Theologie</th>
<th>..........................................................</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>20500 Theologie als Wissenschaft</td>
<td>..........................................................</td>
<td>228</td>
</tr>
<tr>
<td>20510 Biblische Theologie</td>
<td>..........................................................</td>
<td>230</td>
</tr>
<tr>
<td>20530 Kirchengeschichte</td>
<td>..........................................................</td>
<td>232</td>
</tr>
<tr>
<td>20540 Religionspädagogik</td>
<td>..........................................................</td>
<td>233</td>
</tr>
<tr>
<td>20550 Systematische Theologie</td>
<td>..........................................................</td>
<td>235</td>
</tr>
<tr>
<td>20560 Religionswissenschaft</td>
<td>..........................................................</td>
<td>237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Katholische Theologie</th>
<th>..........................................................</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td>20570 Katholische Theologie Basismodul 1</td>
<td>..........................................................</td>
<td>239</td>
</tr>
<tr>
<td>20580 Katholische Theologie Basismodul 2</td>
<td>..........................................................</td>
<td>240</td>
</tr>
<tr>
<td>20590 Katholische Theologie Basismodul 3</td>
<td>..........................................................</td>
<td>241</td>
</tr>
<tr>
<td>23600 Katholische Theologie Vertiefungsmodul 1</td>
<td>..........................................................</td>
<td>242</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Wirtschaftswissenschaften</th>
<th>..........................................................</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>12090 BWL I: Produktion, Organisation, Personal</td>
<td>..........................................................</td>
<td>244</td>
</tr>
<tr>
<td>13030 Rechtliche Grundlagen der BWL</td>
<td>..........................................................</td>
<td>246</td>
</tr>
<tr>
<td>13610 Wissenschaftliches Arbeiten</td>
<td>..........................................................</td>
<td>249</td>
</tr>
<tr>
<td>16490 Grundlagen der Betriebswirtschaftslehre</td>
<td>..........................................................</td>
<td>251</td>
</tr>
<tr>
<td>27460 Mikroökonomik</td>
<td>..........................................................</td>
<td>253</td>
</tr>
<tr>
<td>27470 Makroökonomik</td>
<td>..........................................................</td>
<td>255</td>
</tr>
<tr>
<td>38160 Grundlagen der Volkswirtschaftslehre</td>
<td>..........................................................</td>
<td>257</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Informatik, Grundlagen Informatik</th>
<th>..........................................................</th>
<th>259</th>
</tr>
</thead>
<tbody>
<tr>
<td>10280 Programmierung und Software-Entwicklung</td>
<td>..........................................................</td>
<td>262</td>
</tr>
<tr>
<td>10290 Projekt-INF</td>
<td>..........................................................</td>
<td>264</td>
</tr>
<tr>
<td>10940 Theoretische Grundlagen der Informatik</td>
<td>..........................................................</td>
<td>266</td>
</tr>
<tr>
<td>12060 Datenstrukturen und Algorithmen</td>
<td>..........................................................</td>
<td>268</td>
</tr>
<tr>
<td>Modulhandbuch: Bachelor of Science Technikpädagogik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

313 Wahlpflichtfach Bautechnik .......................................................... 270

3131 Allgemeine Wahlfächer Bautechnik .................................................. 271

10610 Baubetriebsslehre I ................................................................. 272
10710 Werkstoffe im Bauwesen II ......................................................... 274
10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken .......... 275
10950 Geologie .................................................................................. 276
10960 Einführung in die Rechtsgrundlagen des Bauwesens ................. 278
10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure .......... 279
10990 Entwurf in Zusammenarbeit mit Architekturstudenten .......... 280
11340 Zerstörungsfreie Prüfung im Bauwesen ......................................... 282
20640 Betontechnologie .................................................................. 284
20650 Konstruktion und Material ....................................................... 286
34180 Statistik und Informatik ............................................................ 288
37150 Fertigungsverfahren in der Bauwirtschaft ..................................... 291
41090 Einführung in die bauphysikalische Messtechnik ....................... 293
42380 Angewandte Bauphysik ............................................................. 295

3132 Pflichtcontainer Holzbau ............................................................... 298
12540 CAD/CAM im Stahlbau ............................................................. 299
12550 Holzbaukonstruktionen ............................................................. 300
12560 Ingenieurholzbau .................................................................. 302
12570 Temporäre Bauten ................................................................. 304
12580 Vortragsseminar Bauwerke und Bauweisen ............................... 306
33520 Grundlagen der Holzbearbeitungstechnologie ......................... 307
37050 Arbeitssicherheit im Baubetrieb .................................................. 309

3133 Pflichtcontainer Holztechnik .......................................................... 311
34200 Möbel und Raum (Möbel/Innenraum und Projekt) ....................... 312
34210 Innenraum (Raumbildender Ausbau + Projekt + Werkstoffe 1) .... 313
34260 Projekt Innenraum + Projekt Möbel und Raum (Wahlpflichtfach) .. 315

314 Wahlpflichtfach Elektrotechnik ....................................................... 316

3141 a) Schwerpunkt Energie- und Automatisierungstechnik .................. 317
3142 Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik .. 318
11500 Elektrische Energietechnik ....................................................... 319
11540 Regelungstechnik I ................................................................. 321
11550 Leistungselektronik I ............................................................... 323

3143 Wahlpflichtfach Energie- und Automatisierungstechnik ................... 324
11560 Elektrische Energienetze I ......................................................... 325
11570 Hochspannungstechnik I .......................................................... 326
11580 Elektrische Maschinen I ............................................................. 327
11590 Photovoltaik I ......................................................................... 328
11620 Automatisierungstechnik I ......................................................... 330

3144 b) Schwerpunkt System- und Informationstechnik ......................... 332
3145 Pflichtcontainer Schwerpunkt System- und Informationstechnik .... 333
11490 Nachrichtentechnik ................................................................. 334
11610 Technische Informatik ............................................................. 336
11670 Grundlagen integrierter Schaltungen ....................................... 338

3146 Wahlpflichtfach System- und Informationstechnik ......................... 340
11640 Digitale Signalverarbeitung ....................................................... 341
11650 Hochfrequenztechnik I ............................................................ 343
11660 Übertragungstechnik I ............................................................. 344
11680 Kommunikationsnetze I ........................................................... 345
69050 Technologien und Methoden der Softwaresysteme I ................. 347

315 Wahlpflichtfach Maschinenbau ........................................................ 349

3151 a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik .. 350
11150 Experimentalphysik mit Praktikum ............................................. 351
12320 Technische Thermodynamik I .................................................. 353
13590 Kraftfahrzeuge I + II ............................................................... 355
13750 Technische Strömungsführung .................................................. 356
78020 Grundlagen der Fahrzeugantriebe ............................................. 358
### Modulhandbuch: Bachelor of Science Technikpädagogik

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulname</th>
<th>Kapitelzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3152 b)</td>
<td>Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik</td>
<td>360</td>
</tr>
<tr>
<td>11150</td>
<td>Experimentalphysik mit Praktikum</td>
<td>361</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
<td>363</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
<td>365</td>
</tr>
<tr>
<td>13840</td>
<td>Fabrikbetriebslehre</td>
<td>367</td>
</tr>
<tr>
<td>16260</td>
<td>Maschinenendynamik</td>
<td>369</td>
</tr>
<tr>
<td>3153 c)</td>
<td>Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Lüftungs- Klimatechnik</td>
<td></td>
</tr>
<tr>
<td>11150</td>
<td>Experimentalphysik mit Praktikum</td>
<td>372</td>
</tr>
<tr>
<td>12320</td>
<td>Technische Thermodynamik I</td>
<td>374</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
<td>376</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
<td>378</td>
</tr>
<tr>
<td>13950</td>
<td>Grundlagen der Energiewirtschaft und -versorgung</td>
<td>380</td>
</tr>
<tr>
<td>3154</td>
<td>Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
<td>382</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
<td>383</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
<td>385</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
<td>387</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
<td>390</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
<td>392</td>
</tr>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
<td>394</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
<td>396</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
<td>398</td>
</tr>
<tr>
<td>13580</td>
<td>Wissens- und Informationsmanagement in der Produktion</td>
<td>400</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>402</td>
</tr>
<tr>
<td>13910</td>
<td>Chemische Reaktionstechnik I</td>
<td>403</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
<td>405</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
<td>407</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
<td>409</td>
</tr>
<tr>
<td>13980</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau</td>
<td>411</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
<td>412</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
<td>414</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
<td>416</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
<td>417</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
<td>419</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
<td>421</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
<td>423</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
<td>425</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
<td>427</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
<td>429</td>
</tr>
<tr>
<td>14190</td>
<td>Regelungstechnik</td>
<td>431</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
<td>433</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
<td>435</td>
</tr>
<tr>
<td>15600</td>
<td>Schwingungen und Modalanalyse</td>
<td>437</td>
</tr>
<tr>
<td>15860</td>
<td>Thermische Verfahrenstechnik I</td>
<td>439</td>
</tr>
<tr>
<td>78020</td>
<td>Grundlagen der Fahrzeugantrieb</td>
<td>441</td>
</tr>
</tbody>
</table>

### 20390 Fachpraktikum

### 80080 Bachelorarbeit Technikpädagogik
Präambel
Einleitung Zum Wintersemester 2009/10 führte die Universität Stuttgart anstelle des bisherigen Diplomstudiengangs Technikpädagogik den gestuften Bachelor/Master-Studiengang Technikpädagogik ein.

Der Studiengang Bachelor Technikpädagogik ist modular aufgebaut, d.h. die Lehrveranstaltungen (Vorlesungen, Übungen, Praktika, Seminare, Bachelor- bzw. Masterarbeit) sind zu Modulen zusammengefasst, die sich maximal über zwei Semester erstrecken.

In jedem Modul sind Prüfungsleistungen zu erbringen, durch deren Bestehen die dem Modul zugeordneten Leistungspunkte erworben werden. Pro Semester sind im Schnitt 30 Leistungspunkte zu erwerben, während des sich über sechs Semester erstreckenden Bachelorstudiums also insgesamt 180 Leistungspunkte, im darauf folgenden viersemestrigen Masterstudium 120 Leistungspunkte.

Der Studiengang Technikpädagogik besteht aus dem Pflichtfach Erziehungswissenschaft mit Schwerpunkt Berufspädagogik, einem zu wählendem Hauptfach (Bautechnik, Maschinenbau, Elektrotechnik oder Informatik) und einem zu wählendem Wahlpflichtfach (affin oder nicht affin). Ein Vorpraktikum im Umfang von 8 Wochen ist bis zu Beginn des 3. Fachsemesters nachzuweisen.

Während des Studiums ist ein 12wöchiges Fachpraktikum (Betrieb) und ein sechswöchiges Schulpraktikum abzuleisten.

Abgeschlossen wird der Studiengang durch die Bachelorarbeit, die während des sechsten Fachsemesters anzufertigen ist. Die Bearbeitungsfrist für die Bachelorarbeit beträgt 16 Wochen, es werden 9 Leistungspunkte erworben.

Prüfungen
Um die Studienwahlentscheidung zu überprüfen, sieht das Hochschulgesetz in Baden-Württemberg bis zum Ende des zweiten Fachsemesters eine Orientierungsprüfung vor. Diese ist im Bachelorstudium Technikpädagogik bestanden, wenn das Modul 1 „Einführung in die Berufspädagogik“ und das dem gewählten Hauptfach zugeordnete Modul zur Orientierungsprüfung erfolgreich absolviert wurde.

Die Prüfungsnote eines jeden Moduls geht in die Gesamtnote des Bachelorabschlusses entsprechend ihrem Gewicht an Leistungspunkten ein. Sind alle 180 Leistungspunkte erworben, ist die Bachelorprüfung bestanden. Es wird der akademische Grad eines Bachelor of Science (B. Sc.) verliehen. Damit ist ein erster berufsqualifizierender Hochschulabschluss verbunden.


Betonete Studienleistungen „BSL“ (frühere „Scheine“) können hingegen beliebig oft wiederholt werden.
Qualifikationsziele


100 Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

Zugeordnete Module:

101 Erziehungswissenschaft Kernmodule
20370 Schulpraktikum I, Teil 1 (Universität)
20380 Schulpraktikum I, Teil 2 (Seminar)
51170 Einführung in die Berufspädagogik
101 Erziehungswissenschaft Kernmodule

Zugeordnete Module:  
20350  Didaktik beruflicher Bildung  
20360  Organisation beruflicher Bildung
Modul: 20350 Didaktik beruflicher Bildung

2. Modulkürzel: 101010002
5. Moduldaumer: Zweisemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester
4. SWS: 6
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Reinhold Nickolaus
9. Dozenten: Reinhold Nickolaus
Martin Kenner
➞ Erziehungswissenschaft Kernmodule --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden erwerben die Fähigkeit auf der Basis grundlegenden Wissens zur Didaktik Entscheidungen zur Gestaltung von Lehr-Lernprozessen zu reflektieren und zu begründen.

Sie sind insbesondere in der Lage, Lehr-Lernziele und Lehrverfahren unter Berücksichtigung relevanter Bedingungen zu planen und Lehr-Lernprozesse zu beurteilen.
15. Lehrveranstaltungen und -formen: • 203503 Übung Didaktik beruflicher Bildung II
• 203501 Vorlesung Didaktik beruflicher Bildung I
• 203502 Vorlesung Didaktik beruflicher Bildung II
16. Abschätzung Arbeitsaufwand: In den Vorlesungen und der Übung sind jeweils ca. 21h. Präsenzzeit und 68h Vor- und Nachbereitungszeit vorgesehen (Gesamtzeit = 270h).
17. Prüfungssummer/n und -name: • 20354 Didaktik beruflicher Bildung (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V),
18. Grundlage für ... :
19. Medienform: Vorträge, Präsentationen, Diskussionen
20. Angeboten von: Berufs-, Wirtschafts- und Technikpädagogik
## Modul: 20360 Organisation beruflicher Bildung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Reinhold Nickolaus, Hanspeter Erne, Cordula Petsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
  ➔ Erziehungswissenschaft Kernmodule --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik  
  ➔ B.Sc. Technikpädagogik, PO 199-2011, 2. Semester  
  ➔ Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden erwerben Grundkenntnisse zur Organisation beruflicher Bildung und sind in der Lage Bezüge zwischen dem Bildungssystem und anderen gesellschaftlichen Subsystemen zu analysieren und Entwicklungsprozesse auf der Makro- und Mesoebene im Rekurs auf reflektierte normative Bezugsgrößen zu beurteilen. Sie besitzen die Fähigkeit theoriegeleitet und selbstständig betriebliche Aus- und Weiterbildung zu erkunden und zu analysieren |
| 15. Lehrveranstaltungen und -formen: | • 203601 Vorlesung Organisation beruflicher Bildung  
• 203602 Seminar oder Übung zur Organisationberuflicher Bildung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit ca. 22h / Veranstaltung = 44h, Vor- und Nachbereitung ca. 86h / Veranstaltung = 136h |
| 17. Prüfungsnummer/n und -name: | • 20361 Organisation beruflicher Bildung (Klausur zur Vorlesung) (PL), Schriftlich, 60 Min., Gewichtung: 1 |
- 20362 Übung oder Seminar - Organisation beruflicher Bildung (USL), Schriftlich oder Mündlich, Gewichtung: 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Texte, Vorträge, OHP, Skripte</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Berufs-, Wirtschafts- und Technikpädagogik</td>
</tr>
</tbody>
</table>
### Modul: 20370 Schulpraktikum I, Teil 1 (Universität)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Bernd Zinn


10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, ← Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
- Reflexion eigener Berufsentscheidung und -eignung
- grundlegende Kenntnisse über die Anforderungen an die Lehrkräfte und deren Aufgaben im beruflichen Schulwesen
- grundlegende Fähigkeiten zur Analyse und Planung von Lehr-Lernprozessen, Anwendung wissenschaftlichen Wissens

13. Inhalt: *(entspricht Modul 1 des Staatlichen Seminars)*
- Überblick über die Schularten im beruflichen Schulwesen
- Rolle und Funktion des Lehrers an beruflichen Schulen
- Aspekte der Unterrichtsbeobachtung
- einfaches Unterrichtsplanungsmodell
- Konsolidierung des Gelernten
- Medieneinsatz
- Tipps für die Unterrichtsvorbereitung

14. Literatur:
- Foliensatz
- weitere ausgewählte Texte

15. Lehrveranstaltungen und -formen:
- 203701 Seminar Didaktische Übung zum Schulpraktikum I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit ca. 22h, Praktikumszeit an der Schule ca. 68h incl. Vor- und Nachbereitung (Gesamtzeit = 90h)

17. Prüfungsnummer/n und -name:
- 20371 Schulpraktikum I, Teil 1 (Universität) (USL), Schriftlich oder Mündlich, Gewichtung: 1
- Präsentationen, Bericht zum Praktikum

18. Grundlage für ...:
- Schulpraktikum I, Teil 2 (Seminar)

19. Medienform:
- Beamer, Tafel, Overhead, Handout, persönliche Interaktion

20. Angeboten von:
- Berufspädagogik mit Schwerpunkt Technikdidaktik
Modul: 20380 Schulpraktikum I, Teil 2 (Seminar)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Bernd Zinn</td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester → Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | Schulpraktikum I, Teil 1 (Universität) |
| 12. Lernziele: | Fähigkeit, weniger komplexe erziehungsrelevante Fragestellungen in Bezug zum praktischen Feld zu reflektieren, Grundlegendes Wissen zu Einflussgrößen und Zusammenhänge von Unterrichtsmerkmalen, Erworb grundlegender Kompetenzen zur Planung von Unterricht |
| 13. Inhalt: | (entspricht Modul 2 des Staatlichen Seminars) Einflussgrößen auf Unterricht, ausgewählte didaktische Modelle, ausgewählte Unterrichtsplanungsmodelle, Erziehungs- und Bildungsziele, Unterrichtsprinzipien |
| 14. Literatur: | Foliensatz  
weitere ausgewählte Texte |
| 15. Lehrveranstaltungen und -formen: | • 203801 Seminar Nachbereitende Übungen zum Schulpraktikum I  
• 203802 Blockveranstaltung Praktikum an der Schule |
| 16. Abschätzung Arbeitsaufwand: | Präsenzstunden 22h, Praktikum an der Schule 132h, Nachbereitung 26h |
| 17. Prüfungsnummer/n und -name: | 20381 Schulpraktikum I, Teil 2 (Seminar) (USL), Schriftlich oder Mündlich, Gewichtung: 1  
wird im Seminar bekanntgegeben |
| 18. Grundlage für ...: | Schulpraktikum II |
| 19. Medienform: | Beamer, Tafel, Overhead, Handout, persönliche Interaktion |
| 20. Angeboten von: | Berufspädagogik mit Schwerpunkt Technikdidaktik |
**Modul: 51170 Einführung in die Berufspädagogik**

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Reinhold Nickolaus</th>
</tr>
</thead>
</table>
| 9. Dozenten:              | Martin Fromm  
                            | Reinhold Nickolaus  
                            | Annika Boltze |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>
| B.Sc. Technikpädagogik, PO 199-2011,  
  ➔ Vorgezogene Master-Module  
| B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
  ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik |

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>
| • Grundrichtung der Erziehungswissenschaft  
| • Grundlagen Geisteswissenschaftlicher und empirischer Forschungsmethoden  
| • Grundbegriffe der Berufs- und Wirtschaftspädagogik  
| • Lehrende und Lernende in der beruflichen Bildung  
  (Anforderungen an Lehrende, Merkmale der Lernenden)  
| • Gegenstandsfelder der Berufs- und Wirtschaftspädagogik  
| • Grundlagen der Lernpsychologie |

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>
  Foliensatz, ausgewählte Texte |

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
</table>
| • 511701 Vorlesung Einführung in die Berufspädagogik  
| • 511702 Übung Einführung in die Berufspädagogik  
| • 511703 Vorlesung zu psychologischen Grundlagen |

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
</table>
| Präsenzzeit: 3 x 22h = 66h  
| Vor- und Nachbereitung: 3 x 68h = 204h  
| Gesamtzeit = 270h |

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
</table>
| • 51171 Klausur zur Vorlesung Einführung in die Berufspädagogik  
  (PL), Schriftlich, 60 Min., Gewichtung: 1  
| • 51172 Protokoll und Hausarbeit in der Übung: Techniken wissenschaftlichen Arbeitens (USL), Schriftlich oder Mündlich, Gewichtung: 1 |

Stand: 19. Oktober 2017
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Berufs-, Wirtschafts- und Technikpädagogik
### 200 Hauptfach

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Hauptfach</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Hauptfach Bautechnik</td>
</tr>
<tr>
<td>220</td>
<td>Hauptfach Elektrotechnik</td>
</tr>
<tr>
<td>230</td>
<td>Hauptfach Maschinenbau</td>
</tr>
<tr>
<td>240</td>
<td>Hauptfach Informatik</td>
</tr>
</tbody>
</table>
210 Hauptfach Bautechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>Basismodule Bautechnik</td>
</tr>
<tr>
<td>212</td>
<td>Kernmodule Bautechnik</td>
</tr>
<tr>
<td>213</td>
<td>Wahlbereich 1 Bautechnik</td>
</tr>
<tr>
<td>214</td>
<td>Wahlbereich 2 Bautechnik</td>
</tr>
</tbody>
</table>
211 Basismodule Bautechnik

Zugeordnete Module:  
- 10570 Werkstoffe im Bauwesen I  
- 10640 Geotechnik I: Bodenmechanik  
- 14400 Technische Mechanik I: Einführung in die Statik starrer Körper  
- 14410 Technische Mechanik II: Einführung in die Elastostatik und in die Festigkeitslehre  
- 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge
Modul: 10570 Werkstoffe im Bauwesen I

4. SWS: 6  7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Harald Garrecht

   → Basismodule Bautechnik --> Hauptfach Bautechnik --> Hauptfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
   **Vorlesung:**
   Die Studierenden kennen nach dem Besuch der Veranstaltung das Spektrum der im Bauwesen verwendeten Werkstoffe, beherrschen die Grundlagen hinsichtlich der charakteristischen Werkstoffeigenschaften, erkennen den Bezug dieser grundlegenden Werkstoffeigenschaften zur Baupraxis und sind fähig, die Werkstoffe angemessen im Hinblick auf das Gebrauchs- und Versagensverhalten sowie die Dauerhaftigkeit der damit erstellten Konstruktionen auszuwählen.
   **Übungen:**
   Die Studierenden können die im Bauwesen verwendeten Werkstoffe erkennen, ihre Eigenschaften abschätzen, sind insbesondere mit der Herstellung von Beton und der damit verbundenen Ingenieurverantwortung vertraut und sind mit den messtechnischen Methoden vertraut, mit denen die in der Vorlesung behandelten charakteristischen Werkstoffeigenschaften in der Materialprüfung ermittelt werden.

13. Inhalt:

   **2. Semester:**
   - Allgemeine Werkstoffeigenschaften
   - Stahl
   - Korrosion und Korrosionsschutz von Stahl
   - Glas
   - Kunststoffe
   - Holz

   **3. Semester:**
   - Mineralische Bindemittel
   - Gesteinskörnung
   - Betonzusätze
   - Frischbeton
   - Festbeton
   - Mischungsentwurf
   - Spezialbetone

   **Laborübungen (3.Semester):**
   - Stahl
   - Holz
   - Kunststoffe
   - Frischbeton
14. Literatur:

Foliendrucke, ausgewählte Fachliteratur, Umdrucke zu den Übungen
unterstützte Literatur:
• Scholz, W.: Baustoffkenntnis, 17. Auflage, Bundesanzeiger, 2011

15. Lehrveranstaltungen und -formen:
• 105701 Vorlesung Werkstoffe im Bauwesen I (SS)
• 105702 Vorlesung Werkstoffe im Bauwesen I (WS)
• 105703 Übung Werkstoffe im Bauwesen I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 84 h
Selbststudium / Nacharbeitszeit: 96 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10571 Werkstoffe im Bauwesen I (PL), Schriftlich, 180 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: 4 Laborübungen

18. Grundlage für ...:
Werkstoffe im Bauwesen II

19. Medienform:

20. Angeboten von:
Werkstoffe im Bauwesen
Modul: 10640 Geotechnik I: Bodenmechanik

2. Modulkürzel: 020600001
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Moormann
9. Dozenten: Christian Moormann


11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundbaus, bewusst.
Die Studierenden kennen die Erddrucktheorien nach COULOMB und nach RANKINE. Ihnen ist bewusst, dass die Größe und die Verteilung des Erddrucks verschiebungsabhängig sind. Sie sind in der Lage, Erddruckverteilungen bei einfachen Randbedingungen unter Anwendung einfacher analytischer Lösungsverfahren zu ermitteln.
Die elementaren Standsicherheitsnachweise bei Flachgründungen (Sicherheiten gegen Kippen, gegen Gleiten und gegen Grundbruch), die jeweils zu Grunde liegenden

Ein Grundverständnis für die Auswirkungen des Bodenverhaltens auf verschiedene Ingenieuraufgaben im Grundbau ist geweckt.

13. Inhalt:

• Entstehung von Böden und deren Klassifikation
• Baugrunderkundung, Feld- und Laborversuche
• Wasser im Boden, Boden als 3-Phasen-System
• Ein- und mehrdimensionale Grundwasserströmung
• Grundwasserhaltung mit Brunnen
• Spannungen im Boden: das Konzept der effektiven Spannungen
• Steifigkeit des Bodens
• Grundlagen der Setzungsermittlung
• Eindimensionale Konsolidation
• Scherfestigkeit und Mohr'scher Spannungskreis
• Erddruckermittlung
• Grundbruchwiderstand von Flachgründungen
• Beurteilung der Böschungsbruchsicherheit
• Einführung Grundbau, Spezialtiefbau in der Anwendung

14. Literatur:

Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:
• Witt, K.J. (Hrsg.): Grundbau-Taschenbuch Teil 1: Geotechnische Grundlagen, 7. Aufl., Ernst und Sohn, Berlin, 2009

15. Lehrveranstaltungen und -formen:

• 106402 Übung Geotechnik I: Bodenmechanik
• 106401 Vorlesung Geotechnik I: Bodenmechanik

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit (5 SWS): 70 h
Selbststudium / Nacharbeitszeit (1,5 h pro Präsenzstunde): ca. 105 h
Gesamt: ca. 175 h

17. Prüfungsnummer/n und -name:

• 10641 Geotechnik I: Bodenmechanik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
| Teil 1: 30 Minuten, ohne Hilfsmittel |
| Teil 2: 90 Minuten, mit zugelassenen Hilfsmitteln |

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Geotechnik II: Grundbau Geotechnik III</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamerpräsentationen, Tafelaufschriebe</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Geotechnik</td>
</tr>
</tbody>
</table>
# Modul: 14400 Technische Mechanik I: Einführung in die Statik starrer Körper

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021020001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Holger Steeb</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden haben das Konzept von Kräftesystemen im Gleichgewicht erlernt und können die zugehörigen mathematischen Formulierungen auf Ingenieurprobleme anwenden.</td>
</tr>
<tr>
<td></td>
<td>Mathematische Grundlagen der Statik starrer Körper: Vektorrechnung</td>
</tr>
<tr>
<td></td>
<td>Grundbegriffe: Kraft, Starrkörper, Schnittprinzip, Gleichgewicht</td>
</tr>
<tr>
<td></td>
<td>Axiome der Starrkörpermechanik</td>
</tr>
<tr>
<td></td>
<td>Zentrales und nichtzentrales Kräfte system</td>
</tr>
<tr>
<td></td>
<td>Verschieblichkeitsuntersuchungen</td>
</tr>
<tr>
<td></td>
<td>Auflagerreaktionen ebener Tragwerke</td>
</tr>
<tr>
<td></td>
<td>Kräftegruppen an Systemen starrer Körper</td>
</tr>
<tr>
<td></td>
<td>Fachwerke: Schnittgrößen in stabförmigen Tragwerken</td>
</tr>
<tr>
<td></td>
<td>Raumstatik: Kräftegruppen und Schnittgrößen</td>
</tr>
<tr>
<td></td>
<td>Kräftemittelpunkt, Schwerpunkt, Massenmittelpunkt</td>
</tr>
<tr>
<td></td>
<td>Haftreibung, Gleitreibung, Seilreibung</td>
</tr>
<tr>
<td></td>
<td>Seiltheorie und Stützlinientheorie</td>
</tr>
<tr>
<td></td>
<td>Arbeitsbegriff und Prinzip der virtuellen Arbeit</td>
</tr>
<tr>
<td></td>
<td>Stabilität des Gleichgewichts</td>
</tr>
<tr>
<td></td>
<td>Mathematische Grundlagen der Elastostatik: Tensorrechnung</td>
</tr>
<tr>
<td></td>
<td>Flächenmomente 1. und 2. Ordnung</td>
</tr>
</tbody>
</table>
### 14. Literatur:
Vollständiger Tafelanschrieb, in den Übungen wird Begleitmaterial ausgeteilt.

### 15. Lehrveranstaltungen und -formen:
- 144001 Vorlesung Technische Mechanik I
- 144002 Übung Technische Mechanik I
- 144003 Tutorium Technische Mechanik I

### 16. Abschätzung Arbeitsaufwand:
**Präsenzzeit:**
- Vorlesung 42 h
- Vortragsübung 28 h

**Selbststudium / Nacharbeitszeit:**
- Nacharbeitung der Vorlesung (ca 1,5 h pro Präsenzstunde) 65 h
- Nacharbeitung der Vortragsübung wahlweise in Zusätzlicher Übung oder im Selbststudium (ca. 1,5 h pro Präsenzstunde) 45 h

**Gesamt: 180 h**

### 17. Prüfungsnummer/n und -name:
- 14401 Technische Mechanik I: Einführung in die Statik starrer Körper (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung Hausübungen

### 18. Grundlage für ...:
Technische Mechanik II: Einführung in die Elastostatik und in die Festigkeitslehre

### 19. Medienform:

### 20. Angeboten von:
Mechanik II
Modul: 14410 Technische Mechanik II: Einführung in die Elastostatik und in die Festigkeitslehre

2. Modulkürzel: 021010002
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Jun.-Prof. Dr.-Ing. Marc-André Keip


11. Empfohlene Voraussetzungen: Technische Mechanik I


• Ein- und mehrdimensionaler Spannungs- und Verzerrungszustand
• Transformation von Spannungen und Verzerrungen
• Stoffgesetz der linearen Elastizitätstheorie
• Elementare Elastostatik der Stäbe und Balken
• Differentialgleichung der Biegelinie
• Schubspannungen, Schubmittelpunkt, Kernfläche
• Torsion prismatischer Stäbe

14. Literatur:
• Vollständiger Tafelanschrieb, in den Übungen wird Begleitmaterial ausgeteilt.
• R. C. Hibbeler [2005], Technische Mechanik II. Festigkeitslehre. Pearson Studium

15. Lehrveranstaltungen und -formen:
• 144101 Vorlesung Technische Mechanik II
• 144102 Übung Technische Mechanik II
• 144103 Tutorium Technische Mechanik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:
• Vorlesung 42 h
• Vortragsübung 28 h
Selbststudium / Nacharbeitszeit:
• Nacharbeitung der Vorlesung (ca 1,5 h pro Präsenzstunde) **65 h**
• Nacharbeitung der Vortragsübung wahlweise in Zusätzlicher Übung oder im Selbststudium (ca. 1,5 h pro Präsenzstunde) **45 h**

Gesamt: **180 h**

17. Prüfungsnummer/n und -name: • 14411 Technische Mechanik II: Einführung in die Elastostatik und in die Festigkeitslehre (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Mechanik I
Modul: 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel: 080410501x  
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 18 LP  
6. Turnus: Wintersemester

4. SWS: 14  
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. Markus Stroppel

9. Dozenten: Markus Stroppel

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → Basismodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → Basismodule Bautechnik --> Hauptfach Bautechnik --> Hauptfach

11. Empfohlene Voraussetzungen: Hochschulreife, Schulstoff in Mathematik

12. Lernziele:
    Die Studierenden
    • verfügen über grundlegende Kenntnisse der Linearen Algebra, der Differential- und Integralrechnung für Funktionen einer reellen Veränderlichen und der Differentialrechnung für Funktionen mehrerer Veränderlicher,
    • sind in der Lage, die behandelten Methoden selbstständig sicher, kritisch und kreativ anzuwenden
    • besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
    • können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.

13. Inhalt:
    Lineare Algebra:
    Vektorrechnung, komplexe Zahlen, Matrizenalgebra, lineare Abbildungen, Bewegungen, Determinanten, Eigenwerttheorie, Quadriken
    Differential- und Integralrechnung für Funktionen einer Veränderlichen:
    Konvergenz, Reihen, Potenzreihen, Stetigkeit, Differenzierbarkeit, höhere Ableitungen, Taylor-Formel, Extremwerte, Kurvendiskussion, Stammfunktion, partielle Integration, Substitution, Integration rationaler Funktionen, bestimmtes (Riemann-)Integral, uneigentliche Integrale.
    Differentialrechnung
    Folgen/Stetigkeit in reellen Vektorräumen, partielle Ableitungen, Kettenregel, Gradient und Richtungsableitungen, Tangentialebene, Taylor-Formel, Extrema (auch unter Nebenbedingungen), Sattelpunkte, Vektorfelder, Rotation, Divergenz.
    Kurvenintegrale:
    Bogenlänge, Arbeitsintegral, Potential

14. Literatur:
    • A. Hoffmann, B. Marx, W. Vogt: Mathematik
15. Lehrveranstaltungen und -formen:

- 458101 Höhere Mathematik 1 für Ingenieurstudiengänge (EE)
- 458108 Höhere Mathematik 2 für Ingenieurstudiengänge (EE)
- 458102 Höhere Mathematik 1 für Ingenieurstudiengänge (Geod)
- 458109 Höhere Mathematik 2 für Ingenieurstudiengänge (Geod)
- 458103 Höhere Mathematik 1 für Ingenieurstudiengänge (Med)
- 458110 Höhere Mathematik 2 für Ingenieurstudiengänge (Med)
- 458106 Höhere Mathematik 1 für Ingenieurstudiengänge (UWT)
- 458113 Höhere Mathematik 2 für Ingenieurstudiengänge (UWT)
- 458107 Höhere Mathematik 1 für Ingenieurstudiengänge (Verf)
- 458114 Höhere Mathematik 2 für Ingenieurstudiengänge (Verf)
- 458111 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpbau)
- 458115 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpmach)
- 458112 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpmach)
- 458104 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpbau)

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 196 h
- Selbststudiumszeit / Nacharbeitszeit: 344 h
- Gesamt: 540 h

17. Prüfungsnummer/n und -name:

- 458111 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (PL), Schriftlich, 180 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
- unbenotete Prüfungsanforderungen:
- HM 1/2 für Ingenieurstudiengänge: schriftliche Hausaufgaben, Scheinklausuren
- Für Studierende, in deren Studiengang die HM 1/2 für Ingenieurstudiengänge die Orientierungsprüfung darstellt, genügt ein Schein aus einem der beiden Semester, wenn im 3. Fachsemester keine Möglichkeit zum Nachholen des fehlenden Scheins bestand.

18. Grundlage für ...

19. Medienform:

- Beamer, Tafel, persönliche Interaktion

20. Angeboten von:

- Institute der Mathematik
212 Kernmodule Bautechnik

Zugeordnete Module:
- 10580  Bauphysik und Baukonstruktion
- 10590  Grundlagen der Darstellung und Konstruktion
- 10650  Werkstoffübergreifendes Konstruieren und Entwerfen
- 34190  Baustatik
Modul: 10580 Bauphysik und Baukonstruktion

2. Modulkürzel: 020800001
3. Leistungspunkte: 6 LP
4. SWS: 6
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Hon.-Prof. Dr.-Ing. Schew-Ram Mehra
9. Dozenten: Werner Sobek, Nadine Harder, Schew-Ram Mehra, Oliver Gericke
11. Empfohlene Voraussetzungen: keine
12. Lernziele:

**Bauphysik:**

Studierende

- kennen die Grundlagen der Bauphysik in den Bereichen Wärme, Feuchte, Tageslicht, Brandschutz, Schall, Raumklima und Stadtbauphysik und können diese anwenden.
- können Energiebilanzen aufstellen und Einsparpotentiale ermitteln.
- kennen die Wechselwirkungen und Abhängigkeiten einzelner Bereiche und haben gelernt diese zu vermitteln.
- verstehen bauphysikalische Transportvorgänge und können notwendige Maßnahmen ergreifen.
- beherrschen die bauphysikalischen Anforderungen.

**Baukonstruktion:**

Studierende

- können Tragelemente nach unterschiedlichen Kriterien klassifizieren (Geometrie, Lastabtrag und Beanspruchungsart)
- kennen die Definitionen von Begriffen der Baukonstruktion wie die Kraft, das Moment, die Verformung, die Verschiebung, die Verzerrung
- verstehen den Zusammenhang zwischen Kraft und Verformung
- kennen und verstehen die baufachtechnischen Eigenschaften sowie bevorzugte Einsatzgebiete der Baustoffe Stahl, Beton/ Stahlbeton, Holz, Mauerwerk, Glas, Kunststoff und Textilien
- kennen unterschiedliche Verfahren zum Fügen und Formen von Bauteilen
- verstehen das Tragverhalten und die Entwurfsprinzipien von axial- und biegebeanspruchten Bauteilen
- verstehen das Tragverhalten und die Entwurfsprinzipien von Scheiben, Platten, Schalen, Membranen und Netzen
- beherrschen die Grundsätze zur Aussteifung von Gebäuden

13. Inhalt:

Inhalt Lehrveranstaltung Bauphysik:
• Grundgesetze der Wärmeübertragung
• Wärmeleitung, Wärmeabstraktion, Wärmestrahlung
• Energiebilanzen
• Thermisches Verhalten von Räumen und Außenbauteilen
• Energieeinsparungspotentiale
• Instationäre Wärmeübertragung
• Binder-Schmidt-Verfahren
• Wärmebrücken
• Feuchtetechnische Grundbegriffe
• Feuchtetransport
• Vermeidung von Oberflächenreifwasser
• Glaser-Verfahren
• Lichttechnische Grundbegriffe
• Tageslichtquotient
• Praktische Anforderungen
• Brandschutzziele
• Brandverlauf ETK
• Klassifizierung von Baustoffen und Bauteilen
• Akustische Grundbergriffe
• Raumakustik
• Luft- und Trittchalldämmung
• Akustische Phänomene
• Straßenverkehrsabläufe
• Klimagerechtes Bauen
• Städtische Energiebilanz und Emissionen
• Gebäudeaerodynamik

Inhalt Lehrveranstaltung Baukonstruktion:
Allgemeines:
• Bestandteile eines Tragwerks
• Klassifikation der Tragwerkselemente nach ihrer Geometrie und ihres Lastabtrags
• Begriff der Kraft, des Momente, der Formverformung, der Verschiebung, der Verdrehung
• Kräfteoperationen im zentralen und allgemeinen ebenen Kraftsystem
• Begriff der Spannung
• Zusammenhang zwischen Kraft und Verformung

Baustoffe:
• Baustoff: Mauerwerk, unterschiedliche Ausführungsarten, Materialien, Tragverhalten
• Baustoff: Holz, Aufbau, Tragverhalten, Verwendungsarten
• Baustoff: Beton/Stahlbeton, Zusammensetzung, Tragverhalten und Verformungen, Ausführung
• Baustoff: Stahl, Herstellung, Umformverfahren, Tragverhalten, Anwendungen
• Baustoff: Glas, Herstellung, Tragverhalten, Besonderheiten
• Baustoff: Kunststoff, Unterscheidungen, Herstellung, Tragverhalten
• Baustoff: Textilien/Membrane, Begriffe, Unterscheidungen Tragelemente und Tragstrukturen:
• Formen und Fügen von Bauteilen
• Axialbeanspruchte Bauteile: Tragverhalten, baukonstruktive Ausbildung
• Biegebeanspruchte Bauteile, Tragverhalten und baukonstruktive Ausbildung diverser Tragstrukturen (Einfeldträger, Kragträger, Gelenkträger, Durchlaufträger, Rahmen, Fachwerke)
• Scheiben
• Platten
• Schalen - Membrane - Netze
• Aussteifungen von Gebäuden

14. Literatur:
• Skript: Bauphysik
• Skript: Tragwerkslehre

15. Lehrveranstaltungen und -formen:
• 105801 Vorlesung Bauphysik
• 105802 Übung Bauphysik
• 105803 Vorlesung Baukonstruktion
• 105804 Übung Baukonstruktion

16. Abschätzung Arbeitsaufwand:
  Präsenzzeit: 63 h
  Selbststudium / Nacharbeitszeit: 117 h
  Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10581 Bauphysik (PL), Schriftlich, 90 Min., Gewichtung: 1
• 10582 Baukonstruktion (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
  Powerpointpräsentation

20. Angeboten von:
  Akustik
Modul: 10590 Grundlagen der Darstellung und Konstruktion

4. SWS: 5  7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro
9. Dozenten:
11. Empfohlene Voraussetzungen: Modul Bauphysik/Tragwerkslehre
13. Inhalt: Folgende Inhalte werden vermittelt:
Grundlagen der technischen Darstellung:
• Einführung in die darstellende Geometrie
• Einführung in das technische Zeichnen
• Einführung in das technische Skizzieren
• Zeichenmaterial, CAD
• Eintafelprojektion/Kotierte Projektion
• Zweitafelprojektion
• Mehrtafelprojektion
• Komplexe Formen
• Räumliche Darstellung (Axonometrie, Perspektive)
• Technisches Zeichnen im Bauwesen
• Freihandskizze
• Modellbau
Planung und Konstruktion im Hochbau
- Organismus Bauwerk
- Herstellung von Gebäuden
- Bauen und Umwelt
- Bauprodukte
- Grundlagen des Konstruierens
- Fügen und Verbinden
- Hüle

14. Literatur:
- Vorlesungsskripte/
- Übungsskripte
- Literaturliste

15. Lehrveranstaltungen und -formen:
- 105902 Übung Grundlagen der technischen Darstellung
- 105903 Vorlesung Planung und Konstruktion im Hochbau
- 105904 Übung Planung und Konstruktion im Hochbau
- 105901 Vorlesung Grundlagen der technischen Darstellung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 52.5 h
Selbststudium / Nacharbeitszeit: 127.5 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 10591 Planung und Konstruktion im Hochbau I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 10592 Grundlagen der Darstellung und Konstruktion (USL), Schriftlich oder Mündlich, Gewichtung: 1
Prüfungsergänzungsleistungen/Übungen: 4 Übungen in technischer Darstellung und 1 planerische Übung in Planung und Konstruktion im Hochbau (müssen zum Bestehen des Moduls erbracht werden)

18. Grundlage für ... :
Planung und Konstruktion im Hochbau II (PlaKo II)

19. Medienform:
Digitale Folien, CAD, Podcasts

20. Angeboten von:
Entwerfen und Konstruieren
Modul: 10650 Werkstoffübergreifendes Konstruieren und Entwerfen

2. Modulkürzel: 020900001
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 12 LP
6. Turnus: Sommersemester

4. SWS: 10
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Balthasar Novak

9. Dozenten: Ulrike Kuhlmann
Balthasar Novak

→ Kernmodule Bautechnik --> Hauptfach Bautechnik --> Hauptfach

11. Empfohlene Voraussetzungen: keine


13. Inhalt: Folgende Inhalte werden vermittelt:
Sicherheitskonzepte und Querschnitte
Anforderungen an Bauwerke, Sicherheitskonzepte (Konzept der Teilsicherheits- und der globalen Beiwerte), Werkstoffe und ihre Eigenschaften
• Stahl
• Holz
• Stahlbeton
• Spannbeton
• Verbundbau

Einwirkungen und ihre Kombinationen einschließlich Schnittgrößenermittlung
• Ständige Einwirkungen
• Veränderliche Einwirkungen
• Außergewöhnliche Einwirkungen
• Imperfektionen

Nachweis der Tragfähigkeit (Querschnittsbemessung) für Stahlbau, Holzbau, Stahlbetonbau, Verbundbau
• Reine Normalkraftbeanspruchung
• Reine Biegebeanspruchung
• Kombinierte Beanspruchung
• Torsion
Nachweis der Gebrauchstauglichkeit (Spannungen, Rissbreiten, Verformungen)

**Tragelemente und -systeme (entwerfen, modellieren, bemessen, konstruieren)**

Teil A: Tragwerkselemente am Beispiel des Hallenbaus
- Dacheindeckungen
- Pfettensysteme
- Haupttragwerke
- Aussteifung
- Wandverkleidungen
- Gründung

Teil B: Tragwerkselemente im allgemeinen Hochbau
- Decken
- Wände
- Träger und Unterzüge
- Stützen
- Aussteifung

Teil C: Bogentragwerke

Teil D: Dachtragwerke

14. Literatur:
- Vorlesungsskript/ Übungsskript
- Petersen: Stahlbau, Petersen: Statik und Stabilität
- Leonhardt: Vorlesungen über Massivbau

15. Lehrveranstaltungen und -formen:
- 106504 Übung Tragelemente und -systeme
- 106503 Vorlesung Tragelemente und -systeme
- 106501 Vorlesung Sicherheitskonzepte und Querschnitte
- 106502 Übung Sicherheitskonzepte und Querschnitte

16. Abschätzung Arbeitsaufwand:
- Präsenzeit: 105 h
- Selbststudium / Nacharbeitszeit: 255 h
- Gesamt: 360 h

17. Prüfungsnummer/n und -name:
- 10651 Werkstoffübergreifendes Konstruieren und Entwerfen (PL), Schriftlich, 180 Min., Gewichtung: 1
- Vorleistung (USL-V), Schriftlich oder Mündlich

Wichtige Hinweisschreiben bezüglich der Prüfungen:
http://www.uni-stuttgart.de/ke/lehre/pruefungen/index.html

18. Grundlage für ... :
- Verbindungen, Anschlüsse Schlanke Tragwerke (Vorspannung und Stabilität)

19. Medienform:

20. Angeboten von:
- Massivbau
Modul: 34190 Baustatik

2. Modulkürzel: 020300014
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester

4. SWS: 8
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Bischoff

9. Dozenten: Manfred Bischoff


11. Empfohlene Voraussetzungen: Kenntnisse in HM I-II , Werkstoffe, Technische Mechanik I-II


   • Modellbildung, Systemerkennung
   • Schnittgrößenermittlung
   • Kinematik von Tragwerken
   • Ermittlung von Kraft- und Verschiebungsgrößen mit dem Prinzip der virtuellen Arbeiten
   • Berechnung statisch unbestimmter, ebener Stabtragwerke
   • Kraft- und Verschiebungsgrößenverfahren
   • Direkte Steifigkeitsmethode
   • Vorgespannte Tragwerke
   • räumliche Stabtragwerke
   • Einflusslinien

14. Literatur: Vorlesungsmanuskript "Baustatik", Institut für Baustatik und Baudynamik

15. Lehrveranstaltungen und -formen: • 341901 Vorlesung Baustatik
                                           • 341902 Übung Baustatik

16. Abschätzung Arbeitsaufwand:
| 17. Prüfungsnummer/n und -name: | • 34191 Baustatik (PL), Schriftlich, 180 Min., Gewichtung: 1  
|                              | • V Vorleistung (USL-V), Schriftlich  
|                              | Vorleistung: 6 bestandene Hausübungen (unbenotet) |
| 18. Grundlage für ... : |  |
| 19. Medienform: |  |
| 20. Angeboten von: | Baustatik und Baudynamik |
213 Wahlbereich 1 Bautechnik

Zugeordnete Module:
10610 Baubetriebslehre I
10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure
37150 Fertigungsverfahren in der Bauwirtschaft
# Modul: 10610 Baubetriebslehre I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Allgemeine Wahlfächer Bautechnik --&gt; Wahlpflichtfach</td>
<td>→ Wahlpflichtfach Bautechnik --&gt; Wahlpflichtfach</td>
<td>→ Wahlbereich 1 Bautechnik --&gt; Hauptfach Bautechnik --&gt; Hauptfach</td>
<td></td>
</tr>
<tr>
<td>→ Allgemeine Wahlfächer Bautechnik --&gt; Wahlbereich 1 Bautechnik --&gt; Hauptfach Bautechnik --&gt; Hauptfach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Bau: Einführung in das Bauingenieurwesen - Fertigungsverfahren in der Bauwirtschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IuI, Techn.-Päd., BWL techn.: Fertigungsverfahren in der Bauwirtschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td><strong>Kalkulation von Bauleistungen</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Einführung in die Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen des Rechnungswesens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bauauftragsrechnung und Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verfahren der Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aufbau der Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Durchführung der Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gliederung der Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kostenbestandteile einer Kalkulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• praktische Durchführung anhand von Beispielen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Ausschreibung und Vergabe</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ausschreibung von freiberuflichen Leistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ausschreibung von Lieferleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ausschreibung von Bauleistungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HOAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aufbau von Ausschreibungsunterlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VOB/ HOAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 106101 Vorlesung Baubetriebslehre I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 48 h
- Selbststudium / Nacharbeitszeit: 132 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 10611 Baubetriebslehre I (PL), Schriftlich, 120 Min., Gewichtung: 1
- Vorleistung (USL-V), Schriftlich oder Mündlich
- Prüfungsvorleistung: 1 Hausübung + 1 Kolloquium

18. Grundlage für ...

- Baubetriebslehre II

19. Medienform:

20. Angeboten von:

- Baubetriebslehre
Modul: 10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure

2. Modulkürzel: 020200400
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner

9. Dozenten: Cornelius Väth

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  ➞ Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
  → Bautchnik --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  ➞ Wahlbereich 1 Bautechnik --> Hauptfach Bautechnik -->
  Hauptfach
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine


13. Inhalt:
• Unternehmen und Unternehmenszusammenschlüsse
  • Rechtsformen
  • Handelsregister
  • Organisationsformen von Unternehmen
• Produktion und Leistungserstellungsprozess
  • Fertigung
  • Produktpolitik
  • Personal
• Finanzwirtschaftlicher Prozess
  • Zahlungsmittel
  • Investitionsrechnung
• Rechnungswesen
  • Buchführung
  • Jahresabschluss (Bilanz und GuV)
  • Ausgewählte Kennzahlen

14. Literatur:
• Olfert/Rahn, Einführung in die Betriebswirtschaftslehre

15. Lehrveranstaltungen und -formen:
• 109701 Vorlesung Grundlagen der Betriebswirtschaftslehre
• 109702 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:
  Präsenzzeit: 21 h
  Selbststudium / Nacharbeitszeit: 44 h
  Gesamt: 65 h

17. Prüfungsnummer/n und -name:
10971 Grundlagen der Betriebswirtschaftslehre für Ingenieure (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlagen für ...
  BWL I: Produktion, Organisation, Personal BWL II: Rechnungswesen und Finanzierung BWL III: Marketing und Einführung in die Wirtschaftsinformatik

19. Medienform:

20. Angeboten von:
Baubetriebslehre
Modul: 37150 Fertigungsverfahren in der Bauwirtschaft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 4. Semester → Wahlbereich 1 Bautechnik --&gt; Hauptfach Bautechnik --&gt; Hauptfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 4. Semester → Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Ablauf und Beteiligte beim Bauen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Am Bau Beteiligte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bauablauf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HOAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Voraussetzungen zum Baubeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vergabe an Bauunternehmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baustelleneinrichtung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vorschriften</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sozial- und Büroeinrichtungen, Lagerräume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verkehrsflächen und Transportwege</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medienversorgung der Baustelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hebezeuge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Turmkranе</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Autokranе, Mobilkranе</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Portalkranе</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kabelkranе</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bauaufzüge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kranwahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betonmischanlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betontransport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betonverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betonstahlbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schalung und Rüstung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aufgaben einer Schalung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Aufbau von Schalungen
• Schalungsarten
• Spezialschalungen
• Schalungsentwurf
• Gerüste

14. Literatur:
• Manuskript: Fertigungsverfahren in der Bauwirtschaft

15. Lehrveranstaltungen und -formen:
• 371501 Vorlesung Fertigungsverfahren in der Bauwirtschaft
• 371502 Übung Fertigungsverfahren in der Bauwirtschaft
• 371503 Hausübung und Kolloquium Fertigungsverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudiumszeit / Nachbereitungszeit: 69 h
Gesamt: 90 h

17. Prüfungszahl/n und -name:
• 37151 Fertigungsverfahren in der Bauwirtschaft (BSL), Schriftlich, 60 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

Prüfungsvoraussetzung:
Fertigungsverfahren in der Bauwirtschaft: 1 Hausübung + 1 Kolloquium

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Baubetriebslehre
# 214 Wahlbereich 2 Bautechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10960</td>
<td>Einführung in die Rechtsgrundlagen des Bauwesens</td>
</tr>
<tr>
<td>10990</td>
<td>Entwurf in Zusammenarbeit mit Architekturstudenten</td>
</tr>
<tr>
<td>42380</td>
<td>Angewandte Bauphysik</td>
</tr>
</tbody>
</table>
## Modul: 10960 Einführung in die Rechtsgrundlagen des Bauwesens

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

### Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Fritz Berner

### Dozenten:
Iris Rosenbauer

### Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
  - B.Sc. Technikpädagogik, PO 199-2011, 2. Semester → Wahlbereich 2 Bautechnik --> Hauptfach Bautechnik → Hauptfach
  - B.Sc. Technikpädagogik, PO 199-2011, 2. Semester → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach

### Empfohlene Voraussetzungen:
keine

### Lernziele:
Die Studierenden haben einen Überblick über alle wesentlichen Rechtsgebiete im Bauwesen bekommen. Alle rechtlich relevanten Begrifflichkeiten und baurechtlichen Zusammenhänge sind den Studierenden bekannt.

### Inhalt:
- Einführung und Überblick
- Einführung in die Rechtsgrundlagen
- Öffentliches Baurecht
- Einführung in die Grundbegriffe des Bürgerlichen Rechts
- Einführung in die VOB
- Grundbegriffe des Grundstücksrechts
- Grundwerbsteuer

### Literatur:
- BGB, Beck-Texte im dtv
- VOB, Beck-Texte im dtv
- BauGB, Beck-Texte im dtv
- www.gesetze-im-internet.de

### Lehrveranstaltungen und -formen:
- 109601 Vorlesung Einführung in die Rechtsgrundlagen im Bauwesen

### Abschätzung Arbeitsaufwand:
- Präsenzzeit: ca. 21 h
- Nachbereitungszeit: ca. 69 h
- Gesamt: 90 h

### Prüfungsnummer/n und -name:
10961 Einführung in die Rechtsgrundlagen des Bauwesens (PL), Schriftlich, 60 Min., Gewichtung: 1

### Grundlage für ...

### Medienform:

### Angeboten von:
Baubetriebslehre
## Modul: 10990 Entwurf in Zusammenarbeit mit Architekturstudierenden

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jose Luis Moro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Rottner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 14. Literatur: | • Vorlesungsskripte  
• Übungsskripte  
• Literaturliste |
| 15. Lehrveranstaltungen und -formen: | • 109901 Vorlesung Entwurf in Zusammenarbeit mit Architekturstudenten |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h  
Selbststudium / Nacharbeitszeit: 159 h  
**Gesamt: 180 h** |
| 17. Prüfungsnummer/n und -name: | • 10991 Entwurf in Zusammenarbeit mit Architekturstudenten (LBP), Mündlich, 60 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Schriftlich oder Mündlich  
| 18. Grundlage für ... : |  |
| 19. Medienform: | Analog und/oder digital, Zeichnungen, Modell, Vortrag |
| 20. Angeboten von: | Entwerfen und Konstruieren |
Modul: 42380 Angewandte Bauphysik

2. Modulkürzel: 020800010
3. Leistungspunkte: 6 LP
4. SWS: 5
5. Modulduauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Dr.-Ing. Schew-Ram Mehra
9. Dozenten: Eva Veres
   Susanne Urlaub
   Simone Eitele

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
        → Wahlbereich 2 Bautechnik → Hauptfach Bautechnik
        → Hauptfach
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
        → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
        → Allgemeine Wahlfächer Bautechnik → Wahlpflichtfach
        Bautechnik → Wahlpflichtfach

11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion

12. Lernziele:

   Konstruktive Bauphysik

   Studierende
   • beherrschen die Grundlagen stationärer und instationärer
ein Bauphysikisch Vorgänge.
   • kennen das Verhalten von Bauprodukten (Gebäude, Räume,
   Bauteile, Werkstoffe) unter verschiedenen Einwirkungen.
   • können Ausführungsbeispiele hinsichtlich ihrer
   Bauphysikalischen Eigenschaften beurteilen.
   • sind in der Lage bauphysikalisch richtig zu konstruieren, kritische
   Details zu erkennen und konstruktive Lösungen zu entwickeln.

   Technische Bauphysik

   Studierende
   • beherrschen die Planungsprinzipien und Wirkungsweise
ein Bautechnischer Anlagen.
   • kennen die wechselseitigen Einflüsse bautechnischer Anlagen.
   • sind in der Lage bau- und haustechnische Maßnahmen
   aufeinander abzustimmen.
   • beherrschen die Auslegung und Dimensionierung.

   Bauphysikalischer Diskurs

   Studierende
   • lernen die methodische Vorgehensweise bei der Behandlung
   bauphysikalischer Problemstellungen kennen und können diese
   anwenden.
   • bekommen Einblicke in wissenschaftliche Arbeitsweisen.
13. Inhalt:

**Inhalt Lehrveranstaltung Konstruktive und Technische Bauphysik:**
- stationäres und instationäres thermisches und hygrisches Verhalten von Bauteilen
- schalltechnisches Verhalten von Bauteilen
- Wechselwirkung bauphysikalischer Phänomene
- Ausführungsbeispiele für konstruktive Details im Bestand und im Neubau
- bauphysikalische Schwerpunkte bei der Konstruktion von Außenwänden, Fenstern, Dächern, erdberührten Bauteilen, Decken, Treppen und Innenwänden
- Heizungstechnik
- Nutzung erneuerbarer Energie
- Wärmerückgewinnung
- Erdwärme
- Lüftungstechnik
- Klimatechnik
- natürliche und künstliche Beleuchtung
- Installationsgeräusche

**Inhalt der Lehrveranstaltung Bauphysikalischer Diskurs:**
- Anwendung aus/in der Praxis,
- Innovationen und Ausblicke sowie neue Materialien/Bauteile/Ausführungen
- Schwachstellen und Fehlerquellen bei der Ausführung

14. Literatur:

Vorlesungsunterlagen Konstruktive Bauphysik
Vorlesungsunterlagen Technische Bauphysik
Unterlagen zur Vortragsreihe Bauphysikalischer Diskurs

15. Lehrveranstaltungen und -formen:

- 423801 Vorlesung Konstruktive Bauphysik
- 423802 Vorlesung Technische Bauphysik
- 423803 Vortragsreihe Bauphysikalischer Diskurs

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
**Gesamt: 180 h**

17. Prüfungsnummer/n und -name:

- 42381 Konstruktive und Technische Bauphysik (PL), Mündlich, 25 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Abgabe von jeweils vier von fünf Teilen der Projektarbeiten in den Fächern Konstruktive Bauphysik sowie Technische Bauphysik.

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
220 Hauptfach Elektrotechnik

Zugeordnete Module:

- 221 Basismodule Elektrotechnik
- 222 Kernmodule Elektrotechnik
- 223 Ergänzungsmodule
221 Basismodule Elektrotechnik

Zugeordnete Module:
- 11430 Mikroelektronik
- 11440 Grundlagen der Elektrotechnik
- 11450 Informatik I
- 12220 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2
Modul: 11430 Mikroelektronik

2. Modulkürzel: 050500001
5. Moduldauler: Zweisemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester
4. SWS: 6
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Schulze
9. Dozenten: Jörg Schulze
Jürgen Heinz Werner
11. Empfohlene Voraussetzungen:
12. Lernziele: Verständnis der Halbleitergrundlagen, Kenntnis der Bauelementphysik und wichtiger Bauelementtypen, Der Student kennt die Grundlagen der Halbleitertechnologie.
15. Lehrveranstaltungen und -formen: • 114301 Vorlesung Mikroelektronik I
• 114302 Übung Mikroelektronik I
• 114303 Vorlesung Mikroelektronik II
• 114304 Übung Mikroelektronik II
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 84 Stunden
Selbststudium: 186 Stunden
Summe: 270 Stunden
17. Prüfungsnummer/n und -name: 11431 Mikroelektronik (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform: Tafel, Beamer (Powerpoint), ILIAS
20. Angeboten von: Halbleitertechnik
Modul: 11440 Grundlagen der Elektrotechnik

2. Modulkürzel: 051800001  
5. Moduldaus: Zweisemestrig
3. Leistungspunkte: 9 LP  
6. Turnus: Wintersemester
4. SWS: 8  
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Norbert Frühauf


11. Empfohlene Voraussetzungen:

12. Lernziele:  
- besitzen die Kenntnisse der physikalischen Grundlagen der Elektrotechnik
- beherrschen die analytischen Verfahren zur Analyse elektronischer Schaltungen

13. Inhalt:  
- Physikalische Größen, Einheiten und Gleichungen
- Grundbegriffe, Elektrische Ladungen, Ströme und Spannungen
- Elektrische Gleichstromkreise, Ohm'sches Gesetz, Kirchhoff'sche Gesetze
- Elektrischer Widerstand, Reihen- und Parallelschaltung von Widerständen
- Strom- und Spannungsquellen
- Verfahren zur Netzwerkanalyse, Maschen- und Knotenanalyse
- Statisches elektrisches Feld, Coulomb'sches Gesetz
- Kapazität eines Kondensators, Lade- und Entladevorgänge
- Stationäres magnetisches Feld, Durchflutungsgesetz, magnetische Kreise
- Zeitlich veränderliche Magnetfelder, Induktionsgesetz
- Induktivität einer Spule
- Sinusförmige Wechselgrößen, komplexe Darstellung
- Wechselstromkreise
- Allgemeine Zweipole, Ersatzschaltungen, komplexe Leistung
- Übertrager
- Vierpolquellen, gesteuerte Strom- und Spannungsquellen
- Bipolarer Transistor, Feldeffekttransistor, Operationsverstärker
- Schwingkreise

14. Literatur:  
- Albach M.: Grundlagen der Elektrotechnik 1-3, Pearson, München, 2004
- Hagmann G.: Grundlagen der Elektrotechnik, Aula-Verlag, Wiebelsheim, 2006
- Nerreter W.: Grundlagen der Elektrotechnik, Hanser, München, 2006
15. Lehrveranstaltungen und -formen:
- 114403 Vorlesung Grundlagen der Elektrotechnik 2
- 114404 Übung Grundlagen der Elektrotechnik 2
- 114402 Übung Grundlagen der Elektrotechnik 1
- 114401 Vorlesung Grundlagen der Elektrotechnik 1

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 112 h
- Selbststudium: 158 h
- Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 11441 Grundlagen der Elektrotechnik (PL), Schriftlich, 150 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

Prüfungsvorleistung: Art und Umfang wird in der Vorlesung bekannt gegeben

19. Medienform:
- Tafel, Beamer, Projektor

20. Angeboten von:
- Bildschirmtechnik
Modul: 11450 Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Dieses Modul wird nicht mehr angeboten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Dieses Modul wird nicht mehr angeboten.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 14. Literatur: | • Vorlesungsskript  
• Rembold, U., Levi, P.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser-Verlag  
• Barnes, D.J.: Object-Oriented Programming with Java: An Introduction, Prentice Hall  
• Weiss, M.A.: Data Structures and Algorithm Analysis in Java, Addison-Wesley  
• Merzenich, W., Zeidler, Chr.: Informatik für Ingenieure, B.G. Teubner  
• Meyer, Bertrand: Object-Oriented Software Construction, Prentice Hall |
| 15. Lehrveranstaltungen und -formen: | • 114502 Übung Informatik I, Teil 1  
• 114503 Vorlesung Informatik I, Teil 2  
• 114504 freie Übungen am Rechnerpool zur Programmierung Informatik I  
• 114501 Vorlesung Informatik I, Teil 1 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h  
Selbststudium: 124 h  
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11451 Informatik I (PL), Mündlich, 120 Min., Gewichtung: 1 |
| 19. Medienform: | Notebook-Präsentation und Übungen am Rechner |
| 20. Angeboten von: | Kommunikationsnetze und Rechnersysteme |
Modul: 12220 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2


4. SWS: 18 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Bernard Haasdonk

→ Basismodule Elektrotechnik --> Hauptfach Elektrotechnik --> Hauptfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden
• verfügen über grundlegende Kenntnisse der Differential- und Integralrechnung für Funktionen einer und mehrerer Veränderlicher sowie der Theorie der linearen Gleichungssysteme und der linearen Abbildungen
• sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
• besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Natur- und Ingenieurwissenschaften.
• können sich mit Spezialisten über die benutzten mathematischen Methoden verständigen.

13. Inhalt:
1. Grundlagen der Mathematik
2. Lineare Algebra
3. Analysis in einer und mehreren Variablen

14. Literatur: wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
• 122201 Vorlesung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
• 122202 Vortragsübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
• 122203 Gruppenüberhöhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
• 122204 Vorlesung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2
• 122205 Vortragsübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2
• 122206 Gruppenüberhöhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 189 h
Selbststudium / Nacharbeitzeit: 351 h
Gesamt: 540 h

17. Prüfungsnummer/n und -name:
• 12221 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2 (PL), Schriftlich, 180 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvoraussetzung ist
• für Studierende, für die das Modul Bestandteil der Orientierungsprüfung ist, einer der Übungsscheine HM 1 oder HM 2
• für alle anderen Studierenden die beiden Übungsscheine HM 1 und HM 2

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Numerische Mathematik, insbesondere für gewöhnliche Differentialgleichungen
222 Kernmodule Elektrotechnik

Zugeordnete Module:
- 11460 Grundlagenpraktikum
- 11470 Schaltungen und Systeme
- 11510 Informatik II
- 11520 Informatikpraktikum
Modul: 11460 Grundlagenpraktikum

2. Modulkürzel: 050310010
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modulduer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Marc Wilke
9. Dozenten: Ulrich Schärli
11. Empfohlene Voraussetzungen: keine
14. Literatur: • Umdrucke und Anleitungen zu den Versuchen
15. Lehrveranstaltungen und -formen: • 114601 Vorlesung Sicherheitsseminar • 114602 Praktikum Grundlagenpraktikum
17. Prüfungsnummer/n und -name: 11461 Grundlagenpraktikum (USL), Sonstige, Gewichtung: 1 Kurztests zu Beginn der einzelnen Versuche
18. Grundlage für ... :
19. Medienform: Praxis im Labor
20. Angeboten von: Bildschirmtechnik
Modul: 11470 Schaltungen und Systeme

2. Modulkürzel: 050200001
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester

4. SWS: 12
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Manfred Berroth
Bin Yang

→ Kernmodule Elektrotechnik --> Hauptfach Elektrotechnik --> Hauptfach

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse in Elektrotechnik


13. Inhalt:
- Signal, Klassifikation von Signalen, zeitkontinuierliche und zeitdiskrete Signale, verschiedene Elementarsignale
- System, zeitkontinuierliche und zeitdiskrete Systeme, linear, gedächtnislos, kausal, zeitinvariant, stabil
- Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Zeitbereich, Impulsantwort, Faltung
- Netzwerkanalyse linearer und nichtlinearer Schaltungen bei beliebiger Anregung
- Grundzüge der Vierpoltheorie
- Differentialgleichung, Differenzengleichung
- Einschwingvorgänge
- Fourier-Reihe und Fourier-Transformation zeitkontinuierlicher und zeitdiskreter Signale
- Fourier-Transformation aperiodischer Signale
- Abtastung, Abtasttheorem
- Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Frequenzbereich, Frequenzgang, Amplitudengang, Phasengang, Gruppenlaufzeit, räumlicher Frequenzgang
- Laplace-Transformation
- Analyse zeitkontinuierlicher LTI-Systeme in der komplexen Ebene, Übertragungsfunktion
- Schaltungen mit frequenzselektiven Eigenschaften

14. Literatur:
- Vorlesungsskript, Begleitblätter,
- H. P. Hsu: Schaum's outline of signals and systems, McGraw-Hill, 1995,
- Küpfmüller, Kohn: Theoretische Elektrotechnik und Elektronik, Springer-Verlag, Berlin, 2006,
15. Lehrveranstaltungen und -formen:

- 114702 Übung Schaltungstechnik I
- 114705 Vorlesung Signale und Systeme
- 114706 Übung Signale und Systeme
- 114701 Vorlesung Schaltungstechnik II
- 114704 Übung Schaltungstechnik II
- 114703 Vorlesung Schaltungstechnik II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 168 h
- Selbststudium/Nacharbeitszeit: 192 h
- Gesamt: 360 h

17. Prüfungsnummer/n und -name:

- 11471 Schaltungstechnik (PL), Schriftlich, 180 Min., Gewichtung: 1
- 11472 Signale und Systeme (PL), Schriftlich, 90 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

19. Medienform:

- Tafel, Beamer

20. Angeboten von:

- Elektrische und Optische Nachrichtentechnik
Modul: 11510 Informatik II

2. Modulkürzel: 050501001
3. Leistungspunkte: 6 LP
4. SWS: 5
5. Modul dauer: Zweisemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Andreas Kirstädtter
          Michael Weyrich
          ➞ Kernmodule Elektrotechnik --> Hauptfach Elektrotechnik --> Hauptfach
11. Empfohlene Voraussetzungen: Informatik I, Grundlagen der Elektrotechnik und Mikroelektronik
12. Lernziele: Die Studierenden
          • verstehen die Grundkonzepte und die grundlegenden Methoden der objektorientierten Systementwicklung und können diese anwenden
          • kennen die Notation in der Unified Modeling Language UML und in SysML
          • sind mit der Booleschen Algebra vertraut
          • können kombinatorische und sequenzielle Netzwerke entwerfen
          • kennen die Funktionsweise von Rechnersystemen.
13. Inhalt:
          • Basiskonzepte und Notationen der Objektorientierung
          • Statische und dynamische Konzepte in der objektorientierten Analyse
          • Konzepte und Notationen des objektorientierten Entwurfs
          • Entwurfsmuster und Frameworks
          • Implementierung objektorientierter Konzepte
          • Komponentenbasierte Softwareentwicklung
          • SysML
          • Axiome und Sätze der Booleschen Algebra
          • Normalformen und Minimierungsverfahren
          • Digitale Grundelemente (Gatter, Flip-flops)
          • Kombinatorische und sequenzielle Netzwerke
          • Einfache Rechen- und Steuerwerke
          • Einführung in programmierbare Logik (FPGAs)
          • Einführung Rechnerarchitektur
          • Maschinen nahe Programmierung
14. Literatur:
          • Vorlesungsskript,
          • Balzert, H.: Lehrbuch der Objektmodellierung: Analyse und Entwurf, Spektrum Akademischer Verlag 2004
          • Oestereich, B.: Objektorientierte Softwareentwicklung: Analyse und Design mit der Unified Modeling Language, Oldenbourg Verlag 2001
          • Stevens, P., et. al.: UML-Softwareentwicklung mit Objekten und Komponenten, Person Studium Verlag 2001
          • Forbrig, P.: Objektorientierte Softwareentwicklung mit UML, Carl Hanser Verlag, 2002
• Schiffmann, W., Schmitz, R.: Technische Informatik, Bd. 1: Grundlagen der digitalen Elektronik, Bd. 2: Grundlagen der Computertechnik, Springer-Verlag, 1993
• Vorlesungsportal für Teil 1 mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/info2
• Vorlesungsportal für Teil 2 http://www.ikr.uni-stuttgart.de/Xref/CC/L_Info_II-2

15. Lehrveranstaltungen und -formen:
• 115103 Vorlesung Grundlagen der technischen Informatik
• 115101 Vorlesung Grundlagen der Softwaretechnik
• 115102 Übung Grundlagen der Softwaretechnik
• 115104 Übung Grundlagen der technischen Informatik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 70 h

17. Prüfungsnummer/n und -name:
• 11511 Grundlagen der Softwaretechnik (PL), Schriftlich, 60 Min., Gewichtung: 1
• 11512 Grundlagen der technischen Informatik (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...:
Technische Informatik I Automatisierungstechnik I Softwaretechnik I

19. Medienform:
Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
Automatisierungs- und Softwaretechnik
## Modul: 11520 Informatikpraktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Gemkow</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse, wie sie im Modul Informatik I vermittelt werden</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende kann Algorithmen und Programme selbstständig entwerfen und in der objektorientierten Programmiersprache Java implementieren.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Das Informatikpraktikum wird bei Bedarf noch einmal und letztmals im Sommersemester 2017 angeboten. Bitte beachten Sie die Ankündigungen zur Anmeldung und zur Durchführung unter <a href="http://www.ikr.uni-stuttgart.de/Xref/CC/P_Info">http://www.ikr.uni-stuttgart.de/Xref/CC/P_Info</a></td>
</tr>
</tbody>
</table>
| 14. Literatur: | • Unterlagen zum Modul Informatik I  
| 15. Lehrveranstaltungen und -formen: | • 115201 Praktikum Informatikpraktikum |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 h  
Selbststudium: 60 h  
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 11521 Informatikpraktikum (USL), Schriftlich oder Mündlich, Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Übung am Rechner |
| 20. Angeboten von: | Kommunikationsnetze und Rechnersysteme |
223 Ergänzungsmodule

Zugeordnete Module:  
2231  Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik  
2232  Pflichtcontainer Schwerpunkt System- und Informationstechnik
2231 Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik

Zugeordnete Module:
11500 Elektrische Energietechnik
11540 Regelungstechnik I
11550 Leistungselektronik I
Modul: 11500 Elektrische Energietechnik

2. Modulkürzel: 051010001
3. Leistungspunkte: 9 LP
4. SWS: 6

5. Modulplan: Zweisemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Stefan Tenbohlen (Elektrische Energietechnik I)
Jörg Roth-Stielow (Elektrische Energietechnik II)

10. Zuordnung zum Curriculum in diesem Studiengang:

   B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
   → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
   → Ergänzungsmodul
   → Hauptfach Elektrotechnik
   → Hauptfach

   B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
   → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
   → a) Schwerpunkt Energie- und Automatisierungstechnik
   → Wahlpflichtfach Elektrotechnik
   → Wahlpflichtfach

   B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
   → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele: Studierende...

   • ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
   • ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
   • ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
   • ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.

13. Inhalt:

   • Aufgabe und Bedeutung der elektrischen Energieversorgung,
   • Energieumwandlung in Kraftwerken,
   • Elektrizitätswirtschaft und Investitionstheorie,
   • Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
   • Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
   • Sicherheitstechnik,
   • elektrischer Unfall,
   • Elektrischer Energiefluss als Informations- und Arbeitsmedium,
   • Leistungslektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
   • Gleichstrommaschine,
   • Transformator,
   • Asynchronmaschine, Synchronmaschine

14. Literatur:

   • Vorlesungsskripte
   • Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
   • Schwab: Elektroenergiesysteme, Springer, 2009/2015
• Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
• 115001 Vorlesung Elektrische Energietechnik I
• 115002 Übung Elektrische Energietechnik I
• 115003 Vorlesung Elektrische Energietechnik II
• 115004 Übung Elektrische Energietechnik II

16. Abschätzung Arbeitsaufwand: Frontalvorlesung

17. Prüfungsnummer/n und -name:
• 11501 Elektrische Energietechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1
• 11502 Elektrische Energietechnik II (PL), Schriftlich, 90 Min., Gewichtung: 1
  Klausur Elektrische Energietechnik I (90 min., 2x pro Jahr)
  Klausur Elektrische Energietechnik II (90 min., 2x pro Jahr)

18. Grundlage für … :

19. Medienform: Tafel, Folien, Beamer

20. Angeboten von: Leistungselektronik und Regelungstechnik
Modul: 11540 Regelungstechnik I

2. Modulkürzel: 051010012
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik --> Ergänzungsmodul --> Hauptfach Elektrotechnik --> Hauptfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik --> a) Schwerpunkt Energie- und Automatisierungstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende...

• ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:

• Beschreibung von Übertragungsstrecken
• Stabilität von Regelsystemen
• Herkömmliche Regelsysteme
• Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
• Echtes Integralverhalten
• Beobachter
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:

• Lunze, Jan: Regelungstechnik 1 Springer, Berlin, 1999-
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:

• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
# Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse vergleichbar Elektrische Energietechnik I Kenntnisse vergleichbar Elektrische Energietechnik II</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Studierende...</td>
</tr>
<tr>
<td></td>
<td>• ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.</td>
</tr>
<tr>
<td></td>
<td>• ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td></td>
<td>• ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Abschaltbare Leistungshalbleiter</td>
</tr>
<tr>
<td></td>
<td>• Schaltungstypologien potentialverbindender Stellglieder</td>
</tr>
<tr>
<td></td>
<td>• Schaltungstypologien potentialtrennender Gleichstromsteller</td>
</tr>
<tr>
<td></td>
<td>• Modulationsverfahren</td>
</tr>
<tr>
<td></td>
<td>• Strommeßtechnik in der Leistungselektronik</td>
</tr>
<tr>
<td></td>
<td>• Mohan, Ned: Power Electronics, John Wiley and Sons, Inc., 2003</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 115501 Vorlesung Leistungselektronik I</td>
</tr>
<tr>
<td></td>
<td>• 115502 Übung Leistungselektronik I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Frontalvorlesung</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
## 2232 Pflichtcontainer Schwerpunkt System- und Informationstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11490</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td></td>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td></td>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
</tbody>
</table>
## Modul: 11490 Nachrichtentechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

### 8. Modulverantwortlicher:
Univ.-Prof. Dr. Stephan ten Brink

### 9. Dozenten:
Stephan Brink
Jan Hesselbarth

### 10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011,
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik --> Ergänzungsmodule --> Hauptfach Elektrotechnik --> Hauptfach
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik --> b) Schwerpunkt System- und Informationstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach

### 11. Empfohlene Voraussetzungen:

### 12. Lernziele:
Die Studierenden besitzen schaltungstechnische und informationstechnische Grundkenntnisse der Nachrichtentechnik. Sie verstehen die grundsätzliche Funktionsweise von Nachrichtentechnischen Systemen.

### 13. Inhalt:

#### Teil I:
Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfängerrauschen, Übersicht wichtiger Funksysteme

#### Teil II:
Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen

### 14. Literatur:
- Vorlesungsskripte,
- Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,

### 15. Lehrveranstaltungen und -formen:
- 114902 Übung Nachrichtentechnik 1
- 114903 Vorlesung Nachrichtentechnik 2
- 114901 Vorlesung Nachrichtentechnik 1
- 114904 Übung Nachrichtentechnik 2
16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h  
Selbststudium/Nacharbeitszeit: 186 h  
Gesamt: 270 h  

17. Prüfungsnummer/n und -name: | 11491 Nachrichtentechnik (PL), Schriftlich oder Mündlich, 180 Min., Gewichtung: 1  

18. Grundlage für ...  


20. Angeboten von: | Nachrichtenübertragung
## Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter, Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Pflichtcontainer Schwerpunkt System- und Informationstechnik → b) Schwerpunkt System- und Informationstechnik → Wahlpflichtfach Elektrotechnik → Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Pflichtcontainer Schwerpunkt System- und Informationstechnik → Ergänzungsmodule → Hauptfach Elektrotechnik → Hauptfach


12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, kennt Konzepte und Mechanismen von Betriebssystemen und versteht den Aufbau von Rechnersystemen einschließlich der Ein- und Ausgabemechanismen.

13. Inhalt:
- Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
- Prozessorbaugruppen und Mikroprogrammierung, Grundkonzepte von RISC-Prozessoren
- Grundkonzepte und Mechanismen von Betriebssystemen
- Aufbau von Rechnersystemen einschließlich Ein-/Ausgabe

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_I

14. Literatur:
- Vorlesungsskript

15. Lehrveranstaltungen und -formen:
- 116102 Übung zu Technische Informatik I
- 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

Stand: 19. Oktober 2017
18. Grundlage für ...:

Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform:

- Notebook-Präsentationen
- Overhead-Projektor
- Tafelanschriebe

20. Angeboten von:

Kommunikationsnetze und Rechnersysteme
Modul: 11670 Grundlagen integrierter Schaltungen

2. Modulkürzel: 050200002
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth

9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik
→ b) Schwerpunkt System- und Informationstechnik
→ Wahlpflichtfach Elektrotechnik
→ Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik
→ Ergänzungsmodule
→ Hauptfach Elektrotechnik
→ Hauptfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele:
Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
• Bauelemente der Digitaltechnik
• Digitale Grundschaltungen
• CMOS-Logikschaltungen
• Schaltwerke

14. Literatur:
• Vorlesungsskript,
• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
• 116701 Vorlesung Grundlagen Integrierter Schaltungen
• 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische und Optische Nachrichtentechnik</td>
</tr>
</tbody>
</table>
## 230 Hauptfach Maschinenbau

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>231</th>
<th>Basismodule Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232</td>
<td>Kernmodule Maschinenbau</td>
</tr>
</tbody>
</table>
231 Basismodule Maschinenbau

Zugeordnete Module: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge
**Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr.-Ing. Michael Seidenfuß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Seidenfuß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | **Vorlesung**
Atomarer Aufbau kristalliner Werkstoffe, Legierungsbildung, Thermisch aktivierte Vorgänge, Mechanische Eigenschaften, Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, Keramische Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Recycling
**Praktikum**
Thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung Korrosion, Metallographie, Wärmebehandlung, Dillatometer |
| 14. Literatur: | - ergänzende Folien zur Vorlesung (online verfügbar)
-Lecturnity Aufzeichnungen der Übungen (online verfügbar)
-Skripte zum Praktikum (online verfügbar)
-interaktive multimediale praktikumsbegleitende-CD
| 15. Lehrveranstaltungen und -formen: | • 121704 Werkstoffpraktikum II
• 121705 Werkstoffkunde Übung II
• 121703 Werkstoffpraktikum I
• 121702 Vorlesung Werkstoffkunde II
• 121701 Vorlesung Werkstoffkunde I
• 121706 Werkstoffkunde Übung I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit Vorlesungen (2x 2 SWS): 42 h
Präsenzzeit Übung (2x 0,5 SWS): 12 h
Präsenzzeit Praktikum (2x Blockveranstaltung): 8 h
Präsenzzeit gesamt: 62h
Selbststudium: 120 h
GESAMT: 182h |
17. Prüfungsnummer/n und -name:  
• 12171 Werkstoffkunde I+II mit Werkstoffpraktikum (PL), Schriftlich, 120 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Schriftlich oder Mündlich  

18. Grundlage für ... :  

19. Medienform:  
PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity Aufzeichnungen der Übungen, Abruf über Internet  

20. Angeboten von:  
Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel: 080410501x  
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 18 LP  
6. Turnus: Wintersemester

4. SWS: 14  
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. Markus Stroppel

9. Dozenten: Markus Stroppel

10. Zuordnung zum Curriculum in diesem Studiengang:  
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
→ Basismodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach  
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
→ Basismodule Bautechnik --> Hauptfach Bautechnik --> Hauptfach

11. Empfohlene Voraussetzungen: Hochschulreife, Schulstoff in Mathematik

12. Lernziele: Die Studierenden
   • verfügen über grundlegende Kenntnisse der Linearen Algebra, der Differential- und Integralrechnung für Funktionen einer reellen Veränderlichen und der Differentialrechnung für Funktionen mehrerer Veränderlicher,
   • sind in der Lage, die behandelten Methoden selbstständig sicher, kritisch und kreativ anzuwenden
   • besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
   • können sich mit Spezialisten aus dem ingenieure- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.

13. Inhalt:  
**Lineare Algebra:**  
Vektorrechnung, komplexe Zahlen, Matrizenalgebra, lineare Abbildungen, Bewegungen, Determinanten, Eigenwerttheorie, Quadriken  
**Differential- und Integralrechnung für Funktionen einer Veränderlichen:**  
Konvergenz, Reihen, Potenzreihen, Stetigkeit, Differenzierbarkeit, höhere Ableitungen, Taylor-Formel, Extremwerte, Kurvendiskussion, Stammfunktion, partielle Integration, Substitution, Integration rationaler Funktionen, bestimmtes (Riemann-)Integrale, uneigentliche Integrale.  
**Differentialrechnung**  
Folgen/Stetigkeit in reellen Vektorräumen, partielle Ableitungen, Kettenregel, Gradient und Richtungsableitungen, Tangentialebene, Taylor-Formel, Extrema (auch unter Nebenbedingungen), Sattelpunkte, Vektorfelder, Rotation, Divergenz.  
**Kurvenintegrale:**  
Bogenlänge, Arbeitsintegral, Potential

14. Literatur:  
• A. Hoffmann, B. Marx, W. Vogt: Mathematik  
15. Lehrveranstaltungen und -formen:
- 458101 Höhere Mathematik 1 für Ingenieurstudiengänge (EE)
- 458108 Höhere Mathematik 2 für Ingenieurstudiengänge (EE)
- 458102 Höhere Mathematik 1 für Ingenieurstudiengänge (Geod)
- 458109 Höhere Mathematik 2 für Ingenieurstudiengänge (Geod)
- 458103 Höhere Mathematik 1 für Ingenieurstudiengänge (Med)
- 458110 Höhere Mathematik 2 für Ingenieurstudiengänge (Med)
- 458106 Höhere Mathematik 1 für Ingenieurstudiengänge (UWT)
- 458113 Höhere Mathematik 2 für Ingenieurstudiengänge (UWT)
- 458107 Höhere Mathematik 1 für Ingenieurstudiengänge (Verf)
- 458114 Höhere Mathematik 2 für Ingenieurstudiengänge (Verf)
- 458111 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpbau)
- 458105 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpmach)
- 458112 Höhere Mathematik 2 für Ingenieurstudiengänge (Tpbau)
- 458104 Höhere Mathematik 1 für Ingenieurstudiengänge (Tpmach)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 196 h
Selbststudiumszeit / Nacharbeitszeit: 344 h
Gesamt: 540 h

17. Prüfungsnummer/n und -name:
- 458111 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (PL), Schriftlich, 180 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
unbenotete Prüfungspreleistungen:
HM 1/2 für Ingenieurstudiengänge: schriftliche Hausaufgaben, Scheinklausuren
Für Studierende, in deren Studiengang die HM 1/2 für Ingenieurstudiengänge die Orientierungsprüfung darstellt, genügt ein Schein aus einem der beiden Semester, wenn im 3. Fachsemester keine Möglichkeit zum Nachholen des fehlenden Scheins bestand.

18. Grundlage für ...

19. Medienform:
Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Institute der Mathematik
232 Kernmodule Maschinenbau

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10540</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>11240</td>
<td>Grundlagen der Informatik I+II</td>
</tr>
<tr>
<td>11950</td>
<td>Technische Mechanik II + III</td>
</tr>
<tr>
<td>12210</td>
<td>Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td>13280</td>
<td>Messtechnik - Fahrzeugmesstechnik</td>
</tr>
<tr>
<td>13800</td>
<td>Messtechnik - Anlagenmesstechnik</td>
</tr>
<tr>
<td>16250</td>
<td>Steuerungstechnik</td>
</tr>
<tr>
<td>18100</td>
<td>CAD in der Apparatetechnik</td>
</tr>
<tr>
<td>38840</td>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation</td>
</tr>
<tr>
<td>51660</td>
<td>Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre</td>
</tr>
</tbody>
</table>
Modul: 10540 Technische Mechanik I

2. Modulkürzel: 072810001
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: Peter Eberhard
   Michael Hanss
    ➞ Kernmodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach
11. Empfohlene Voraussetzungen: Grundlagen in Mathematik und Physik
12. Lernziele: Nach erfolgreichem Besuch des Moduls Technische Mechanik I haben die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stereo-Statik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Statik.
13. Inhalt:
   • Grundlagen der Vektorrechnung: Vektoren in der Mechanik, Rechenregeln der Vektor-Algebra, Systeme gebundener Vektoren
   • Stereo-Statik: Kräftesysteme und Gleichgewicht, Gewichtskraft und Schwerpunkt, ebene Kräftesysteme, Lagerung von Mehrkörpersystemen, Innere Kräfte und Momente am Balken, Fachwerke, Seilstatik, Reibung
14. Literatur:
   • Vorlesungsmitschrieb
   • Vorlesungs- und Übungsunterlagen
   • Hibbeler, R.C.: Technische Mechanik 1 - Statik. München: Pearson Studium, 2005
15. Lehrveranstaltungen und -formen:
   • 105401 Vorlesung Technische Mechanik I
   • 105402 Übung Technische Mechanik I
16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 42 h
   Selbststudiumszeit / Nacharbeitszeit: 138 h
   Gesamt: 180 h
17. Prüfungsnummer/n und -name: 10541 Technische Mechanik I (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ...
19. Medienform:
   Beamer, Tablet-PC/Overhead-Projektor, Experimente
20. Angeboten von: Technische Mechanik
**Modul: 11240 Grundlagen der Informatik I+II**

2. Modulkürzel: 041500001  
5. Modulduer: Zweisemestrig  
3. Leistungspunkte: 6 LP  
6. Turnus: Wintersemester  
4. SWS: 6  
7. Sprache: Deutsch  

8. Modulverantwortlicher: Univ.-Prof. Dr. Michael Resch  
9. Dozenten:  
Michael Resch  
Natalia Currle-Linde  
Yevgeniya Kovalenko  

10. Zuordnung zum Curriculum in diesem Studiengang:  
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester  
Kernmodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach  

11. Empfohlene Voraussetzungen: keine  

12. Lernziele:  
• Die Studenten verstehen die Grundlagen der Informatik und sind in der Lage diese im folgenden Studium anzuwenden.  
• Die Studenten verstehen die hardwaretechnischen Grundlagen eines Computersystems.  
• Sie sind in der Lage grundsätzliche Leistungsabschätzungen von Computersystemen zu machen.  
• Die Studenten verstehen die softwaretechnischen Grundlagen von Betriebssystemen.  
• Die Studenten verfügen über Grundkenntnisse der allgemeinen Programmierung. Sie beherrschen die gängigen Datentypen und Datenstrukturen.  
• Die Studenten erwerben Kenntnisse in der Programmierung mit Java.  
• Die Studenten verfügen über einen Einblick in die Problematik der Software-Entwicklung.  

13. Inhalt:  
• Grundlagen der Informatik  
• Rechnertechnik  
• Betriebssysteme und Programmierung  
• Programmiertechnik  
• Software Entwicklung  

14. Literatur:  
• Prof. Dr. Helmut Balzert, Lehrbuch Grundlagen der Informatik, Spektrum Akademischer Verlag, Heidelberg, Berlin, ISBN 3-8274-0358-8  

15. Lehrveranstaltungen und -formen:  
• 112401 Vorlesung Grundlagen der Informatik I  
• 112402 Übung Grundlagen der Informatik I  
• 112403 Vorlesung Grundlagen der Informatik II  
• 112404 Übung Grundlagen der Informatik II  

16. Abschätzung Arbeitsaufwand:  
Präsenzzeit: 60 h  
Selbststudium / Nacharbeitszeit: 120 h  
Gesamt: 180 h  

17. Prüfungsnummer/n und -name: 11241 Grundlagen der Informatik I+II (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1  

Stand: 19. Oktober 2017
18. Grundlage für ...:

19. Medienform: PPT-Präsentation, Tafelanschrieb

20. Angeboten von: Höchstleistungsrechnen
Modul: 11950 Technische Mechanik II + III

2. Modulkürzel: 072810002  
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 12 LP  
6. Turnus: Sommersemester
4. SWS: 8  
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Peter Eberhard
9. Dozenten: Peter Eberhard  
Michael Hanss
➞ Kernmodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach
11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I
13. Inhalt:  
• Elasto-Statik: Spannungen und Dehnungen, Zug und Druck, Torsion von Wellen, Technische Biegelehre, Überlagerung einfacher Belastungsfälle  
• Kinematik: Punktbewegungen, Relativbewegungen, ebene und räumliche Kinematik des starren Körpers  
• Kinetik: Kinetische Grundbegriffe, kinetische Grundgleichungen, Kinetik der Schwerpunktsbewegungen, Kinetik der Relativbewegungen, Kinetik des starren Körpers, Arbeits- und Energiesatz, Schwingungen  
• Methoden der analytischen Mechanik: Prinzip von d’Alembert, Koordinaten und Zwangsbedingungen, Anwendung des d’Alembertschen Prinzips in der Lagrangeschen Fassung, Lagrangesche Gleichungen
14. Literatur:  
• Vorlesungsmitschrieb  
• Vorlesungs- und Übungsunterlagen  
15. Lehrveranstaltungen und -formen:  
• 119504 Übung Technische Mechanik III  
• 119503 Vorlesung Technische Mechanik III  
• 119501 Vorlesung Technische Mechanik II
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 84 h
Selbststudiumszeit / Nacharbeitszeit: 276 h
Gesamt: 360 h

17. Prüfungsnummer/n und -name: 11951  Technische Mechanik II + III (PL), Schriftlich, 120 Min.,
Gewichtung: 1

19. Medienform:
- Beamer
- Tablet-PC/Overhead-Projektor
- Experimente

20. Angeboten von: Technische Mechanik
Modul: 12210 Einführung in die Elektrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>7</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>• Elektrischer Gleichstrom</td>
<td></td>
</tr>
<tr>
<td>• Elektrische und magnetische Felder</td>
<td></td>
</tr>
<tr>
<td>• Wechselstrom</td>
<td></td>
</tr>
<tr>
<td>• Halbleiterelektronik (Diode, Bipolartransistor, Operationsverstärker)</td>
<td></td>
</tr>
<tr>
<td>• Elektrische Maschinen (Gleichstrommaschine, Synchrongenerator, Asynchronmotor)</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>• Hermann Linse, Rolf Fischer, Elektrotechnik für Maschinenbauer, Teubner Stuttgart, 12. Auflage 2005</td>
<td></td>
</tr>
<tr>
<td>• Moeller / Fricke / Frohne / Lücherer / Müller, Grundlagen der Elektrotechnik, Teubner Stuttgart, 19. Auflage 2002</td>
<td></td>
</tr>
<tr>
<td>• Jötten / Zürneck, Einführung in die Elektrotechnik I/II, uni-text Braunschweig 1972</td>
<td></td>
</tr>
<tr>
<td>• Ameling, Grundlagen der Elektrotechnik I/II, Bertelsmann Universitätsverlag 1974</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>• 122101 Vorlesung Einführung in die Elektrotechnik I</td>
<td></td>
</tr>
<tr>
<td>• 122105 Elektrotechnisches Praktikum</td>
<td></td>
</tr>
<tr>
<td>• 122102 Übungen Einführung in die Elektrotechnik I</td>
<td></td>
</tr>
<tr>
<td>• 122103 Vorlesung Einführung in die Elektrotechnik II</td>
<td></td>
</tr>
<tr>
<td>• 122104 Übungen Einführung in die Elektrotechnik II</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 98h</td>
<td></td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit: 82 h</td>
<td></td>
</tr>
<tr>
<td>Gesamt: 180 h</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
</tr>
<tr>
<td>• 12211 Einführung in die Elektrotechnik (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>• 12212 Elektrotechnisches Praktikum (USL), Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 13280 Messtechnik - Fahrzeugmesstechnik

2. Modulkürzel: 070708004  
5. Modulduer: Zweisemestrig

3. Leistungspunkte: 6 LP  
6. Turnus: Wintersemester

4. SWS: 4  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jochen Wiedemann

9. Dozenten: Gerhard Eyb  
              Nils Widdecke  
              Hubert Fußhoeller

10. Zuordnung zum Curriculum in diesem Studiengang:  
     B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
     Kernmodule Maschinenbau --> Hauptfach Maschinenbau --> Hauptfach  
     B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
     Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:  
• Grundkenntnisse der Messtechnik mit Anwendung im Praktikum, Umgang mit Messgrößen und Messverfahren, Techniken zur Auswertung  
• Grundkenntnisse zur fahrzeug- und motorspezifischen Messtechnik

13. Inhalt:  

   Teil A (2 SWS)  
   • Grundlagen der Messtechnik  
   • Messkette  
   • Messunsicherheiten  
   • Messmethoden  
   • Messverfahren für mechanische, thermische, akustische, elektrische Größen  
   • Strömungs- und Durchflussmessung  
   • Schadstoffmessung, Gasanalyse

   Teil B (1 SWS)  
   Druck- Kraft- und Geschwindigkeitsmesstechniken in Windkanalströmungen und an Fahrzeugen, praxisorientierte Probleme beim Aufbau und der Inbetriebnahme von Prüfständen  

   Teil C: (1 SWS)  
   Versuch 1: Leistungsmessung, Indizieren  
   Versuch 2: Kraft, Dehnung (DMS), Schwingungen  
   Versuch 3: Messung umweltrelevanter Größen  
   Versuch 4: Druck- und Temperaturmessung  
   Versuch 5: Durchflussmessung Luft/Wasser

14. Literatur:  
• ITSM: Manuskript zur Vorlesung,  
• IVK: Skripte zur Vorlesung  
• u. a. Hofmann: Taschenbuch der Messtechnik,  
• Profos: Grundlagen der Messtechnik,  
• Müller: Mechanische Größen elektrisch gemessen,  
• Bonfig: Durchflussmessung von Flüssigkeiten und Gasen,  
• Adunka: Messunsicherheiten

15. Lehrveranstaltungen und -formen:  
• 132801 Vorlesung Messtechnik - Fahrzeugmesstechnik 1  
• 132802 Vorlesung Messtechnik - Fahrzeugmesstechnik 2  
• 132803 Praktikum Messtechnik - Fahrzeugmesstechnik
| 16. Abschätzung Arbeitsaufwand: | Vorlesung und Laborversuch |
| 17. Prüfungsnummer/n und -name: | 13281 Messtechnik - Fahrzeugmesstechnik (USL), Schriftlich, 60 Min., Gewichtung: 1 |
| Und Praktikum mit Testat je Versuch |

| 18. Grundlage für ... : |

| 19. Medienform: |

| 20. Angeboten von: | Thermische Strömungsmaschinen und Maschinenlaboratorium |
Modul: 13800 Messtechnik - Anlagenmesstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042310002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Damian Vogt</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Eyb</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | **Teil A: MT**
| | Der Studierende
| | • hat Grundkenntnisse der Messtechnik
| | • kann mit Messgrößen und Messverfahren umgehen
| | • erkennt Messunsicherheiten und kann diese bewerten
| | • kennt Techniken zur Messung verschiedener Größen
| | • kennt moderne Verfahren zur Erfassung und Auswertung von Messgrößen
| | • kann die gewonnenen Kenntnisse in der Praxis umsetzen
| | **Teil B: AM**
| | Der Studierende
| | • kennt komplexe Messverfahren, die bei Messungen in Anlagen Anwendung finden
| | • ist in der Lage, geeignete Messverfahren auszuwählen, zu bewerten und anzuwenden
| | • kann komplexe Messungen auswerten und deren Gültigkeitsbereiche definieren
| 13. Inhalt: | **Teil A: MT (2 SWS)**
| | • Grundlagen der Messtechnik
| | • Messkette, Messmethoden
| | • Messunsicherheiten
| | • Messverfahren für mechanische, thermische, akustische, elektrische Größen
| | • Strömungs- und Durchflussmessung
| | • Schadstoffmessung, Gasanalyse
| | • rechnergestützte Messwerterfassung und -auswertung
| | **Teil B: AM (1 SWS V)**
| | • Messverfahren für Messungen an Maschinen und Anlagen
| | • Wandlung in elektrische Signale
| | • Messdatenerfassung
| | • Messwerterfassungssysteme
| | • Auswertetechniken
| | • Beispiele

Stand: 19. Oktober 2017
### Praktikum:
Erprobung und Einübung des theoretisch gelernten Wissens an praktischen Messaufgaben im Labor

#### 14. Literatur:

**Teil A**
Manuskript zur Vorlesung
Ergänzende Literatur:
- J. Hofmann: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig
- P. Profos: Handbuch der industriellen Messtechnik, Oldenbourg-Verlag
- R. Müller: Mechanische Größen elektrisch gemessen, Expert-Verlag
- K. Bonfig: Durchflussmessung von Flüssigkeiten und Gasen, Expert-Verlag
- F. Adunka: Messunsicherheiten, Vulkan-Verlag Aktualisierte Literaturlisten im Rahmen der Vorlesung

**Teil B**
Literaturliste wird im Rahmen der Vorlesung vorgestellt.

#### 15. Lehrveranstaltungen und -formen:
- 138004 Praktikum Messtechnik - Anlagenmesstechnik
- 138002 Vorlesung Messtechnik - Anlagenmesstechnik - Teil B: Anlagenmesstechnik
- 138001 Vorlesung Messtechnik - Anlagenmesstechnik - Teil A: Grundlagen

#### 16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 37h + Nacharbeitszeit: 143h = 180h

#### 17. Prüfungsnummer/n und -name:
- 13801 Messtechnik - Anlagenmesstechnik (USL), Schriftlich, 120 Min., Gewichtung: 1
  Praktikumsversuche mit Testat je Versuch

#### 18. Grundlage für ... :

#### 19. Medienform:
- Beamer, Tafel

#### 20. Angeboten von:
- Thermische Strömungsmaschinen und Maschinenlaboratorium
## Modul: 16250 Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Seyfarth</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine besonderen Vorkenntnisse</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotsteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.  
• Darstellung und Lösung steuerungstechnischer Problemstellungen.  
• Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme (Elektromotoren, fluidische Antriebe).  
• Typische praxisrelevante Anwendungsbeispiele.  
• Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten |
| 15. Lehrveranstaltungen und -formen: | • 162502 Übung Steuerungstechnik  
• 162503 Praktikum Steuerungstechnik  
• 162501 Vorlesung Steuerungstechnik mit Antriebstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 48 h  
Selbststudium / Nacharbeitszeit: 132 h  
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | • 16251 Steuerungstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1  
• 16252 Steuerungstechnik Praktikum (USL), Schriftlich oder Mündlich, 0 Min., Gewichtung: 1 |
<p>| 18. Grundlage für ...: | Steuerungstechnik der Werkzeugmaschinen und Industrieroboter |</p>
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer, Overhead, Tafelanschrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen</td>
</tr>
</tbody>
</table>
Modul: 18100 CAD in der Apparatetechnik

2. Modulkürzel: 041111016
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modul dauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. habil. Clemens Merten
9. Dozenten: Clemens Merten
11. Empfohlene Voraussetzungen: Konstruktionstechnische Grundlagen des BSc-Grundstudiums
12. Lernziele: Die Studierenden
   • verstehen die komplexen Anforderungen und Grundlagen der räumlichen Darstellung und normgerechter technischer Zeichnungen verfahrenstechnischer Maschinen und Apparate,
   • können die Anwendungsprogramme zur rechnergestützten Konstruktion von Maschinen, Apparaten und Anlagen problemorientiert auswählen, vergleichen und beurteilen,
   • beherrschen die grundlegenden Methodiken und die Handhabung des CAD-Programms Pro/ENGINEER für den Entwurf von Bauteilen und Baugruppen sowie für die Erstellung technischer Zeichnungen und Dokumentationen,
   • können neue Produkte (Konstruktionen) mittels CAD entwerfen, analysieren, prüfen und bewerten,
   • können das CAD-Programm in einer integrierten Entwicklungsumgebung anwenden.

   • Einführung und Anleitung zum konstruktiven Entwurf und zur Darstellung verfahrenstechnischer Apparate.
   • Überblick zu allgemeinen und branchenspezifischen CAD-Systemen.
   • Integration und Schnittstellen des CAD im Produktentwicklungsprozess (Berechnungsprogramme, CAE).
   • Gruppenübung mit CAD-Programm Pro/ENGINEER: Übersicht zum Programmaufbau und zu den Grundbefehlen für typische Konstruktionselemente.
   • Übung: Eigenständige Konstruktion eines Apparates mit CAD.

14. Literatur:
   • Merten, C.: Skript zur Vorlesung, Übungsunterlagen
   • Nutzerhandbuch Pro/ENGINEER
   Ergänzende Lehrbücher:
   • Köhler, P.: Pro/ENGINEER Praktikum. Vieweg-Verlag

15. Lehrveranstaltungen und -formen:
   • 181002 Übung CAD in der Apparatetechnik
   • 181001 Vorlesung CAD in der Apparatetechnik

16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 56 h
   Selbststudiumszeit / Nacharbeitzeit: 124 h
   Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>18101 CAD in der Apparatetechnik (PL), Mündlich, 30 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesungschrift, Übungsunterlagen, kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Apparate- und Anlagentechnik</td>
</tr>
</tbody>
</table>
Modul: 38840 Fertigungslehre mit Einführung in die Fabrikorganisation

2. Modulkürzel: 072410001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 3
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl


11. Empfohlene Voraussetzungen: keine


Der Studierende kennt die Ziele, die Aufgaben und grundlegenden organisatorischen Gestaltungsaspekte eines produzierenden Unternehmens. Er kennt verschiedene Innovationsstrategien, kann die wesentlichen Phasen im Produktenstehungsprozess und die wichtigsten Methoden der Produktentwicklung benennen. Weiterhin ist er in der Lage mehrere Auslöser für die Fabrikplanung aufzuzählen und kennt die Vorgehensweise bei Fabrikplanungsprojekten. Der Student kann den Grundgedanken und die Ziele des Supply Chain Managements beschreiben und kennt die verschiedenen Ebenen und Aufgaben des Supply Chain Managements. Außerdem kann er die Gründe für die Einführung von Lean Management darstellen, die Lean-Grundprinzipien erklären und die Basismethoden und Werkzeuge des Lean Managements beschreiben. Der Student kennt die Grundlagen der Kosten- und Leistungsrechnung und kann die Charakteristika der Industrie 4.0 darstellen.


Die Fabrikorganisation gibt einen Einblick in die Struktur, Geschäftsprozesse und den Aufbau eines Unternehmens. Neben den Grundlagen produzierender Unternehmen werden die
14. Literatur:
- Vorlesungsskripte,
- Einführung in die Fertigungstechnik, Westkämper/Warnecke, Teubner Lehrbuch,
- Einführung in die Organisation der Produktion, Westkämper, Springer Lehrbuch

15. Lehrveranstaltungen und -formen:
- 388403 Freiwillige Übungen Fertigungslehre mit Einführung in die Fabrikorganisation
- 388401 Vorlesung Fertigungslehre
- 388402 Vorlesung Einführung in die Fabrikorganisation

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung Fertigungslehre (2 SWS): 21h
Präsenzzeit Vorlesung Einführung in die Fabrikorganisation (1 SWS): 10,5h
Präsenzzeit gesamt: 31,5h
Selbststudium inkl. freiwilliger Übung: 58,5h
GESAMT: 90h

17. Prüfungsnummer/n und -name:
- 38841 Fertigungslehre mit Einführung in die Fabrikorganisation (BSL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PowerPoint, Video, Animation, Simulation

20. Angeboten von:
Industrielle Fertigung und Fabrikbetrieb
## Modul: 51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072711100</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>9</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Maier</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Siegfried Schmauder, Thomas Maier</td>
</tr>
</tbody>
</table>

### Empfohlene Voraussetzungen:


### Inhalt:

Die Vorlesung und die Übungen vermitteln die Grundlagen:

- der räumlichen Darstellung und des Technischen Zeichnens
- Einführung in die Produktentwicklung mit Übersicht über Produkte und Produktprogramme,
- der Festigkeitsberechnung (Zug und Druck, Biegung, Schub, Torsion (Verdrehung), Schwingende Beanspruchung, Allgemeiner Spannungs- und Verformungszustand, Kerbwirkung) und der konstruktiven Gestaltung,
- Grundlagen der Antriebstechnik,

### Literatur:

- Maier: Grundzüge der Maschinen-konstruktion I + II und Einführung ins Technische Zeichnen, Skripte zur Vorlesung u. Übungsunterlagen,
- Schmauder: Einführung in die Festigkeitslehre, Skript zur Vorlesung und ergänzenden Folien im Internet,
- Roloff, Matek: Maschinenelemente, Vieweg-Verlag,
- Dietmann: Einführung in die Festigkeitslehre, Kröner-Verlag,
• Hoischen, Hesser: Technisches Zeichnen, Cornelsen-Verlag.

15. Lehrveranstaltungen und -formen:
• 516604 Vortragsübung Einführung in die Festigkeitslehre
• 516605 Vorlesung Grundzüge der Maschinenkonstruktion II
• 516602 Übung Grundzüge der Maschinenkonstruktion I
• 516601 Vorlesung Grundzüge der Maschinenkonstruktion I
• 516606 Übung Grundzüge der Maschinenkonstruktion II
• 516603 Vorlesung Einführung in die Festigkeitslehre

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 95 h
Selbststudiumszeit / Nacharbeitszeit: 265 h
Gesamt: 360 h

17. Prüfungsnummer/n und -name:
• 51661 Grundzüge der Maschinenkonstruktion I und II (PL), Schriftlich, 120 Min., Gewichtung: 1
• 51662 Einführung in die Festigkeitslehre (PL), Schriftlich, 60 Min., Gewichtung: 1
• 51663 Grundzüge der Maschinenkonstruktion I (USL) (USL), Schriftlich, Gewichtung: 1
• 51664 Grundzüge der Maschinenkonstruktion II (USL) (USL), Schriftlich, Gewichtung: 1

19. Medienform:

20. Angeboten von: Technisches Design
## 240 Hauptfach Informatik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Modultyp Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>Basismodule Informatik</td>
</tr>
<tr>
<td>242</td>
<td>Kernmodule Informatik</td>
</tr>
<tr>
<td>243</td>
<td>Ergänzungsmodule Informatik</td>
</tr>
</tbody>
</table>
241 Basismodule Informatik

Zugeordnete Module:
10190 Mathematik für Informatiker und Softwaretechniker
10260 Programmierkurs
10280 Programmierung und Software-Entwicklung
12060 Datenstrukturen und Algorithmen
Modul: 10190 Mathematik für Informatiker und Softwaretechniker

2. Modulkürzel: 080300100
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 18 LP
6. Turnus: Wintersemester
4. SWS: 12
7. Sprache: Deutsch
8. Modulverantwortlicher: PD Dr. Andreas Markus Kollross
9. Dozenten:
   Wolfgang Rump
   Andreas Markus Kollross
   Peter Lesky
   Wolf-Patrick Düll
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → Basismodule Informatik --> Hauptfach Informatik --> Hauptfach
11. Empfohlene Voraussetzungen:
    Keine, die Teilnahme an einem Mathematik Vorkurs wird empfohlen.
12. Lernziele:
    Die Studierenden haben die mathematischen Grundlagen für die Studiengänge Informatik bzw. Softwaretechnik erarbeitet und den selbständigen und kreativen Umgang mit den mathematischen Stoffgebieten gelernt.
13. Inhalt:
    1. Semester:
    • Grundlagen (Aussagenlogik, Mengen, Relationen, Abbildungen, Zahlenmengen, Grundbegriffe der Algebra)
    • Lineare Algebra (Vektorräume, lineare Abbildungen, Matrizen, Determinanten, lineare Gleichungssysteme, Eigenwerte, Normalformen, Hauptachsentransformation, Skalarprodukte)
    • Analysis (Konvergenz, Zahlenfolgen und Zahlenreihen, stetige Abbildungen, Folgen und Reihen von Funktionen, spezielle Funktionen)
    2. Semester:
    • Differential- und Integralrechung (Funktionen einer und mehrerer Variablen, Ableitungen, Taylorentwicklungen, Extremwerte, Integration, Anwendungen)
    • Gewöhnliche Differentialgleichungen (elementar lösbare Differentialgleichungen, Existenz und Eindeutigkeit von Lösungen)
14. Literatur:
    • Anna Sändig, Mathematik, Vorlesungsskripte , SS 2007
    • D. Hachenberger, Mathematik für Informatiker, 2005
    • M. Brill, Mathematik für Informatiker, 2001
    • P.Hartmann, Mathematik für Informatiker, 2002
15. Lehrveranstaltungen und -formen:
    • 101901 Vorlesung Mathematik 1 für Informatik und Softwaretechnik
    • 101902 Übung Mathematik 1 für Informatik und Softwaretechnik
    • 101903 Vorlesung Mathematik 2 für Informatik und Softwaretechnik
    • 101904 Übung Mathematik 2 für Informatik und Softwaretechnik
16. Abschätzung Arbeitsaufwand:
    Präsenzzzeit: 126 Stunden
    Nachbearbeitungszeit: 414 Stunden
17. Prüfungsnummer/n und -name:
    • 10191 Mathematik für Informatiker und Softwaretechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
    • V Vorleistung (USL-V), Schriftlich oder Mündlich

Stand: 19. Oktober 2017
Ein Übungsschein aus den beiden Veranstaltungen, jeweils im 1. oder 2. Fachsemester zu erwerben

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Geometrie
Modul: 10260 Programmierkurs

2. Modulkürzel: 051520010
5. Modulduer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn

9. Dozenten: Jason Utt

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
  → Basismodule Informatik --> Hauptfach Informatik -->
  Hauptfach
B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
  → Wahlpflichtfach Informatik, Grundlagen Informatik -->
  Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
  → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:
Selbstständiges Erstellen von Programmen und Lösung von Programmieraufgaben in der Programmiersprache Python, mit einem Schwerpunkt auf Konzepten, die für die maschinelle Sprachverarbeitung und Computerlinguistik wichtig sind.

   Independently writing programs and solving programming tasks in the programming language Python, with emphasis on concepts relevant for Natural Language Processing and Computational Linguistics.

13. Inhalt:

   The module primarily targets students in Natural Language Processing (3rd semester), Computational Linguistics and Digital Humanities. It covers the key concepts of the programming language Python and provides practical experience in writing Python programs in the context of processing linguistic data and resources.

   Typically, the lectures of the module course as well as the materials are in English, however, students not fluent in English in the programming context will receive support in German.

14. Literatur:
Folien.

15. Lehrveranstaltungen und -formen:
• 102601 Übung Programmierkurs

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Nachbearbeitungszeit: 69 Stunden

17. Prüfungsnummer/n und -name:
10261 Programmierkurs (USL), Sonstige, Gewichtung: 1
Übungsschein - Scheinkriterien werden zu Beginn der Veranstaltung angekündigt.
Criteria for credits are announced at the beginning of the course.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Grundlagen der Computerlinguistik
## Modul: 10280 Programmierung und Software-Entwicklung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Frank Leymann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Frank Leymann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester</td>
<td>Wählpflichtfach Informatik, Grundlagen Informatik</td>
<td>Wählpflichtfach</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 2. Semester</td>
<td>Basismodule Informatik</td>
<td>Hauptfach Informatik</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 2. Semester</td>
<td>Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Teilnehmer haben einen Überblick über das Gebiet der Informatik. Sie haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren und selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Die Programmiersprache Java und die virtuelle Maschine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Objekte, Klassen, Schnittstellen, Blöcke, Programmstrukturen, Kontrakte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Klassenmodellierung mit der UML</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Objekterzeugung und -ausführung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Boolesche Logik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rechner, Hardware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Syntaxdarstellungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Übersicht über Programmiersprachen und -werkzeuge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Datenstrukturen und Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vererbung, Polymorphe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Semantik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Programmierung graphischer Oberflächen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Übergang zum Software Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Meyer, Bertrand, Touch of Class, Springer-Verlag, 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 102801 Vorlesung Programmierung und Softwareentwicklung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:
Präsenztunden: 63 h
Eigenstudiumstunden: 207 h
Gesamtstunden: 270 h

17. Prüfungsnummer/n und -name:
• 10281 Programmierung und Software-Entwicklung (PL), Schriftlich, 90 Min., Gewichtung: 1
• Vorleistung (USL-V), Schriftlich oder Mündlich
[10281] Programmierung und Software-Entwicklung (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0. [Prüfungsvorleistung]

18. Grundlage für ... : Datenstrukturen und Algorithmen

19. Medienform:
• Folien über Beamer
• Tafelanschrieb

20. Angeboten von: Architektur von Anwendungssystemen
Modul: 12060 Datenstrukturen und Algorithmen

| 3. Leistungspunkte: | 9 LP | 6. Turnus: | Sommersemester |
| 4. SWS: | 6 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Daniel Weiskopf
9. Dozenten: Daniel Weiskopf, Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:

   B.Sc. Technikpädagogik, PO 199-2011,
   ➔ Vorgezogene Master-Module
   B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
   ➔ Basismodule Informatik --> Hauptfach Informatik -->
   Hauptfach
   B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
   ➔ Wahlpflichtfach Informatik, Grundlagen Informatik -->
   Wahlpflichtfach

11. Empfohlene Voraussetzungen: Modul 10280 Programmierung und Software-Entwicklung

12. Lernziele:

   Die Studierenden kennen nach engagierter Mitarbeit in dieser Veranstaltung diverse zentrale Algorithmen auf geeigneten Datenstrukturen, die für eine effiziente Nutzung von Computern unverzichtbar sind. Sie können am Ende zu gängigen Problemen geeignete programmiersprachliche Lösungen angeben und diese in einer konkreten Programmiersprache formulieren.

   Die Lernziele lassen sich wie folgt zusammenfassen:

   • Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen
   • Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität
   • Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen
   • Erste Begegnung mit nebenläufigen Algorithmen

13. Inhalt:

   Es werden die folgenden Themen behandelt:

   • Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen
   • Komplexität und Effizienz von Algorithmen, O-Notation
   • Listen (Stack, Queue, doppelt verkettete Listen)
   • Sortierverfahren (Selection-, Insertion-, Bubble-, Merge-, Quick-Sort)
   • Bäume (Binär-, AVL-, 2-3-4-, Rot-Schwarz-, B-Bäume, Suchbäume, Traversierung, Heap)
   • Räumliche Datenstrukturen (uniforme Gitter, Oktal-, BSP-, kD-, CSG-Bäume, Bounding-Volumes)
   • Graphen (Datenstrukturen,DFS, BFS, topologische Traversierung, Dijkstra-, A*- , Bellman-Ford-Algorithmen, minimale Spannbäume, maximaler Fluss)
   • Räumliche Graphen (Triangulierung, Voronoi, Delaunay, Graph-Layout)
   • Textalgorithmen (String-Matching, Knuth-Morris-Pratt, Boyer-Moore, reguläre Ausdrücke, Levenshtein-Distanz)
   • Hashing (Hashfunktionen, Kollisionen)
• Verteilte Algorithmen (Petri-Netze, Programmieren nebendläufiger Abläufe, einige parallele und parallelisierte Algorithmen)
• Algorithmenentwurf und -muster (inkrementell, greedy, divide-and-conquer, dynamische Programmierung, Backtracking, randomisierte Algorithmen)
• Maschinelles Lernen (überwachtes Lernen, Entscheidungsbäume, SVM, neuronale Netze, unüberwachtes Lernen, k-Means)

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 120601 Vorlesung Datenstrukturen und Algorithmen
• 120602 Übung Datenstrukturen und Algorithmen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 12061 Datenstrukturen und Algorithmen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Visualisierung
242 Kernmodule Informatik

Zugeordnete Module:

- 10290 Projekt-INF
- 10320 Seminar-INF 1
- 10930 Technische Grundlagen der Informatik
- 10940 Theoretische Grundlagen der Informatik
Modul: 10290 Projekt-INF

2. Modulkürzel: 051900095
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulbandauer: Einsemestrig
6. Turnus: Wintersemester/ Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Jun.-Prof. Dr. Niels Henze
9. Dozenten: Dozenten der Informatik
10. Zuordnung zum Curriculum in diesem Studiengang:
    - B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
    - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester Wahlpflichtfach Informatik, Grundlagen Informatik --> Wahlpflichtfach
    - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester Kernmodule Informatik --> Hauptfach Informatik --> Hauptfach
besonders herausragender Qualität) von den Studierenden präsentiert werden.

14. Literatur:

wird in der Veranstaltung und im Web bekannt gegeben.

15. Lehrveranstaltungen und -formen:

• 102901 Seminar Projekt

16. Abschätzung Arbeitsaufwand:

180 Stunden pro Teammitglied

17. Prüfungsnummer/n und -name:

10291 Projekt-INF (USL), Sonstige, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Formale Methoden der Informatik
## Modul: 10320 Seminar-INF 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stefan Funke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 103201 Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>10321 Seminar-INF 1 (LBP), Sonstige, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Formale Methoden der Informatik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Modul: 10930 Technische Grundlagen der Informatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051711005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modultype:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Martin Radetzki</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Martin Radetzki</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Elektrotechnische Grundlagen:  
Grundlegendes Verständnis elektrischer Schaltkreise und der Funktionsweise der Bauelemente und Komponenten von Computersystemen, wie Transistoren, digitale Halbleiterschaltungen, Speicher.  
• Digitaltechnische Komponenten:  
Fähigkeit zur Analyse, Konstruktion und Optimierung digitaler Schaltungen von begrenzter Komplexität. |
• Informationsbegriff, Codierung, Darstellung mit analogen Größen  
• Übersicht über den Entwurf informationsverarbeitender Systeme  
• Boole'sche Algebra  
• Physikalische und mathematische Grundbegriffe der Elektrotechnik  
• Elektrostatisches Feld, Potential, Spannung und Kondensator  
• Elektrischer Strom, elektrische Netzwerke und Widerstand  
• Halbleitertechnik, Diode, Transistor  
• Digitale Grundschalungen, Logik- und Speicherschaltungen  
2. Teil des Moduls (im Sommersemester, Digitaltechnische Komponenten):  
• Schaltalgebra, Schaltnetze / kombinatorische Netzwerke  
• Verzögerungsanalyse  
• Kombinatorische Komponenten von Rechnersystemen  
• Sequentielle Komponenten von Rechnersystemen  
• Modelle sequentiellen Verhaltens, Schaltwerke / sequentielle Netzwerke  
• Taktung und Taktschemata  
• Entwurfsmethodik und Entwurfsoptimierung |
| 14. Literatur: | - |
| 15. Lehrveranstaltungen und -formen: | • 109301 Vorlesung Elektrotechnische Grundlagen  
• 109302 Übung Elektrotechnische Grundlagen |
Nachbearbeitungszeit: 176 Stunden

17. Prüfungsnummer/n und -name:

- 109303 Vorlesung Digitaltechnische Komponenten
- 109304 Übung Digitaltechnische Komponenten

- 10931 Technische Grundlagen der Informatik (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich

Prüfungsvorleistung:

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Eingebettete Systeme (Embedded Systems Engineering)
## Modul: 10940 Theoretische Grundlagen der Informatik

2. Modulkürzel: 050420005  
5. Modulsdauer: Zweisemestrig  
3. Leistungspunkte: 12 LP  
6. Turnus: Wintersemester  
4. SWS: 8  
7. Sprache: Deutsch  
8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf  
9. Dozenten: Volker Diekert, Ulrich Hertrampf  
10. Zuordnung zum Curriculum in diesem Studiengang:  
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
    → Kernmodule Informatik --> Hauptfach Informatik --> Hauptfach  
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
    → Vorgezogene Master-Module  
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
    → Wahlpflichtfach Informatik, Grundlagen Informatik --> Wahlpflichtfach  
11. Empfohlene Voraussetzungen: Keine  
12. Lernziele:  
    • Logik und Diskrete Strukturen: Die Studierenden haben die grundsätzlichen Kenntnisse in Logik und Diskreter Mathematik erworben, wie sie in den weiteren Grundvorlesungen der Informatik in verschiedenen Bereichen benötigt werden.  
    • Automaten und Formale Sprachen: Die Studierenden beherrschen wichtige theoretische Grundlagen der Informatik, insbesondere die Theorie und Algorithmik endlicher Automaten. Hierzu gehört das Kennenlernen, Einordnung und Trennung der Chomskyschen Sprachklassen.  
13. Inhalt:  
    Logik und Diskrete Strukturen:  
    • Einführung in die Aussagenlogik: Semantik (Wahrheitswerte), Syntax (Axiome und Schlussregeln), Normalformen, Hornformeln, Endlichkeitssatz, aussagenlogische Resolution,  
    • Einführung in die Prädikatenlogik 1. Stufe: Semantik und Syntax, Normalformen, Unifikatoren, Herbrand-Theorie, prädikatenlogische Resolution,  
    Automaten und Formale Sprachen:  
14. Literatur:  
    • Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999.
15. Lehrveranstaltungen und -formen:

- 109401 Vorlesung Logik und Diskrete Strukturen
- 109403 Vorlesung Automaten und Formale Sprachen
- 109404 Übung Automaten und Formale Sprachen
- 109402 Übung Logik und Diskrete Strukturen
- 109405 Zusatztutorium Theoretische Grundlagen der Informatik für MSV (freiwillig)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- 10941 Theoretische Grundlagen der Informatik (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich, 30 Min.  

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Theoretische Informatik
### 243 Ergänzungsmodule Informatik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Kürzel</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10220</td>
<td>Modellierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11890</td>
<td>Algorithmen und Berechenbarkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17210</td>
<td>Einführung in die Softwaretechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40090</td>
<td>Systemkonzepte und -programmierung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 10220 Modellierung


4. SWS: 4  7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Leymann

9. Dozenten: Bernhard Mitschang
Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011,
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Ergänzungsmodule Informatik --> Hauptfach Informatik --> Hauptfach

11. Empfohlene Voraussetzungen:
• Modul 10280 Programmierung und Software-Entwicklung
• Modul 12060 Datenstrukturen und Algorithmen
• Modul 40090 Systemkonzepte und -programmierung

12. Lernziele:

13. Inhalt:
• Entity-Relationship Modell und komplexe Objekte
• Relationenmodell und Relationenalgebra, Überblick SQL - Transformationen von ER nach Relationen, Normalisierung
• XML, DTD, XML-Schema, Info-Set, Namensräume
• Metamodelle und Repository - RDF, RDF-S und Ontologien
• UML
• Petri Netze, Workflownetze
• BPMN

14. Literatur:
• M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, UML @ Work
• Objektorientierte Modellierung mit UML2, 2005.
• B. Silver, BPMN Method and Style, Cody-Cassidy Press 2009.

15. Lehrveranstaltungen und -formen:
• 102201 Vorlesung Modellierung
• 102202 Übung Modellierung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 10221 Modellierung (PL), Schriftlich, 90 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Architektur von Anwendungssystemen Datenbanken und Informationssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Architektur von Anwendungssystemen</td>
</tr>
</tbody>
</table>
## Modul: 11890 Algorithmen und Berechenbarkeit

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>050420020</th>
<th>Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Stefan Funke</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td>Ulrich Hertrampf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volker Diekert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stefan Funke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Ergänzungsmodul Informatik --&gt; Hauptfach Informatik --&gt; Hauptfach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Vorlesungen aus dem 1. und 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Berechenbarkeit vs. Unberechenbarkeit, Church'sche These, NP-Vollständigkeit, PSPACE-vollständige Algorithmen (QBF). Entwurfsstrategien: Teile und Herrsche, gierig (greedy), Dynamisches Programmieren, Randomisierte Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Volker Diekert: Entwurf und Analyse effizienter Algorithmen (Vorlesungsskript), 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 118901 Vorlesung Algorithmen und Berechenbarkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 118902 Übung Algorithmen und Berechenbarkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 11891 Algorithmen und Berechenbarkeit (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich, 30 Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorleistung: Übungsschein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Algorithmik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Algorithmik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Modul: 17210 Einführung in die Softwaretechnik**

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520015</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stefan Wagner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Wagner</td>
</tr>
</tbody>
</table>

**10. Zuordnung zum Curriculum in diesem Studiengang:**
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
- → Ergänzungsmodul Informatik --> Hauptfach Informatik --> Hauptfach
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
- → Vorgezogene Master-Module

**11. Empfohlene Voraussetzungen:**
- Modul 10280 Programmierung und Software-Entwicklung
- Modul 12060 Datenstrukturen und Algorithmen
- sowie entsprechende Programmiererfahrung

**12. Lernziele:**
Die Veranstaltung liefert einen ersten Einblick in die Softwaretechnik. Sie ist abgestimmt auf die Software-Qualität im 1. und Programmentwicklung im 3. Semester.

Die Teilnehmer kennen die Grundbegriffe der Softwaretechnik und haben wichtige Techniken des Softwareprojekt-Managements und der Software-Entwicklung erlernt. Sie kennen Scrum als eine konkrete Vorgehensweise zur Softwareentwicklung.

**13. Inhalt:**
Die Vorlesung behandelt technische und andere Aspekte der Softwarebearbeitung, wie sie in der Praxis stattfindet. Die einzelnen Themen sind:
- Abgrenzung und Motivation des Software Engineering
- Vorgehensmodelle, agiles Vorgehen, Scrum
- Software-Management
- Software-Prüfung und Qualitätssicherung
- Methoden, Sprachen und Werkzeuge für die einzelnen Phasen: Spezifikation, Grobentwurf, Feinentwurf, Implementierung, Test

**14. Literatur:**
- Ludewig, Lichter: Software Engineering. dpunkt-Verlag, Heidelberg. 2. Aufl. 2010
- Pfleeger, Atlee: Software Engineering, Pearson, 2010
- Rubin: Essential Scrum. Addison-Wesley, 2013

**15. Lehrveranstaltungen und -formen:**
- 172102 Übung Einführung in die Softwaretechnik
- 172101 Vorlesung Einführung in die Softwaretechnik

**16. Abschätzung Arbeitsaufwand:**
- Präsenztunden: 42 h
- Eigenstudiumstunden: 138 h
- Gesamtstunden: 180 h

**17. Prüfungsnummer/n und -name:**
- 17211 Einführung in die Softwaretechnik (PL), Schriftlich, 60 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich, 30 Min.
- [17211] Einführung in die Softwaretechnik (PL), schriftliche Prüfung, 60 Min., Gewicht: 1.0, [Prüfungsvorleistung] Vorleistung (USL-V), schriftlich, eventuell mündlich, Hausaufgaben

**18. Grundlage für ... :**
- Modul Software Engineering - Modul Software-Praktikum

Stand: 19. Oktober 2017
19. Medienform:

- Folien am Beamer unterstützt durch Tafel und Overhead
- Dokumente, Links und Diskussionsforum in ILIAS

20. Angeboten von: Software Engineering
## Modul: 40090 Systemkonzepte und -programmierung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Kurt Rothermel
9. Dozenten: Kurt Rothermel, Frank Dürr

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester, Ergänzungsmodule Informatik --> Hauptfach Informatik --> Hauptfach

11. Empfohlene Voraussetzungen:
- Modul 10280 Programmierung und Software-Entwicklung
- Modul 12060 Datenstrukturen und Algorithmen

12. Lernziele:
- Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen
- Verstehen systemnaher Konzepte und Mechanismen
- Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.
- Kann systemnahe Software entwerfen und implementieren.
- Kann nebenläufige Programme entwickeln
- Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.

13. Inhalt:
- Grundlegende Systemstrukturen - und organisationen
  - Multitaskingsystem
  - Multiprozessorsystem
  - Verteiltes System Modellierung und Analyse nebenläufiger Programme
  - Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm
  - Korrektheit- und Leitungskriterien Betriebssystemkonzepte
  - Organisation von Betriebssystemen
  - Prozesse und Threads
  - Eingabe/Ausgabe
  - Scheduling Konzepte zur Synchronisation über gemeinsamen Speicher
  - Synchronisationsprobleme und -lösungen
  - Synchronisationswerkzeuge: Semaphore, Monitor Konzepte zur Kommunikation und Synchronisation mittels Nachrichtenübertragung
  - Taxonomie: Kommunikation und Synchronisation
  - Nachrichten als Kommunikationskonzept
  - Höhere Kommunikationskonzepte Basisalgorithmen für Verteilte Systeme
  - Erkennung globaler Eigenschaften
  - Schnappschussproblem
  - Konsistenter globaler Zustand
  - Verteilte Terminierung Praktische nebenläufige Programmierung in Java
  - Threads und Synchronisation
  - Socketschnittstelle
  - RMI Programmierung
14. Literatur: Literatur, siehe Webseite zur Veranstaltung

15. Lehrveranstaltungen und -formen:
   • 400901 Vorlesung Systemkonzepte und -programmierung
   • 400902 Übung Systemkonzepte und -programmierung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
   • 40091 Systemkonzepte und -programmierung (PL), Schriftlich, 120 Min., Gewichtung: 1
   • V Vorleistung (USL-V), Schriftlich oder Mündlich
   [40091] Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 120 Min., Gewicht: 1.0 [Prüfungsvorleistung] Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Verteilte Systeme
300 Wahlpflichtfach

Zugeordnete Module:

301  Wahlpflichtfach Mathematik
302  Wahlpflichtfach Physik
303  Wahlpflichtfach Chemie
304  Wahlpflichtfach Deutsch
305  Wahlpflichtfach Englisch
306  Wahlpflichtfach Ethik
307  Wahlpflichtfach Politikwissenschaft
308  Wahlpflichtfach Sport
309  Wahlpflichtfach Evangelische Theologie
310  Wahlpflichtfach Katholische Theologie
311  Wahlpflichtfach Wirtschaftswissenschaften
312  Wahlpflichtfach Informatik, Grundlagen Informatik
313  Wahlpflichtfach Bautechnik
314  Wahlpflichtfach Elektrotechnik
315  Wahlpflichtfach Maschinenbau
301 Wahlpflichtfach Mathematik

Zugeordnete Module:
- 11760 Analysis 1
- 11770 Analysis 2
- 11780 Lineare Algebra und Analytische Geometrie 1
- 11790 Lineare Algebra und Analytische Geometrie 2
- 55850 Proseminar Mathematik
# Modul: 11760 Analysis 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>8</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Jürgen Pöschel</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Marcel Griesemer</td>
</tr>
<tr>
<td></td>
<td>Peter Lesky</td>
</tr>
<tr>
<td></td>
<td>Jürgen Pöschel</td>
</tr>
<tr>
<td></td>
<td>Guido Schneider</td>
</tr>
<tr>
<td></td>
<td>Timo Weidl</td>
</tr>
</tbody>
</table>

|                                                   | B.Sc. Technikpädagogik, PO 199-2011, 1. Semester → Vorgezogene Master-Module |

| 11. Empfohlene Voraussetzungen: | keine |

|               | • Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen aus der Analysis.  
|               | • Abstraktion und mathematische Argumentation. |

|            | Stetige Funktionen: Offene, abgeschlossene und kompakte Intervalle. Stetige Funktionen auf Intervallen, der Zwischenwertsatz, und der Satz vom Maximum.  
|            | Elementare Funktionen: Polynome und rationale Funktionen, Exponentialfunktion und Logarithmus, trigonometrische und hyperbolische Funktionen.  
|            | Weitere, ebenfalls prüfungsrelevante Themen sind abhängig vom Dozenten. |


| 15. Lehrveranstaltungen und -formen: | • 117602 Vortragsübungen und Übungen zur Vorlesung Analysis 1  
|                                    | • 117601 Vorlesung Analysis 1 |

| 16. Abschätzung Arbeitsaufwand: | Insgesamt 270 h, die sich wie folgt verteilen: Präsenzstunden: 75 h Selbststudium: 195 h |

| 17. Prüfungsnummer/n und -name: | • V Vorleistung (USL-V), Schriftlich oder Mündlich  
<p>|                                | • 11761 Analysis 1 (PL), Schriftlich, 120 Min., Gewichtung: 1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td>Analysis 2</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Analysis</td>
</tr>
</tbody>
</table>
# Modul: 11770 Analysis 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>11770</td>
</tr>
<tr>
<td>6. Modul:</td>
<td>Analysis 2</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modul:</td>
<td>11770</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Pöschel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Marcel Griesemer, Peter Lesky, Jürgen Pöschel, Guido Schneider, Timo Weidl</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Analysis 1, Lineare Algebra 1</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Sichere Kenntnis und kritischer sowie kreativer Umgang mit den theoretischen Grundlagen und den Methoden der Differential- und Integralgleichung in einer und mehreren Variablen. &lt;br&gt;• Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen aus der Analysis. &lt;br&gt;• Verständnis für die Anwendung der Analysis in Modellen der Ingenieur- und Naturwissenschaften. &lt;br&gt;• Selbständiges Erarbeiten von mathematischen Sachverhalten.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 117701 Vorlesung Analysis 2 &lt;br&gt;• 117702 Vortragsübungen und Übungen zur Vorlesung Analysis 2</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Insgesamt 270 h, die sich wie folgt zusammensetzen: Präsenzstunden: 60 h Selbststudium: 210 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 11771 Analysis 2 (PL), Schriftlich, 120 Min., Gewichtung: 1 &lt;br&gt;• V Vorleistung (USL-V), Schriftlich oder Mündlich</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
</tbody>
</table>
19. Medienform:

20. Angeboten von: Analysis
Modul: 11780 Lineare Algebra und Analytische Geometrie 1

4. SWS: 7  7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Steffen König

10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   ➞ Wahlpflichtfach Mathematik → Wahlpflichtfach
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
   • Selbständiges Lösen mathematischer Probleme
   • Fähigkeit zur Abstraktion und mathematischen Argumentation, präzises Formulieren und Aufschreiben
   • Sicherer Umgang mit Vektorraumstrukturen, linearen Abbildungen, Matrizen und linearen Gleichungssystemen, sowie selbständiges Lösen mathematischer Probleme dieses Themenkreises

13. Inhalt:
   • Aussagenlogik, Beweismethoden, Mengen, Relationen und Abbildungen
   • Matrizenrechnung, lineare Gleichungssysteme, Gauss Algorithmus
   • algebraische Grundstrukturen, Vektorräume, lineare Unabhängigkeit, Erzeugendensysteme, Basen, lineare Abbildungen, Dimensionsformeln
   • Geometrische Beispiele in Ebene und Raum
   • Determinante, Eigenwerte, Eigenvektoren

14. Literatur:
   Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
   • 117801 Vorlesung Lineare Algebra und Analytische Geometrie 1 (LAAG 1)
   • 117802 Übungen zur Vorlesung (LAAG 1)

16. Abschätzung Arbeitsaufwand: Insgesamt 270 h, die sich wie folgt ergeben:
   Präsenzstunden: 73,5 h
   Selbststudium: 196,5 h

17. Prüfungsnummer/n und -name:
   • 11781 Lineare Algebra und Analytische Geometrie 1 (PL), Schriftlich, 120 Min., Gewichtung: 1
   • Vorleistung (USL-V), Schriftlich oder Mündlich
   Vorleistung: Übungsschein und Scheinklausur

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Algebra und Zahlentheorie
Modul: 11790 Lineare Algebra und Analytische Geometrie 2

2. Modulkürzel: 080100002  
5. Modulldauer: Einsemestrig

3. Leistungspunkte: 9 LP  
6. Turnus: Sommersemester

4. SWS: 7  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Steffen König

10. Zuordnung zum Curriculum in diesem Studiengang: 
B.Sc. Technikpädagogik, PO 199-2011, ➔ Vorgezogene Master-Module 
B.Sc. Technikpädagogik, PO 199-2011, 2. Semester ➔ Wahlpflichtfach Mathematik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: LAAG 1

12. Lernziele: 
• Selbständiges Lösen mathematischer Probleme 
• Fähigkeit zur Abstraktion und mathematischen Argumentation, präzises Formulieren und Aufschreiben 
• Sicherer Umgang mit elementaren und vertieften Konzepten und Methoden der linearen Algebra und analytischen Geometrie

13. Inhalt: 
• Determinante, Eigenwerte und Eigenvektoren 
• Normalformen von Endomorphismen, Hauptaumzerlegung 
• Dualräume 
• Skalarprodukte, Gram-Schmidt Orthogonalisierung, euklidische/unitäre Räume


15. Lehrveranstaltungen und -formen: 
• 117902 Übungen zur Vorlesung LAAG 2 
• 117901 Vorlesung Lineare Algebra und Analytische Geometrie 2 (LAAG 2)

16. Abschätzung Arbeitsaufwand: Insgesamt 270 h, die sich wie folgt ergeben: 
Präsenzstunden: 73,5 h 
Selbststudiumszeit: 196,5 h

17. Prüfungsnummer/n und -name: 
• 11791 Lineare Algebra und Analytische Geometrie 2 (PL), Schriftlich, 120 Min., Gewichtung: 1 
• V Vorleistung (USL-V), Schriftlich oder Mündlich 
Übungsschein und Scheinklausur

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Algebra und Zahlentheorie

Stand: 19. Oktober 2017  Seite 144 von 444
## Modul: 55850 Proseminar Mathematik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Timo Weidl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Je nach Proseminar Kenntnisse in Linearer Algebra und Analytischer Geometrie1 und 2, Analysis 1 und 2 und/oder Angewandter Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Fähigkeit zur Erarbeitung der Inhalte eines mathematischen Textes. • Fähigkeit zum freien Vortrag über den Inhalt. • Stärkung der Diskussionsfähigkei...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die Themen der Lehrveranstaltungen Proseminar und Hauptseminar werden zu allen am Fachbereich vertretenen Themenbereichen vergeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Wird zu jeder Lehrveranstaltung einzeln bekannt gegeben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>55851 Proseminar Mathematik (BSL), Mündlich, 30 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Analysis und Mathematische Physik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
302 Wahlpflichtfach Physik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>27650</td>
<td>Mathematische Methoden der Physik</td>
</tr>
<tr>
<td>27660</td>
<td>Grundlagen der Experimentalphysik für Lehramt I + II</td>
</tr>
<tr>
<td>27670</td>
<td>Grundlagen der Experimentalphysik für Lehramt III</td>
</tr>
<tr>
<td>27680</td>
<td>Physikalisches Praktikum für Lehramt I</td>
</tr>
<tr>
<td>27690</td>
<td>Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik</td>
</tr>
</tbody>
</table>
### Modul: 27650 Mathematische Methoden der Physik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081100301</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Johannes Roth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Holger Cartarius, Johannes Roth, Hans Peter Büchler</td>
</tr>
</tbody>
</table>
  → Wahlpflichtfach Physik  
  → Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | Die Studierenden verfügen über die mathematischen Methoden, welche zur Lösung von Aufgaben in der Mechanik und Elektrodynamik benötigt werden und können diese anwenden. |
| 13. Inhalt: | Gewöhnliche Differentialgleichungen  
  Lineare Algebra  
  Vektoranalyse |
| 14. Literatur: | Dennery + Krzywicki, Mathematics for Physicists, Dover  
  Arfken, Mathematical Methods for Physicists, Academic Press |
| 15. Lehrveranstaltungen und -formen: | • 276501 Vorlesung Mathematische Methoden der Physik  
  • 276502 Übung Mathematische Methoden der Physik |
| 16. Abschätzung Arbeitsaufwand: | **Vorlesung**  
  Präsenzstunden: 2,25 h (3 SWS)*14 Wochen 31,5h  
  Vor- u. Nachbereitung: 2 h pro Präsenzstunde 63,0h  
  **Übungen**  
  Präsenzstunden: 0,75 h (1 SWS)*14 Wochen 10,5h  
  Vor- u. Nachbereitung: 4 h pro Präsenzstunde 42,0h  
  **Prüfung incl. Vorbereitung**  
  33h  
  **Gesamt:** 180h |
| 17. Prüfungsnummer/n und -name: | • 27651 Mathematische Methoden der Physik (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1  
  • V Vorleistung (USL-V), Schriftlich oder Mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafelanschrieb, z.T. Handouts |
| 20. Angeboten von: | Theoretische Physik |
Modul: 27660 Grundlagen der Experimentalphysik für Lehramt I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Clemens Bechinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Martin Dressel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester Wahlpflichtfach Physik → Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td><strong>WiSe: Mechanik und Wärmelehre:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mechanik starrer Körper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mechanik deformierbarer Körper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schwingungen und Wellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Thermodynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>SoSe: Thermodynamik und Elektrodynamik:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thermodynamik (Fortsetzung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mikroskopische Thermodynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrostatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Materie im elektrischen Feld</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stationäre Ladungsströme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Magnetostatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Induktion, zeitlich veränderliche Felder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Materie im Magnetfeld</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wechselstrom</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maxwellgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektromagnetische Wellen im Vakuum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Demtröder, Experimentalphysik 1, Mechanik und Wärme, und Experimentalphysik 2, Elektrizität und Optik, Springer Verlag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 1, Mechanik, Akustik, Wärme, und Band 2, Elektromagnetismus, De Gruyter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feynman, Leighton, Sands, Vorlesungen über Physik, Band 1 und Band 2, Oldenbourg Verlag (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halliday, Resnick, Walker, Physik, Wiley-VCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerthsen, Physik, Springer Verlag,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daniel, Physik 1 und 2, de Gruyter, Berlin (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>276601 Vorlesung Teil I - Mechanik und Wärmelehre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276604 Übung Teil II - Elektrodynamik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276603 Vorlesung Teil II - Elektrodynamik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 126 h
Selbststudium: 234 h
**Summe: 360 h**

17. Prüfungsnummer/n und -name:
- 27661 Grundlagen der Experimentalphysik für Lehramt I Mechanik und Wärmelehre (LBP), Schriftlich, 90 Min., Gewichtung: 1
- 27662 Grundlagen der Experimentalphysik für Lehramt II Elektrodynamik (LBP), Schriftlich, 90 Min., Gewichtung: 1
Lehrveranstaltungsbegleitende Prüfung nach Teil I (27661) bzw. Teil II (27662) der Vorlesung.
Vorleistung: Erfolgreiche Teilnahme (Schein) an den Übungen zum jeweiligen Teil der Vorlesung.

18. Grundlage für ... :

19. Medienform: Demonstrationsexperimente, Projektion, Overhead, Tafel

20. Angeboten von: Experimentalphysik II
## Modul: 27670 Grundlagen der Experimentalphysik für Lehramt III

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Tilman Pfau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Martin Dressel, Clemens Bechinger, Jörg Wrachtrup, Harald Gießen, Tilman Pfau, Gert Denninger, Peter Michler, Ulrich Stroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul Grundlagen der Experimentalphysik für Lehramt I+II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Elektromagnetische Wellen im Medium  
• Geometrische Optik  
• Wellenoptik  
• Welle und Teilchen  
• Laserprinzip und Lasertypen |
| 14. Literatur: | • Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer Verlag  
• Halliday, Resnick, Walker, Physik, Wiley-VCH  
• Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus, Band, Optik, De Gruyter Verlag  
• Paus, Physik in Experimenten und Beispielen, Hanser Verlag  
• Gerthsen, Physik, Springer Verlag |
| 15. Lehrveranstaltungen und -formen: | • 276701 Vorlesung Grundlagen der Experimentalphysik III: Optik  
• 276702 Übung Grundlagen der Experimentalphysik III: Optik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63 h  
Selbststudium: 117h  
**Summe: 180 h** |
| 17. Prüfungsnummer/n und -name: | 27671 Grundlagen der Experimentalphysik für Lehramt III (LBP), Schriftlich oder Mündlich, Gewichtung: 1  
lehrveranstaltungsbegleitende Prüfung Art und Umfang der LBP wird vom Dozenten zu Beginn der Veranstaltung bekannt gegeben. |
| 18. Grundlage für ... : | |
| 19. Medienform: | Overhead, Projektion, Tafel, Demonstration |
20. Angeboten von: Photonik
### Modul: 27680 Physikalisches Praktikum für Lehramt I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081100304</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Arthur Grupp</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Arthur Grupp</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul Grundlagen der Experimentalphysik I + II: Teil I (Mechanik und Wärmelehre)</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Gebiete der Experimentalphysik: Mechanik, Wärmelehre, Strömungslehre, Akustik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 276801 Physikalisches Praktikum LA I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 30 h Selbststudium: 150 h Summe: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>• 27681 Physikalisches Praktikum für Lehramt I (LBP), Schriftlich oder Mündlich, Gewichtung: 1 • 27682 Physikalisches Praktikum für Lehramt I, 10 Versuche (USL), Schriftlich oder Mündlich, Gewichtung: 1 lehrveranstaltungsbegleitende Prüfung: schriftliche Ausarbeitung der Versuche und Kolloquium</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td>Physikalisches Praktikum für Lehramt II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von: 2. Physikalisches Institut
Modul: 27690 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik

4. SWS: 6  7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Johannes Roth
9. Dozenten: Jörg Main Johannes Roth Günter Wunner
11. Empfohlene Voraussetzungen: Modul: Mathematische Methoden der Physik
13. Inhalt:
   **Mechanik:**
   • Newtonsche Gleichungen
   • Zwangsbedingungen und generalisierte Koordinaten
   • Variationsprinzipien
   • Lagrangesche und Hamiltonsche Gleichungen
   • Zentralkraftprobleme
   **Quantenmechanik:**
   • Welle-Teilchen Dualismus
   • Schrödingergleichung
   • Freies Teilchen, Wellenpakete
   • Eindimensionale Potentiale
   • Harmonischer Oszillator
   • Coulombproblem
14. Literatur:
   • Goldstein, Klassische Mechanik, AULA-Verlag
   • Landau-Lifshitz, Mechanik, Akademie Verlag
   • Cohen-Tannoudji, Quantenmechanik, 2 Bände, Gruyter Verlag
   • Messiah, Quantenmechanik I und II, Gruyter Verlag
   • Landau-Lifshitz, Lehrbuch der Theoretischen Physik, Band III, Deutsch Verlag
15. Lehrveranstaltungen und -formen:
   • 276901 Vorlesung Grundlagen der Theoretischen Physik für Lehramt I: Mechanik/Quantenmechanik
   • 276902 Übung Grundlagen der Theoretischen Physik für Lehramt I: Mechanik/Quantenmechanik
16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 63 h
   Selbststudium: 207 h
   Summe: 270 h
17. Prüfungsnummer/n und -name: 27691 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik (LBP), Schriftlich, 120 Min., Gewichtung: 1
Lehrveranstaltungsbegleitende Prüfung, Art und Umfang der LBP wird vom Dozenten zu Beginn der Veranstaltung bekannt gegeben.

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Theoretische Physik</td>
</tr>
</tbody>
</table>
303 Wahlpflichtfach Chemie

Zugeordnete Module:  
10230 Einführung in die Chemie  
10340 Praktische Einführung in die Chemie  
10380 Grundlagen der Anorganischen und Analytischen Chemie  
10410 Instrumentelle Analytik  
69530 Rechtskunde und Toxikologie für Chemiker
Modul: 10230 Einführung in die Chemie

2. Modulkürzel: 030230001
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester
4. SWS: 9
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Thomas Schleid
9. Dozenten: Prof. Dr. Peer Fischer
              Prof. Dr. Dr. Clemens Richert
              Prof. Dr. Thomas Schleid

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011,
    → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → Wahlpflichtfach Chemie --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine


13. Inhalt: Physikalische Chemie:
    Chemische Thermodynamik: Gleichgewicht, Arbeit und Wärme,
    Temperatur, Wärmeaustausch, Wärmekapazität, isotherme,
    adiabatische Prozesse, Intensive, extensive Größen, ideales
    Gasgesetz, Mischungen, Partialdruck, Molendruck, 1. HS,
    Bildungs- und Reaktionsenthalpie, Heßscher Satz, 2. HS,
    Entropie und freie Enthalpie, Statistische Thermodynamik :
    Wahrscheinlichkeit und Verteilungsfunktion, Boltzmann-
    Statistik, Innere Energie und Zustandssumme, Entropie,
    Quantentheorie :Atombau, Welle-Teilchen-Dualismus,
    atomare Spektrallinien, Schrödinger-Gleichung, Teilchen
    im Kasten, Teilchen auf einer Oberfläche, Chemische
    Kinetik :Reaktionsordnung, Geschwindigkeitsgesetze, kinetische
    Herleitung des Massenwirkungsgesetzes, Temperaturabhängigkeit
    der Reaktionsgeschwindigkeit, Katalyse, Elektrochemie:
    Ionenbeweglichkeit, Hydratation von Ionen, Leitfähigkeit,
    Kohlrauschsches Quadratwurzelgesetz, Debye-Hückel-Onsager-
    Theorie, Ostwaldsches Verdünnungsgesetz, Bestimmung der
    Grenzleitfähigkeit, Überführungszahlen.
    Anorganische Chemie:
    Periodisches System der Elemente: Edelgaskonfiguration,
    Gruppen, Perioden und Blöcke, Periodizität der physikalischen
    und chemischen Eigenschaften von Atomen und Ionen,
    Elektronenaktivität.
    Ionische und molekulaire Verbindungen: Grundprinzipien von
    ionischen und Elektronenpaarbindungen, Lewis-Strukturformeln,
    Resonanzstrukturen, Metalle, Halbleiter und Isolatoren, chemische
    Strukturmodelle (VSEPR, LCAO-MO in 2-atomigen Molekülen mit
    Bindungen), Ladungsverteilung in Molekülen, Bindungsstärke und
    Bindungslänge, intermolekulare Wechselwirkungen, experimentelle
    Aspekte von Strukturbestimmungen, Molekülsymmetrie.
    Stöchiometrische Grundgesetze: Erhalt von Masse und Ladung,
    Gesetze der konstanten und der multiplen Proportionen,

Organische Chemie:

14. Literatur:

**Physikalische Chemie:**

**Anorganische Chemie:**

**Organische Chemie:**

15. Lehrveranstaltungen und -formen:
- 102302 Seminar / Übung Einführung in die Chemie
- 102301 Vorlesung Einführung in die Chemie

16. Abschätzung Arbeitsaufwand:

**Vorlesung**
- Präsenztunden: 6 SWS * 14 Wochen = 84 h
- Vor- und Nachbereitung: 1,5 h pro Präsenzstunde = 126 h

**Übung/Seminar**
- Präsenztunden: 4 SWS * 14 Wochen = 56 h
- Vor- und Nachbereitung: 1,25 h pro Präsenzstunde = 70 h
- 2 Übungsklausuren a 2 h = 4 h

**Abschlussprüfung incl. Vorbereitung**: 20 h
**Summe**: 360 h
| 17. Prüfungsnummer/n und -name: | • 10231 Einführung in die Chemie (PL), Schriftlich, 120 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Schriftlich, 120 Min. Prüfungsvorleistung: Bestehen der Übungsklausuren |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Grundlagen der Anorganischen und Analytischen Chemie; Thermodynamik, Elektrochemie und Kinetik; Organische Chemie I; Biochemie</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Anorganische Chemie III</td>
</tr>
</tbody>
</table>
Modul: 10340 Praktische Einführung in die Chemie

2. Modulkürzel: 030230002
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 9
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Thomas Schleid
9. Dozenten: Ingo Hartenbach

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
➞ Wahlpflichtfach Chemie --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

13. Inhalt:
Atombau und Periodisches System der Elemente: Gasgesetz, Molmassenbestimmung, Teilchen im Kasten, Spektroskopie, Periodensystem der Elemente, Haupt- und Nebengruppen, Bindungstheorie und Physikalische Eigenschaften (7 Versuche)
Chemisches Gleichgewicht, Thermodynamik und Reaktionskinetik: Massenwirkungsgesetz, Säure-Base-Gleichgewichte, Fällungs- und Löslichkeitsgleichgewichte, Redox-Gleichgewichte, Komplexe, Kalorimetrie, Reaktionskinetik (7 Versuche)
Organische Chemie und Arbeitstechniken: Destillation, Sublimation, Chromatographie, Extraktion, Umkristallisation, Synthese einfacher Präparate, Sicheres Arbeiten im Labor (7 Versuche)
Das Praktikum wird von einem wöchentlichen 2 stündigen Seminar begleitet.

14. Literatur:
Physikalische Chemie:

Anorganische Chemie:

Organische Chemie:
• K. Schwetlick, Organikum, 23. Aufl. 2009

15. Lehrveranstaltungen und -formen:
• 103401 Praktikum Praktische Einführung in die Chemie (WiSe)
• 103402 Praktikum Praktische Einführung in die Chemie (SoSe)
16. Abschätzung Arbeitsaufwand:

Praktikum:
21 Praktikumsnachmittage a, 4 h = 84 h
Vorbereitung u. Protokolle: 3,5 h pro Praktikumstag = 73,5 h

Seminar zur Unterstützung der Vor- und Nachbereitung der Praktikumsnachmittage:
Präsenzstunden: 9 Seminartage a, 2 h = 18 h
Vor- und Nachbereitung 0,5 h pro Seminartag = 4,5 h

**Summe: 180 h**

17. Prüfungsnummer/n und -name:
10341  Praktische Einführung in die Chemie (USL), Schriftlich oder Mündlich, Gewichtung: 1
Testat aller Versuchsprotokolle

18. Grundlage für ...:
Grundlagen der Anorganischen und Analytischen Chemie
Thermodynamik, Elektrochemie und Kinetik Organische Chemie I

19. Medienform:

20. Angeboten von:
Anorganische Chemie III
Modul: 10380 Grundlagen der Anorganischen und Analytischen Chemie

2. Modulkürzel: 030201004  
5. Modulduer: Einsemestrig

3. Leistungspunkte: 12 LP  
6. Turnus: Sommersemester

4. SWS: 14  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dietrich Gudat

9. Dozenten: Dietrich Gudat  
Björn Blaschkowski  
Ingo Hartenbach

10. Zuordnung zum Curriculum in diesem Studiengang: B.Sc. Technikpädagogik, PO 199-2011,  
➞ Vorgezogene Master-Module  
B.Sc. Technikpädagogik, PO 199-2011, 2. Semester  
➞ Wahlpflichtfach Chemie --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Einführung in die Chemie  
Praktische Einführung in die Chemie

12. Lernziele: Die Studierenden

- können ausgehend vom Periodensystem die stofflichen Eigenschaften wichtiger Elemente und Verbindungen ableiten
- können Trends in chemischen und physikalischen Eigenschaften erfassen und abschätzen
- können anorganische Strukturmodelle, Reaktionen und Reaktionsmechanismen verstehen
- haben anhand spezifischer Nachweisreaktionen und analytischer Trenn- und Bestimmungsmethoden praktische Erfahrung in der Durchführung von Reaktionen in der anorganischen Chemie gewonnen

13. Inhalt:  
- Vorkommen, Herstellung, Strukturen der Haupt- und Nebengruppenlelemente, f-Block-Elemente und wichtiger Verbindungsklassen dieser Elemente
- Struktur-Eigenschaftsbeziehungen
- Herstellung und praktische Verwendung von Elementen und Verbindungen
- Charakteristische Reaktionsmuster von Elementen und wichtigen Verbindungsklassen
- Grundlagen der analytischen Chemie
- Nasschemische Analytik

14. Literatur:  
zur Vorlesung:  
C. E. Housecroft, A. G. Sharpe: Anorganische Chemie  
E. Riedel, C. Janiak: Anorganische Chemie  
zum Praktikum:  
Jander - Blasius, Einführung in das Anorganische Chemische Praktikum

weiterführende Literatur:  
Holleman-Wiberg, Lehrbuch der Anorganischen Chemie  
J. E. Huheey, E. Keiter, R. Keiter: Anorganische Chemie - Prinzipien von Struktur und Reaktivität

15. Lehrveranstaltungen und -formen:  
- 103802 Übung Grundlagen der Anorganischen und Analytischen Chemie
• 103803 Seminar Grundlagen der Anorganischen und Analytischen Chemie
• 103804 Praktikum Grundlagen der Anorganischen und Analytischen Chemie
• 103801 Experimentalvorlesung Grundlagen der Anorganischen und Analytischen Chemie

16. Abschätzung Arbeitsaufwand:

**Experimentalvorlesung**
Präsenzstd.: 5 SWS * 14 Wochen = 70 h
Vor- und Nachbereitung 1,5 h/Präsenzstd. = 105 h

**Übung zur Vorlesung**
Präsenzstd.: 2 SWS * 6 Wochen = 12 h
Vor- und Nachbereitung 2 h/Präsenzstd. = 24 h

**Seminar**
Präsenzstd.: 2 SWS * 8 Wochen = 16 h
Vor- und Nachbereitung 1 h/Präsenzstd. = 16 h

**Praktikum**
Präsenzstd.: 24 Tage * 4 h = 96 h
Vor- und Nachbereitung 1 h/Praktikumstag = 24 h

Summe 363 h

17. Prüfungsnummer/n und -name:

• 10381 Grundlagen der Anorganischen und Analytischen Chemie (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Sonstige

18. Grundlage für ... : Instrumentelle Analytik Vertiefte Anorganische Chemie

19. Medienform:

20. Angeboten von: Anorganische Chemie
## Modul: 10410 Instrumentelle Analytik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>7</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Dietrich Gudat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 3. Semester → Wahlpflichtfach Chemie --&gt; Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Anorganischen und Analytischen Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden können</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• wichtige spektroskopische, spektrometrische und elektrochemische Bestimmungsmethoden anwenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• chromatographische Trennmethoden anwenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Konstitution einfach aufgebauter Verbindungen aus spektroskopischen Daten ableiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Spektroskopische und elektrochemische Bestimmungsverfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chromatographische Trennverfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Konstitutionsermittlung aus spektroskopischen Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M. Reichenbacher, J. Popp, Strukturanalytik organischer und anorganischer Verbindungen: Ein Übungsbuch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• D.A. Skoog, J.J. Leary, Instrumentelle Analytik: Grundlagen, Geräte, Anwendungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 104102 Seminar Instrumentelle Analytik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 104103 Gruppenübung Instrumentelle Analytik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 104104 Praktikum Instrumentelle Analytik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 104101 Experimentalvorlesung Instrumentelle Analytik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td><strong>Vorlesung</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzstd.: 1 SWS * 14 Wochen = 14 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung 2 h/Präsenzstd. = 28 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Seminar</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzstd.: 2 SWS * 13 Wochen = 26 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung 1,5 h/Präsenzstd. = 39 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Gruppenübung</strong> (Präsenzarbeit in Kleingruppen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzstd.: 22 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung 0.5 h/Präsenzstd. = 11 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Praktikum</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzstd.: 8 Tage * 4 h = 32 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vorbereitung und Protokolle 2 h/Praktikumstag = 16 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Summe 188 h</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 17. Prüfungsnummer/n und -name:          | • 10411 Instrumentelle Analytik (USL), Sonstige, Gewichtung: 1  
                                           | • V Vorleistung (USL-V), Sonstige  
                                           | alle Protokolle und Übungsaufgabe testiert, Übungsklausuren 1  
                                           | und 2 von je 60 Min bestanden  |
|-----------------------------------------|---------------------------------------------------------------|
| 18. Grundlage für ... :                 |                                                               |
| 19. Medienform:                         |                                                               |
| 20. Angeboten von:                      | Anorganische Chemie                                          |
Modul: 69530 Rechtskunde und Toxikologie für Chemiker

2. Modulkürzel: 030200009  
5. Modulsdauer: Einsemestrig

3. Leistungspunkte: 3 LP  
6. Turnus: Wintersemester

4. SWS: 2  
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Isabella Waldner

9. Dozenten: Holger Barth, Prof. Dr. rer. nat.  
Thomas Krappel, Dr. iur.

B.Sc. Technikpädagogik, PO 199-2011, ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden können die Sachkunde für das Inverkehrbringen von gefährlichen Stoffen und Zubereitungen gemäß § 11 Abs. 1 Nr. 1 der Chemikalienverbots-Verordnung nachweisen. Als zukünftige Entscheidungsträger und Verantwortliche für Sicherheit und Gesundheitsschutz haben sie das zur Wahrnehmung ihrer Verantwortung erforderliche Grundwissen erworben.


15. Lehrveranstaltungen und -formen:
   • 695301 Vorlesung Rechtskunde und Toxikologie für Chemiker

16. Abschätzung Arbeitsaufwand:
   Vorlesung als Blockveranstaltung
   Präsenz: 28 h (2 SWS)
   Vor- und Nachbereitung: 1,5 h pro Präsenzstunde 42 h
   Abschlussklausur incl. Vorbereitung 20 h
   Summe: 90 h

17. Prüfungsnummer/n und -name:
   69531 Rechtskunde und Toxikologie für Chemiker (USL), Schriftlich,
   90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Chemie
304 Wahlpflichtfach Deutsch

Zugeordnete Module:
- 19500  Einführung in die Literaturwissenschaft
- 19530  Einführung in die Linguistik
- 19540  Literatur im kulturgeschichtlichen Kontext
- 19560  Grammatische Analyse (Kernmodul 3)
## Modul: 19500 Einführung in die Literaturwissenschaft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091140001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulbeginn:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Andrea Albrecht</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester ➔ Wahlpflichtfach Deutsch ➔ Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Einführung befähigt dazu:  
- lyrische, dramatische und erzählende Texte zu verstehen, zu unterscheiden und einzuordnen  
- wissenschaftliche Texte zu ermitteln, auszuwählen und kritisch mit ihnen umzugehen  
- schriftliche Arbeiten nach wissenschaftlichen Standards zu verfassen |
| 14. Literatur: | Zur Anschaffung empfohlene Literatur:  
- Dieter Burdorf: Einführung in die Gedichtanalyse.  
- Silke Lahn / Jan Christoph Meister: Einführung in die Erzähltextanalyse.  
- Bernhard Asmuth: Einführung in die Dramenanalyse.  
- Claudius Sittig: Arbeitstechniken Germanistik. |
| 15. Lehrveranstaltungen und -formen: | 195002 Seminar Einführung in die Literaturwissenschaft  
195001 Vorlesung Einführung in die Literaturwissenschaft  
195003 Übung Einführung in die Literaturwissenschaft |
| 16. Abschätzung Arbeitsaufwand: | Präsenztstunden: 58 h  
Eigenstudiumstunden: 212 h  
Gesamtstunden: 270 h |
| 17. Prüfungsnummer/n und -name: | 19502 Einführung in die Literaturwissenschaft - Hausarbeit (LBP), Schriftlich, 0 Min., Gewichtung: 1  
19501 Einführung in die Literaturwissenschaft - Klausur (PL), Schriftlich, 90 Min., Gewichtung: 1  
Vorlesung: Klausur (90 min.) Seminar: Hausarbeit (12-15 Seiten) |
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Literatur im kulturgeschichtlichen Kontext</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Neue Deutsche Literatur II</td>
</tr>
</tbody>
</table>
Modul: 19530 Einführung in die Linguistik

3. Leistungspunkte: 12 LP 6. Turnus: Wintersemester
4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Pafel
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 3. Semester ➔ Wahlpflichtfach Deutsch ➔ Wahlpflichtfach
   B.Sc. Technikpädagogik, PO 199-2011, 3. Semester ➔ Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
   • Kenntnis der grammatische Grundbegriffe und Überblick über die verschiedenen Ebenen der linguistischen Analyse
   • Ein erster Einblick in die Komplexität des sprachlichen Systems mit seinen relativ autonomen, aber interagierenden Ebenen
   • Fähigkeit, ausgewählte sprachliche Phänomene mit linguistischen Grundbegriffen zu beschreiben
13. Inhalt:
   Das Seminar vermittelt die Grundlagen der Analyse des Deutschen auf der phonetisch-phonologischen, morphologischen, syntaktischen, semantischen und pragmatischen Ebene. In dem begleitenden Tutorium werden die Inhalte in Kleingruppen diskutiert und durch Analyseaufgaben geübt und vertieft.
14. Literatur:
   • Folien auf ILIAS
   • Aufgabenblätter
15. Lehrveranstaltungen und -formen:
   • 195301 Vorlesung Einführung in die Linguistik
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 19531 Einführung in die Linguistik (PL), Schriftlich, 90 Min., Gewichtung: 1 Analyseaufgaben und Klausur (90 Minuten)
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Germanistische Linguistik
Modul: 19540 Literatur im kulturgeschichtlichen Kontext

2. Modulkürzel: 091130002
5. Moduldaumer: Zweisemestrig

3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Sandra Richter

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, ➔ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester ➔ Wahlpflichtfach Deutsch ➔ Wahlpflichtfach

11. Empfohlene Voraussetzungen: Einführung in die Literaturwissenschaft

12. Lernziele:
Ausgehend von literarischen Texten können die Studierenden kulturgeschichtliche Kontexte identifizieren und beschreiben und die Relevanz eines jeweiligen Kontextes für einen bestimmten Text erklären und Interpretationsvorschläge erarbeiten. Schließlich können sie die Bedeutung des jeweiligen Kontextes für einen literarischen Text gewichten und die entsprechende Forschungsliteratur bewerten.

13. Inhalt:
• Literatur entsteht in historisch variablen Kontexten und kann unter Bezugnahme auf diese Kontexte verstanden werden
• Gegenstand des Moduls ist die Literatur in ihrer Korrelation zu kulturellen, sozialen und politischen Kontexten, insbesondere zu anderen Künsten, zu Wissenschaften, zu Philosophie und Religion
• Die im Einführungsmodul erlernten literaturwissenschaftlichen Techniken und Methoden sollen dabei vertieft werden

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 195402 Vorlesung Literatur im kulturgeschichtlichen Kontext
• 195401 Seminar Literatur im kulturgeschichtlichen Kontext

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 19542 Literatur im kulturgeschichtlichen Kontext - Klausur (LBP), Schriftlich, 90 Min., Gewichtung: 1
• 19541 Literatur im kulturgeschichtlichen Kontext - Hausarbeit (LBP), Schriftlich, Gewichtung: 1
Seminar (WS/SS): Hausarbeit (12-15 Seiten) Vorlesung (WS): Klausur (90 min.)

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Neue Deutsche Literatur I
# Modul: 19560 Grammatische Analyse (Kernmodul 3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Pafel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Linguistik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Vertiefung der syntaktischen Kenntnisse aus dem Basismodul  
  • erster Einblick in die Schnittstelle zwischen Syntax und Semantik  
  • sichere Anwendung der syntaktischen Kenntnisse bei der Analyse von Wortgruppen und Sätzen  
  • sichere Anwendung von basalen satzsemantischen Begriffen |
| 13. Inhalt: | • Durchgang durch die verschiedenen Aspekte der grammatischen Analyse (Wortarten, Flexion, Satzglieder, Konstituentenstruktur)  
  • Elemente der Satzsemantik und ihr Verhältnis zur Syntax (insb. syntaktische und semantische Valenz) |
  • Online-Übungen auf ILIAS |
| 15. Lehrveranstaltungen und -formen: | • 195601 Proseminar Grammatische Analyse  
  • 195602 Tutorium Grammatische Analyse |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit (Vorlesung und Tutorium): 42 h  
  Selbststudium (Vor- und Nachbereitung): 138 h  
  Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 19561 Grammatische Analyse (Kernmodul 3) (PL), Schriftlich, 90 Min., Gewichtung: 1  
  Analyseaufgaben und Klausur (90 Minuten) |
| 18. Grundlage für ...: | |
| 19. Medienform: | Linguistikstudium online (ILIAS), diverse digitale und konventionelle Lehrmaterialien |
| 20. Angeboten von: | Germanistische Linguistik |
305 Wahlpflichtfach Englisch

Zugeordnete Module:
- 27120 Grundlagen der Literaturwissenschaft und der Linguistik
- 27140 Textwissenschaft
- 27150 Formal Basis
- 27160 Sprachpraxis 2
- 31800 Text und Kontext (Technikpädagogik)
- 31810 Linguistic Levels (Technikpädagogik)
- 41610 Sprachpraxis 1
### Modul: 27120 Grundlagen der Literaturwissenschaft und der Linguistik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091110301</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Marc Priewe</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Silke Fischer</td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester → Wahlpflichtfach Englisch → Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden

- erlangen Kenntnis der Grundelemente der verschiedenen Kernbereiche der Linguistik (Phonetik, Phonologie, Morphologie, Syntax, Semantik)
- entwickeln Verständnis für die Grundlagen linguistischer Theorie, insbesondere der Universalgrammatik
- gewinnen Einblick in die verschiedenen Teilbereiche des Faches in seiner literatur- und kulturwissenschaftlichen Ausrichtung
- erlangen Kenntnis grundlegender fachwissenschaftlicher Begriffe, Theorien und Methoden
- erwerben die Fähigkeit zu gattungsbezogener Anwendung textanalytischer Methoden
- verstehen den Konstruktcharakter von Literaturgeschichte (Periodisierung)
- lernen grundlegende Techniken und Hilfsmittel literatur- und kulturwissenschaftlicher Forschung (Literaturrecherche und kritischer Umgang mit Sekundärliteratur) kennen und anwenden

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>
| • Prinzipien der Kommunikation  
• Grundlagen der menschlichen Sprachfähigkeit  
• Einführung in Phonetik/Phonologie, Morphologie, Syntax, Semantik  
• beispielhafte Beschäftigung mit einer Auswahl von literatur- und kulturwissenschaftlichen Referenzwerken  
• beispielhafte Lektüre einer Auswahl kanonisierter Schlüsseltexte von der frühen Neuzeit bis zur Gegenwart, die zugleich einen ersten Überblick über Gattungsgeschichte und gattungsspezifische Herangehensweisen vermittelt |

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>
| • Reader Introduction to Linguistics  

15. Lehrveranstaltungen und -formen:
• 271201 Seminar Introduction to Literary Studies
• 271202 Seminar Introduction to Linguistics
• 271203 Übung Literary Studies
• 271204 Übung Linguistics

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 84 h
Selbststudium: 186 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 27121 Klausur Literaturwissenschaft (PL), Schriftlich, 90 Min., Gewichtung: 25
• 27122 Hausarbeit Lyrikinterpretation (PL), Schriftlich, Gewichtung: 25
• 27123 Klausur Linguistik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 50
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Vorleistungen:
Analyseaufgaben
Referat

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Amerikanistik und Neue Englische Literatur
Modul: 27140 Textwissenschaft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Marc Priewe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Literaturwissenschaft und der Linguistik (Pflichtmodul 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden • lernen ein Spektrum von Theorien der cultural studies kennen • machen sich mit Grundbegriffen verschiedener Literaturtheorien vertraut • können unterschiedliche theoretische Modelle auf literarische Texte und visuelle Medien anwenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundbegriffe verschiedener Kultur- und Literaturtheorien vom Formalismus bis zum Poststrukturalismus • Analyse exemplarischer Werke mit Hilfe unterschiedlicher Theorieansätze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 271402 Seminar Textual Analysis • 271401 Online-Vorlesung Literary and Cultural Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 27141 Textwissenschaft (PL), Schriftlich, 90 Min., Gewichtung: 1 Vorleistung (USL-V), Schriftlich oder Mündlich Vorleistung: 1 Kurzvortrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Text und Kontext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Amerikanistik und Neue Englische Literatur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Modul: 27150 Formal Basis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Silke Fischer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Linguistik/Anglistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 15. Lehrveranstaltungen und -formen: | • 271502 Tutorium Formal Basis  
• 271501 Formal Basis |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h  
Selbststudium: 138 h  
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | • 27151 Formal Basis (PL), Schriftlich, 90 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Sonstige Klausur; Vorleistung: Analyseaufgaben |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Anglistik |
### Modul: 27160 Sprachpraxis 2

**2. Modulkürzel:** 091010305  
**5. Modulduauer:** Einsemestrig

**3. Leistungspunkte:** 3 LP  
**6. Turnus:** Sommersemester

**4. SWS:** 4  
**7. Sprache:** Englisch

**8. Modulverantwortlicher:** Dr. Heidi Altmann

**9. Dozenten:**  
Beate Kaebel  
Amanda Renee Kahrsch  
Monika Müller  
Jennifer Pyroth  
Heidi Altmann

**10. Zuordnung zum Curriculum in diesem Studiengang:**  
B.Sc. Technikpädagogik, PO 199-2011,  
→ Vorgezogene Master-Module  
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester  
→ Wahlpflichtfach Englisch → Wahlpflichtfach

**11. Empfohlene Voraussetzungen:** Sprachpraxis 1 (Pflichtmodul 2)

**12. Lernziele:**  
Die Studierenden

- erweitern ihre Ausdrucksfähigkeit im Bereich der Wortwahl auf fortgeschrittenem Niveau (Stil, erweiterter Wortschatz)

- bauen ihre sprachpraktischen Fähigkeiten beim Erwerb nativ klingender Aussprache (RP/GA) im Gegensatz zu typischem Schulenglisch entscheidend aus

**13. Inhalt:**  
- Erweiterung bzw. situationsbezogene Stabilisierung des Wortschatzes und der generellen lexikalischen Ausdrucksfähigkeit  
- Grundlagen phonetisch-phonologischer Struktur, Artikulatorische Grundlagen, Kenntnis der Eigenschaften standardmäßiger britischer und amerikanischer Aussprache

**14. Literatur:**  
- im Kurs gestellte tagesaktuelle Themen und Texte  

**15. Lehrveranstaltungen und -formen:**  
• 271602 Sprachpraktische Übung Phonetic Practice  
• 271601 Sprachpraktische Übung Lexicon and Phraseology

**16. Abschätzung Arbeitsaufwand:**  
| Präsenzzeit: | 42 h |
| Selbststudium: | 48 h |
| Summe: | 90 h |

**17. Prüfungsnummer/n und -name:**  
• 27161 Sprachpraxis 2, Klausur Lexicon and Phraseology (PL) (PL), Schriftlich, 60 Min., Gewichtung: 1
• 27162 Sprachpraxis 2, Klausur Phonetic Practice (PL) (PL), Schriftlich oder Mündlich, 20 Min., Gewichtung: 1
• 27163 Sprachpraxis 2, Aussprachetest (PL), Mündlich, 10 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
  Vorleistungen: improvisierte Gesprächssituationen, Wortschatzübungen, Transkriptionsübungen, Aussprachedemonstrationen

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Sprachpraxis 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Anglistik</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
### Modul: 31800 Text und Kontext (Technikpädagogik)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Priewe

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester ➔ Wahlpflichtfach Englisch ➔ Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 318001 Vorlesung Text und Kontext (Technikpädagogik)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 31801 Text und Kontext (Technikpädagogik) (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Amerikanistik und Neue Englische Literatur
Modul: 31810 Linguistic Levels (Technikpädagogik)

2. Modulkürzel: -
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Dr. Silke Fischer

9. Dozenten: Dozenten der Linguistik/Anglistik

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
➞ Wahlpflichtfach Englisch → Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Introduction to Linguistics

12. Lernziele: Die Studierenden erwerben vertieftes Wissen in zwei Kerngebieten der Linguistik (Syntax oder Morphologie bzw. Phonetik/Phonologie oder Semantik) und sind in der Lage, linguistischer Argumentation zu folgen und die Theorien auf Sprachdaten anzuwenden.

13. Inhalt:
• Flexion, Derivation, Komposita
• Formale Syntax, syntaktische Bewegung (z.B. Passiv, Fragebildung)
• Semantische Theorien, Prototypen, lexikalische vs. kompositionelle Semantik, Prädikatenlogik
• Bedeutung im Kontext
• Akustische/auditorische Phonetik, Prosodie, generative Phonologie

14. Literatur:

15. Lehrveranstaltungen und -formen: 318101 Linguistic Levels

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 31811 Linguistic Levels (Technikpädagogik) (USL), Sonstige, Gewichtung: 1
• 31812 Linguistic Levels (Technikpädagogik) (PL), Schriftlich, 90 Min., Gewichtung: 1
• 31813 Linguistic Levels (Technikpädagogik) (PL), Schriftlich, 90 Min., Gewichtung: 1
Vorleistung Analyseaufgaben

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Anglistik
## Modul: 41610 Sprachpraxis 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091010302</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Amanda Renee Kahrsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Beate Kaebel, Amanda Renee Kahrsch, Monika Müller, Jennifer Pyroth, Ericka Seifried</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden - werden systematisch in unterschiedliche Formen des Übersetzens eingeführt und - verbessern ihre Übersetzungsfähigkeiten und Übersetzungstechniken an praktischen Beispielen - bauen ihre sprachpraktischen Fähigkeiten im Bereich schriftlicher Ausdrucksfähigkeit entscheidend aus</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Übersetzungsübung • Erweiterung bzw. situationsbezogene Stabilisierung des Wortschatzes und der generellen lexikalischen Ausdrucksfähigkeit</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 416101 Sprachpraktische Übung Translation • 416102 Sprachpraktische Übung Essay Writing</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h Selbststudium: 48 h Summe: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>• 41611 Sprachpraxis 1 (PL), Schriftlich oder Mündlich, Gewichtung: 1 • V Vorleistung (USL-V),</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Anglistik</td>
</tr>
</tbody>
</table>
### 306 Wahlpflichtfach Ethik

Zugeordnete Module:
- 27100 Grundlagen der Philosophie
- 30380 Einführung in die Praktische Philosophie
- 30980 Grundlagen der Praktischen Philosophie
- 31150 Ethische Bewertung
Modul: 27100 Grundlagen der Philosophie

2. Modulkürzel: 091320190
5. Modulda ure: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. Andreas Luckner
9. Dozenten: Gerhard Ernst
   Andreas Luckner
   Ulrike Ramming
10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   ➔ Wahlpflichtfach Ethik ➔ Wahlpflichtfach
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   ➔ Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
   Die Studierenden gewinnen erste inhaltliche Einblicke in das Fach Philosophie und erlernen elementare Studientechniken und philosophische Kompetenzen:
   • Sie können über die inhaltlichen Einblicke bestimmen, wodurch sich Philosophie sowohl von anderen wissenschaftlichen Disziplinen als auch von weltanschaulichen Privatmeinungen unterscheidet.
   • Sie erkennen Unterschiede in philosophischen Stilen, epochenspezifischen Textgattungen usw
   • Sie erhalten einen orientierenden Überblick über die systematische Entwicklung der philosophischen Kerndisziplinen in der Geschichte.
13. Inhalt:
14. Literatur:
   Literaturauswahl (optional):
   1) Textauszüge von Platon bis zur Gegenwart (Reader)
15. Lehrveranstaltungen und -formen:
   • 271001 Einführung in das Studium der Philosophie
   • 271002 Tutorium zur Einführung in das Studium der Philosophie
16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 42 h
   Selbststudium: 138 h (davon 84h Nachbereitung, 54h Vertiefung)
   Summe: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>27101 Grundlagen der Philosophie (LBP), Schriftlich, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Wissenschaftstheorie und Technikphilosophie</td>
</tr>
</tbody>
</table>
Modul: 30380 Einführung in die Praktische Philosophie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320191</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. habil. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Ernst</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 091320190</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 303802 Tutorium Einführung in die Praktische Philosophie • 303801 Seminar Einführung in die Praktische Philosophie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h Selbststudium: 138 h (davon 84 h Nachbereitung, 54 h Vertiefung) Summe: 180h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30381 Einführung in die Praktische Philosophie (PL), Sonstige, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</td>
</tr>
</tbody>
</table>
20. Angeboten von: Wissenschaftstheorie und Technikphilosophie
Modul: 30980 Grundlagen der Praktischen Philosophie

2. Modulkürzel: 091320193
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 15 LP
6. Turnus: Wintersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. habil. Catrin Misselhorn

9. Dozenten: Gerhard Ernst
Andreas Luckner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
➞ Wahlpflichtfach Ethik ➞ Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Modul 091320190-91

12. Lernziele:
• Vertiefte Kenntnisse in den Disziplinen der praktischen Philosophie, weiterführende Auseinandersetzung mit den Grundproblemen, Grundbegriffen und zentralen Modellen.
• Fähigkeit zur Beurteilung und differenzierten Anwendung unterschiedlicher moralphilosophischer Begründungsstrategien.
• Erwerb von Kompetenzen, Konzepte aus dem Gebiet der praktischen Philosophie systematisch und historisch zu vergleichen und einzuordnen.
• Fähigkeit, klassische Positionen des Gebiets selbständig zu interpretieren und zu analysieren sowie neuere Diskussionen zu verstehen und ein Problembewusstsein auszubilden.

13. Inhalt:
Die Themen der praktischen Philosophie aus Kernmodul 1 werden hier vertieft behandelt. Insbesondere werden die zentralen Ansätze zur Metaethik (insbesondere Handlungstheorie) und zur normativen Ethik weitergehend analysiert und bewertet.

14. Literatur:
Literaturauswahl (optional):
1) Aristoteles: Nikomachische Ethik
2) Kant, Immanuel: Grundlegung zur Metaphysik der Sitten
3) Hobbes, Thomas: Leviathan
4) Mill, John Stuart: Utilitarism

15. Lehrveranstaltungen und -formen:
   • 309801 Vorlesung Handlungstheorie und Ethik
   • 309802 Seminar 1 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie

16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 63 h
   Selbststudium: 387 h (davon 187 h Nachbereitung, 200 h Vertiefung)
   Summe: 450 h

17. Prüfungsnummer/n und -name:
   • 30981 Grundlagen der Praktischen Philosophie (LBP), Mündlich, 20 Min., Gewichtung: 1
   • 30982 Grundlagen der Praktischen Philosophie Hausarbeit (PL), Sonstige, Gewichtung: 1
   • 30983 Grundlagen der Praktischen Philosophie Referat (USL), Sonstige, Gewichtung: 1

18. Grundlage für ...

19. Medienform:
   Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
   Wissenschaftstheorie und Technikphilosophie
## Modul: 31150 Ethische Bewertung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320192</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Andreas Luckner</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 091320190, 09132191, 09132193</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Materialien werden durch Dozenten bereitgestellt</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 311501 EPG II, Seminar 1 • 311502 EPG II, Seminar 2</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h Selbststudium: 318 h Summe: 360 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 31152 EPG II Hausarbeit 2 (LBP), Mündlich, Gewichtung: 1 • 31151 EPG II Hausarbeit 1 (LBP), Mündlich, 20 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Wissenschaftstheorie und Technikphilosophie</td>
</tr>
</tbody>
</table>
### 307 Wahlpflichtfach Politikwissenschaft

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Einfachwahlbereich</th>
<th>Ergänzungswahlbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>3071</td>
<td>Grundlagen Politikwissenschaft</td>
<td>3072 Ergänzungswahlbereich Politikwissenschaft 6LP</td>
</tr>
<tr>
<td>3072</td>
<td>Ergänzungswahlbereich Politikwissenschaft 6LP</td>
<td>3073 Ergänzungswahlbereich Politikwissenschaft 9LP</td>
</tr>
</tbody>
</table>
3071 Grundlagen Politikwissenschaft

Zugeordnete Module:

27410  Politisches System der BRD LA
27420  Analyse und Vergleich politischer Systeme LA
27430  Politische Theorie LA
27440  Internationale Beziehungen LA
Modul: 27410 Politisches System der BRD LA

2. Modulkürzel: 100200302
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Patrick Bernhagen

9. Dozenten: Angelika Vetter

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
Grundlagen Politikwissenschaft --> Wahlpflichtfach
Politikwissenschaft --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
• Die Studierenden verfügen über Grundwissen zu den aus politikwissenschaftlicher Sicht relevanten Aspekten der Systemanalyse. Hierzu gehören Kenntnisse über die Analyse politischer Strukturen (polity), politischer Prozesse (politics) und/ oder von Politikinhalten (policies).
• Sie erwerben Kenntnisse über die Methodik politikwissenschaftlicher Analyse in diesem Fachbereich.
• Sie kennen zentrale Begriffe und Konzepte der Analyse demokratischer politischer Systeme (u.a. Parlamentarismus, Präsidentialismus, Mehrheitsdemokratie, Konsensdemokratie).
• Sie verfügen über Grundwissen zum politischen System der Bundesrepublik Deutschland: Grundgesetz, Bundesinstitutionen, Föderalismus, Parteien, Bürger/politische Kultur.
• Sie können das Fachvokabular situationsgerecht anwenden.
• Sie können Zusammenhänge zwischen verschiedenen Aspekten des politischen Systems erkennen, systematisch beschreiben und kritisch hinterfragen.


15. Lehrveranstaltungen und -formen:
• 274101 Vorlesung Einführung in das politische System der BRD

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit:          | 21 h |
| Selbststudium:       | 159 h |
| Gesamt:              | 180 h |

17. Prüfungsnummer/n und -name:
27411 Politisches System der BRD LA (LBP), Schriftlich oder Mündlich, Gewichtung: 1
Lehrveranstaltungsbegleitende Prüfung: 90minütige Klausur oder 15minütige mündliche Prüfung zur Vorlesung "Einführung in das politische System der BRD. Art und Umfang dieser Prüfung werden vom Leiter zu Beginn der jeweiligen Lehrveranstaltung den Studierenden bekannt gegeben.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Politische Systeme und Politische Soziologie
Modul: 27420 Analyse und Vergleich politischer Systeme LA

2. Modulkürzel: 100200303
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Patrick Bernhagen
9. Dozenten: Patrick Bernhagen

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ Grundlagen Politikwissenschaft → Wahlpflichtfach
Politikwissenschaft → Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
• Die Studierenden verfügen über Grundwissen zu den aus politikwissenschaftlicher Sicht relevanten Aspekten des Systemvergleichs. Hierzu gehören Kenntnisse über den Vergleich politischer Strukturen (polity), politischer Prozesse (politics) und/oder von Politikinhalten (policies).
• Sie verfügen über Grundwissen bezüglich der in der Politikwissenschaft gängigen Methoden des Vergleichs politischer Systeme.
• Sie kennen zentrale Begriffe und Konzepte des Vergleichs demokratischer politischer Systeme (u.a. Parlamentarismus, Präsidentialismus, Mehrheitsdemokratie, Konsensdemokratie).
• Sie können das Fachvokabular situationsgerecht anwenden.
• Sie sind in der Lage, ausgewählte politische Systeme vergleichend zu beschreiben, zu erklären und demokratietheoretisch zu reflektieren.
• Sie können Zusammenhänge zwischen verschiedenen Aspekten des politischen Systemvergleichs erkennen, systematisch beschreiben und kritisch hinterfragen.


14. Literatur:
• Caramani, Daniele. 2014. Comparative Politics. 3. Aufl., Oxford: Oxford University Press.

15. Lehrveranstaltungen und -formen: 274201 Vorlesung Einführung in Analyse und Vergleich politischer Systeme
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21h  
Selbststudium: 159 h  
**Gesamt: 180 h**  

17. Prüfungsnummer/n und -name: 27421 Analyse und Vergleich politischer Systeme LA (LBP),  
Schriftlich oder Mündlich, Gewichtung: 1  
Lehrveranstaltungsbegleitende Prüfung: 90minütige Klausur  

18. Grundlage für ... :  

19. Medienform:  

20. Angeboten von: Politische Systeme und Politische Soziologie
Modul: 27430 Politische Theorie LA

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200304</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. André Bächtiger
9. Dozenten: André Bächtiger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
Grundlagen Politikwissenschaft --> Wahlpflichtfach
Politikwissenschaft --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
- Die Studierenden haben einen Überblick über die Disziplin Politische Theorie und können diese von anderen politikwissenschaftlichen Disziplinen unterscheiden. Zu dem Überblick gehören die wichtigsten zeitgenössische Theorien. Das umfasst sowohl philosophischnormative als auch empirisch-analytische Theorien.
- Sie können erstens die verschiedenen politikwissenschaftlichen Theorien miteinander vergleichen. Sie können zweitens diese Theorien in Bezug zur empirischen Forschung setzen.
- Sie haben Grundkenntnisse des relevanten politiktheoretischen Fachvokabulars.

13. Inhalt:
Politische Theorie ist eine der grundlegenden Disziplinen der Politikwissenschaft. In dem Modul werden die notwendigen Kenntnisse dieser Disziplin vermittelt und die Voraussetzungen für eine systematische Beschäftigung mit ihr gelegt. Es werden drei konkrete Zielsetzungen verfolgt: Erstens wird vermittelt, was politische Theorie ist und welchen Stellenwert sie in der politikwissenschaftlichen Forschung hat, zweitens welche Arten politischer Theorie sich unterscheiden lassen, drittens werden wichtige Vertreter verschiedener politischer Theorien vorgestellt.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 274301 Vorlesung Einführung in die Politische Theorie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudium: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 27431 Politische Theorie LA (LBP), Schriftlich oder Mündlich, Gewichtung: 1
  Lehrveranstaltungsbegleitende Prüfung: 90minütige Klausur oder 15minütige mündliche Prüfung zur Vorlesung "Einführung
in die Politische Theorie. Art und Umfang dieser Prüfung werden vom Leiter zu Beginn der jeweiligen Lehrveranstaltung den Studierenden bekannt gegeben.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Politische Theorie und Empirische Demokratieforschung
Modul: 27440 Internationale Beziehungen LA

2. Modulkürzel: 100200305  
5. Modulsdauer: Einsemestrig  
3. Leistungspunkte: 6 LP  
6. Turnus: Wintersemester  
4. SWS: 2  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Cathleen Kantner
9. Dozenten: Udo Tietz  
Cathleen Kantner  
Iris Nothofer  
Halima Akhrif

10. Zuordnung zum Curriculum in diesem Studiengang:  
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
➞ Grundlagen Politikwissenschaft --> Wahlpflichtfach  
Politikwissenschaft --> Wahlpflichtfach  
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester  
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine
12. Lernziele:

13. Inhalt:  

14. Literatur:  
| 15. Lehrveranstaltungen und -formen: | • 274401 Vorlesung Einführung in die Internationale Beziehungen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit : 21 h  
Selbststudium : 159 h  
**Gesamt: 180 h** |
| 17. Prüfungsnummer/n und -name: | 27441 Internationale Beziehungen LA (LBP), Schriftlich, Gewichtung: 1  
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Internationale Beziehungen und Europäische Integration |
3072 Ergänzungswahlbereich Politikwissenschaft 6LP

Zugeordnete Module:
- 27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD
- 27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie
- 27560 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen
- 27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme
Modul: 27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD

2. Modulkürzel: 100200311
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Patrick Bernhagen

9. Dozenten: Isabell Thaidigsmann
Eva-Maria Trüdinger
Uwe Remer-Bollow
Jonas Löser
Elisa Deiss-Helbig
Dominic Pakull

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011,
➞ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
➞ Ergänzungswahlbereich Politikwissenschaft 6LP --> Wahlpflichtfach Politikwissenschaft --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
• Die Studierenden verfügen über das notwendige Fachvokabular im Bereich des Politischen Systems der Bundesrepublik Deutschland und können dieses situationsgerecht anwenden.
• Sie können für die Disziplin typische Konzepte und Methoden auf den Gegenstandsbereich des politischen Systems der BRD anwenden, kritisch hinterfragen und bei der eigenen wissenschaftlichen Analyse nutzen.

13. Inhalt:
Im Seminar zum politischen System der BRD werden exemplarisch verschiedene Themen der Disziplin vertieft. Hierzu gehören beispielsweise die politische Kultur in der BRD, das Wahlverhalten in Deutschland, politische Parteien in der BRD, Kommunalpolitik oder Rechtsextremismus in der BRD.

14. Literatur:
• RUDZIO, Wolfgang 20011: Das politische System der Bundesrepublik Deutschland. 8. überarbeitete Auflage. Opladen: Leske und Budrich.

15. Lehrveranstaltungen und -formen: 275401 Seminar Politisches System der BRD

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 159 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 27541 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD (LBP), Schriftlich oder Mündlich, Gewichtung: 1
Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar "Politisches System der BRD".

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Politische Systeme und Politische Soziologie
Modul: 27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie

| 2. Modulkürzel: | 100200313 |
| 3. Leistungspunkte: | 6 LP |
| 4. SWS: | 2 |
| 5. Moduldauer: | Einsemestrig |
| 6. Turnus: | Sommersemester |
| 7. Sprache: | Deutsch |
| 8. Modulverantwortlicher: | Univ.-Prof. Dr. André Bächtiger |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | • Die Studierenden sind mit unterschiedlichen politikwissenschaftlichen Theorien vertraut und in der Lage, diese eigenständig zur Analyse von politischen Phänomenen anzuwenden. • Darüber hinaus können sie verschiedene Theorien miteinander vergleichen und kritisieren. Die Studierenden beherrschen das relevante politiktheoretische Fachvokabular und können dieses in einem wissenschaftlichen Diskurs heranziehen. |
| 15. Lehrveranstaltungen und -formen: | • 275501 Seminar Politische Theorie |
| 17. Prüfungsnummer/n und -name: | 27551 Wahlmodul Seminar Politikwissenschaft: Politische Theorie (LBP), Schriftlich oder Mündlich, Gewichtung: 1 Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar "Politische Theorie". |
| 18. Grundlage für ... : |
19. Medienform:

20. Angeboten von: Politische Theorie und Empirische Demokratieforschung
### Modul: 27560 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Cathleen Kantner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Iris Notherer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Udo Tietz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halima Akhrif</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester → Vorzeigene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Die Studierenden kennen die grundlegenden Theorien sowie quantitativen und qualitativen Methoden zur Analyse der Internationale Beziehungen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sie können diese auf den verschiedenen Feldern der Internationalen Politik anwenden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>275601 Seminar Internationale Beziehungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 159 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Summe: 180 Stunden</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>27561 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen (LBP), Schriftlich, Gewichtung: 1 Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar &quot;Internationale Beziehungen&quot;.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
| 20. Angeboten von: | Internationale Beziehungen und Europäische Integration |
## Modul: 27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Patrick Bernhagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Isabell Thaidigsmann, Eva-Maria Trüdinger, Jonas Löser, Elisa Deiss-Helbig, Uwe Remer-Bollow, Dominic Pakull</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Die Studierenden verfügen über das notwendige Fachvokabular im Bereich der Analyse und des Vergleichs politischer Systeme und können diese situationsgerecht anwenden. • Sie können für die Disziplin typische Konzepte und Methoden anwenden, kritisch hinterfragen und bei der eigenen wissenschaftlichen Analyse nutzen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Im Seminar zur Analyse und zum Vergleich politischer Systeme werden exemplarisch verschiedene Themen der Disziplin vertieft, wie z.B. mehrheits- und konsensdemokratische Strukturen, Politische Kultur im internationalen Vergleich, Wahlverhalten oder Parteiensysteme in europäischen und außereuropäischen Demokratien, Rechtsextremismus und Rechtspopulismus im internationalen Vergleich.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 276001 Seminar Analyse und Vergleich politischer Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>27601 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme (LBP), Schriftlich oder Mündlich, Gewichtung: 1 Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar &quot;Analyse und Vergleich politischer Systeme&quot;.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Politische Systeme und Politische Soziologie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3073 Ergänzungswahlbereich Politikwissenschaft 9LP

Zugeordnete Module:  28090  Analyse sozialer Strukturen und Prozesse
Modul: 28090 Analyse sozialer Strukturen und Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulbeginn:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Dieter Urban</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dieter Urban, Ulrich Dolata, Gerhard Fuchs</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester → Ergänzungswahlbereich Politikwissenschaft 9LP → Wahlpflichtfach Politikwissenschaft → Wahlpflichtfach</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
- Die Studierenden verfügen über ein Grundwissen zu theoretischen Modellen und empirischen Analysestrategien zur Beschreibung und Erklärung sozialstruktureller, wirtschaftlicher sowie gesellschaftlicher Entwicklungen.
- Sie verfügen über ein Grundwissen zu Modellen sozialer Ungleichheit und Methoden der Sozialstrukturanalyse.
- Sie kennen zentrale Strukturmerkmale der bundesrepublikanischen Gegenwartsgesellschaft.
- Sie sind in der Lage, die grundlegenden theoretischen Ansätze und empirischen Untersuchungen der "neuen Wirtschaftssoziologie zu reflektieren, zu diskutieren und auf spezifische Fallbeispiele anzuwenden.
- Sie können erkennen, unter welchen Bedingungen es sinnvoll ist, wirtschaftliche Sachverhalte aus soziologischer Perspektive zu untersuchen.
- Sie verfügen über ein analytisches und methodisches Instrumentarium, um komplexe gesellschaftliche und wirtschaftliche Sachverhalte analyseren zu können.

13. Inhalt:
Leitend sind dabei zwei Problemkomplexe: Wie entstehen Märkte? Welches sind die sozialen Voraussetzungen für die Funktionsfähigkeit von Märkten? Dabei werden eine Reihe von theoretischen Texten und empirischen Fallbeispielen zu unterschiedlichen Märkten vorgestellt, um damit einen fundierten Einblick in die aktuelle soziologische Diskussion zu geben.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 280901 Vorlesung Einführung in die Sozialstrukturanalyse
- 280902 Seminar Wirtschaft und Gesellschaft

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 228 Stunden
Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
- 28091 Wirtschaft und Gesellschaft Referat (USL), Schriftlich, Gewichtung: 1
- 28092 Einführung in die Sozialstrukturanalyse Kurzklausur (USL), Schriftlich, 30 Min., Gewichtung: 1
- 28093 Einführung in die Sozialstrukturanalyse Klausur (LBP), Schriftlich, 90 Min., Gewichtung: 1
- 28094 Wirtschaft und Gesellschaft Hausarbeit (LBP), Schriftlich oder Mündlich, Gewichtung: 1
- Eine unbenotete Studienleistung (Referat) im Seminar "Wirtschaft und Gesellschaft, wenn in der Vorlesung "Einführung in die Sozialstrukturanalyse eine lehrveranstaltungsbegleitende Prüfung erbracht wird, ODER
- eine unbenotete Studienleistung (unbenotete Kurzklausur) in der Vorlesung "Einführung in die Sozialstrukturanalyse, wenn im Seminar "Wirtschaft und Gesellschaft eine lehrveranstaltungsbegleitende Prüfung erbracht wird.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Soziologie und empirische Sozialforschung
**308 Wahlpflichtfach Sport**

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16340</td>
<td>Naturwissenschaftliche Ansätze und Theorien</td>
</tr>
<tr>
<td>26700</td>
<td>Sportartspezifische Theorie und Praxis - Bereich B1</td>
</tr>
<tr>
<td>31200</td>
<td>Geisteswissenschaftliche Ansätze und Theorien</td>
</tr>
<tr>
<td>31220</td>
<td>Sozialwissenschaftliche Ansätze und Theorien</td>
</tr>
<tr>
<td>69920</td>
<td>Sportartspezifische Theorie und Praxis - Bereich A1</td>
</tr>
</tbody>
</table>
## Modul: 16340 Naturwissenschaftliche Ansätze und Theorien

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>8</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Wilfried Alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Wilfried Alt, Benjamin Haar, Claudia Reule</td>
</tr>
</tbody>
</table>

|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Einführung in die Sportwissenschaft</th>
</tr>
</thead>
</table>

|---------------------|----------------------------------------------------------------------------------------------------------------------------------|

| 13. Inhalt: | Vorlesung 1: Biologie für Bewegung und Training  
- Anatomie und Physiologie der Funktionssysteme des Bewegungsapparates  
- Das Belastungs-Beanspruchungskonzept und seine Relevanz für Anpassungsvorgänge durch Bewegung und Training |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|

Vorlesung 2: Bewegung und Training  
- Konstruktions- und Antriebsprinzipien des Bewegungsapparates  
- Prinzipien der motorischen Kontrolle  
- Biomechanische Aspekte von Haltung, Lokomotion und sportlichen Bewegungen  
- Modelle der sportlichen Leistung  
- Mechanismen der Leistungsentwicklung  

Seminar: Biomechanik und Training der Sportarten  
- Integrative Aspekte von Bewegung und Training im Leistungs- und Gesundheitssport aus naturwissenschaftlicher Sicht |

|---------------------|----------------------------------------------------------------------------------------------------------------------------------|

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>163401 Vorlesung: Biologie für Bewegung und Training</th>
</tr>
</thead>
</table>
16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 90 h | Selbststudiumszeit / Nacharbeitszeit: 180 h | Gesamt: 270 h |

17. Prüfungsnummer/n und -name:

| 16341 Naturwissenschaftliche Ansätze und Theorien (PL), Schriftlich, 60 Min., Gewichtung: 1 |
| 16342 Naturwissenschaftliche Ansätze und Theorien - unbenotete Studienleistung (USL), Schriftlich, 60 Min., Gewichtung: 1 |

18. Grundlage für …:

| Bewegung und Training Kinesiologie |

19. Medienform:

| Moodle Lernplattform, Powerpoint-Präsentation, Online Übung, Texte und biologisch/physikalische Modelle und Experimente |

20. Angeboten von:

| Biomechanik und Sportbiologie |
Modul: 26700 Sportartspezifische Theorie und Praxis - Bereich B1

2. Modulkürzel: 100300143
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr. Rolf Brack
9. Dozenten: Rolf Brack Tanja Hohmann


11. Empfohlene Voraussetzungen: -

12. Lernziele:
• Die Studierenden kennen das sportspielspezifische Wissen zum Lehren, Lernen und Trainieren. Sie verstehen die Zusammenhänge von theoretischem Wissen und praktischem Handeln.
• Die Studierenden verfügen über grundlegendes und anschlussfähiges sportspielspezifisches Können und methodische Fähigkeiten zur Gestaltung von Lernprozessen im Kontext der aktuellen Kinder- und Jugendsport- und Regionalkultur.
• Die Studierenden können die vorliegenden didaktisch-methodischen Erkenntnisse der Sportspielforschung auf die Praxis des Schulsports übertragen. Sie erwerben die Fähigkeit, ihr eigenes praktisches Tun mit kritischer Distanz zu reflektieren.
• Die Studierenden sind in der Lage anhand von technologischem Wissen sportartspezifische Lern- und Trainingsformen zu analysieren, wiederzugeben und diese fachlich zu kommentieren.
• Die Studierenden können sich selbstständig Wissen zur Theorie und Praxis der Sportspiele beschaffen und so strukturieren, wie sie für die Schule gebraucht werden. Sie sind in der Lage, wissenschaftlich fundiert im Schulsport zu handeln.

13. Inhalt:
Integration von sportwissenschaftlichen und sportpraktischen Ausbildungsinhalten anhand von reflexivem Lernen im Bereich der Sportspiele Fußball und Handball.

14. Literatur:
15. Lehrveranstaltungen und -formen:
- 267001 Übung Grundfach Fußball
- 267002 Übung Grundfach Handball

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Präsenz</th>
<th>Selbstdstudium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fußball</td>
<td>31,5</td>
<td>58,5</td>
<td>90</td>
</tr>
<tr>
<td>Handball</td>
<td>31,5</td>
<td>58,5</td>
<td>90</td>
</tr>
<tr>
<td>Gesamt:</td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
- 26701 Sportartspezifische Theorie und Praxis - Bereich B1 - Fußball (LBP), Schriftlich oder Mündlich, Gewichtung: 1
- 26702 Sportartspezifische Theorie und Praxis - Bereich B1 - Handball (LBP), Schriftlich oder Mündlich, Gewichtung: 1


18. Grundlage für ... : Profilbildung in Theorie und Praxis des Sports

19. Medienform: Lernplattform Ilias

20. Angeboten von: Sport- und Gesundheitswissenschaften I
Modul: 31200 Geisteswissenschaftliche Ansätze und Theorien

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Nadja Schott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Dozenten: Uwe Gomolinsky, Nadja Schott, Heide Korbus, Norman Stutzig


Die Studierenden können sportdidaktische Modelle auf eine praktische Lehr-/Lernsituation adressatengerecht transformieren.

Die Studierenden können die ideengeschichtliche Verschränkung von Sportpädagogik, -didaktik und -geschichte synthetisieren und strukturieren. Sie können pädagogische, didaktische und historische Denktraditionen in die aktuelle Befundlage und in Praxisbeispiele integrieren.

Die Studierenden können die Zusammenhänge sportpädagogischer, sportdidaktischer und sportgeschichtlicher Inhalte diskutieren und kommunizieren.

Die Studierenden sind in der Lage, sich selbständig auf der Grundlage einer sportpädagogischen und/oder sportgeschichtlichen Problemstellung weiteres Wissen zu beschaffen, zu erschließen und in ihren Wissensfundus ein zu ordnen.


14. Literatur:


15. Lehrveranstaltungen und -formen:
- 312001 Vorlesung: Einführung in die Sportpädagogik
- 312002 Vorlesung: Einführung in die Sportgeschichte
- 312003 Seminar: Grundfragen der Sportpädagogik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 67,5 h
- Selbststudiumszeit / Nacharbeitszeit: 202,5 h
- Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 31201 Einführung in die Sportpädagogik und Sportgeschichte (PL), Schriftlich, 60 Min., Gewichtung: 1
- 31202 Grundfragen der Sportpädagogik (USL), Schriftlich oder Mündlich, Gewichtung: 1
- 31203 Einführung in die Sportpädagogik (LBP), Schriftlich oder Mündlich, Gewichtung: 1
- 31204 Einführung in die Sportgeschichte (LBP), Schriftlich oder Mündlich, Gewichtung: 1
  Im Seminar (Pos. 3) sind Studienleistungen in Form eines Referats und eines Thesenpapiers nachzuweisen.

18. Grundlage für ...:
- Vertiefung geistes- und sozialwissenschaftliche Ansätze und Theorien Aktivität und Gesundheit

19. Medienform:
- Moodle Lernplattform, Powerpoint-Präsentation, Texte

20. Angeboten von:
- Sport- und Gesundheitswissenschaften II
Modul: 31220 Sozialwissenschaftliche Ansätze und Theorien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100300307</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Moduldauger:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Carmen Borggrefe</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden können fundamentale Konzepte der Sportpsychologie und Sportsoziologie benennen und definieren. Sie kennen gängige Theorien (und die korrespondierende Empirie) zur Erklärung menschlichen Verhaltens auf personaler und struktureller Ebene.

Sie können grundlegende Forschungsthemen der beiden sportwissenschaftlichen Teilgebiete erkennen, verstehen und aufeinander beziehen sowie diese Forschungsthemen Phänomenen im Handlungsfeld Sport zuordnen.

Die Studierenden können Ergebnisse der empirischen Sozial- und Verhaltensforschung beurteilen und kritisch würdigen, sowie die Angemessenheit grundlegender methodischer Versuchs- bzw. Studienanordnungen einschätzen.

Die Studierenden können sportpsychologisches und sportsoziologisches Grundlagenwissen wiedergeben und einem Laienpublikum erläutern.

Die Studierenden sind dazu in der Lage, sich neues sozial- und verhaltenswissenschaftliche Wissen selbständig zu erschließen und es in ihren Wissensfundus einzuordnen.

13. Inhalt:

In den Veranstaltungen werden sowohl mikro- als auch makroanalytische Betrachtungsweisen zur Beschreibung und Erklärung menschlichen Verhaltens vermittelt. Studierende erwerben grundlegendes Theoriewissen der Psychologie und der Soziologie des Sports und erhalten dieses am Beispiel wesentlicher empirischer Befunde illustriert. Im ersten Studiensemester erfolgt eine phänomenbezogene und die beiden disziplinären Sichtweisen integrierende Einführung in die Thematik in Form eines Seminars mit Übungen, darauf folgend werden in zwei Vorlesungsveranstaltungen je fachspezifische Themenüberblicke angeboten.
14. Literatur:


15. Lehrveranstaltungen und -formen:

- 312201 Seminar mit Übung: Individuum und Gruppe
- 312202 Vorlesung: Themenüberblick Sportpsychologie
- 312203 Vorlesung: Themenüberblick Sportsoziologie

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 55 h |
| Selbststudiumszeit / Nacharbeitszeit: 215 h |
| Gesamt: 270 h |

17. Prüfungsnummer/n und -name:

- 31221 Sozialwissenschaftliche Ansätze und Theorien (PL), Schriftlich, 60 Min., Gewichtung: 1
- 31222 Sport und Gesellschaft (USL), Schriftlich oder Mündlich, Gewichtung: 1
- 31223 Themenüberblick Sportpsychologie (LBP), Schriftlich oder Mündlich, Gewichtung: 1
- 31224 Themenüberblick Sportsoziologie (LBP), Schriftlich oder Mündlich, Gewichtung: 1

Im Seminar (Pos. 3) sind Studienleistungen in Form eines Referats und eines Thesenpapiere als Zulassung zur Abschlussprüfung nachzuweisen.

18. Grundlage für ...:

Vertiefung geistes- und sozialwissenschaftliche Ansätze und Theorien Aktivität und Gesundheit

19. Medienform:

ILIAS Lernplattform, digitale und konventionelle Lernmaterialien

20. Angeboten von:

Sportsoziologie und Sportmanagement
Modul: 69920 Sportartspezifische Theorie und Praxis - Bereich A1

2. Modulkürzel: 100300001
5. Moduldauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Dieter Bubeck
9. Dozenten: Dieter Bubeck, Benjamin Holfelder, Heide Korbus, Claus Wagner

11. Empfohlene Voraussetzungen:

12. Lernziele:
• Die Studierenden kennen didaktisch orientierter Vermittlungskonzepte und sie verstehen die Zusammenhänge von theoretischem Wissen und praktischem Handeln.
• Die Studierenden verfügen über grundlegende und anschlussfähige sportartspezifische Performance und sind in der Lage, ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen im Kontext des Sportunterrichts am Gymnasium altersgerecht einzusetzen.
• Die Studierenden können unterschiedliche fachdidaktische Konzepte in Theorie und Praxis kritisch bewerten.
• Die Studierenden sind in der Lage, anhand von technologischem Wissen sportartspezifische Lern- und Trainingsformen zu analysieren, wiederzugeben und diese fachlich zu kommentieren.
• Die Studierenden sind in der Lage, sich selbständig in ihrem Können zu vervollkommnen und ihr eigenes fachdidaktisches Handeln zu begründen.


14. Literatur:
• ergänzende Liste des aktuellen Semesters.

15. Lehrveranstaltungen und -formen: 699201 Übung Grundfach Schwimmen
16. Abschätzung Arbeitsaufwand:

Schwimmen
- Präsenz: 31,5
- Selbststudium: 58,5
- Gesamt: 90

Leichtathletik
- Präsenz: 31,5
- Selbststudium: 58,5
- Gesamt: 90

Gesamtaufwand
- 180

17. Prüfungsnummer/n und -name:
- 69921 Grundfach Schwimmen (LBP), Sonstige, Gewichtung: 1
- 69922 Grundfach Leichtathletik (LBP), Sonstige, Gewichtung: 1


18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Biomechanik und Sportbiologie
### 309 Wahlpflichtfach Evangelische Theologie

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20500</td>
<td>Theologie als Wissenschaft</td>
</tr>
<tr>
<td>20510</td>
<td>Biblische Theologie</td>
</tr>
<tr>
<td>20530</td>
<td>Kirchengeschichte</td>
</tr>
<tr>
<td>20540</td>
<td>Religionspädagogik</td>
</tr>
<tr>
<td>20550</td>
<td>Systematische Theologie</td>
</tr>
<tr>
<td>20560</td>
<td>Religionswissenschaft</td>
</tr>
</tbody>
</table>
Modul: 20500 Theologie als Wissenschaft

2. Modulkürzel: Hohenheim oder Tübingen
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Ulrich Mell

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
➞ Wahlpflichtfach Evangelische Theologie --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Proseminar: Einführung in die Evangelische Theologie:
Proseminar: Einführung in die evangelische Religionspädagogik:

14. Literatur:
Weitere Literatur wird im Verlauf der Seminare angegeben.

15. Lehrveranstaltungen und -formen:
• 205001 Seminar Einführung in die evangelische Religionspädagogik
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand: 180 Stunden: 60 Stunden Präsenzstudium 80 Stunden Vor- und Nachbereitung 40 Stunden Erstellung der Seminararbeit</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 20501 Theologie als Wissenschaft (PL), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ...</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Universität Hohenheim</td>
</tr>
</tbody>
</table>
## Modul: 20510 Biblische Theologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Ulrich Mell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Einführung in die Bibel als historischem Schriftenkanon des Christentums.

Inhaltliche Kenntnisse wichtiger biblischer Texte und Problemstellungen biblischer Überlieferung.

Erlangung einer methodisch reflektierten hermeneutischen Kompetenz im Umgang mit den traditionellen biblischen Grundlagen des Christentums.

| 13. Inhalt:              |                           |                       |               |

Bibelkunde AT
Kenntnisse von Inhalt und Aufbau der wichtigsten Bücher im alttestamentlichen Kanon.
Grundzüge der Kanoneinteilung und der historischen Kanonentwicklung.
Grundkenntnisse der alttestamentlichen Literaturgeschichte.

Bibelkunde NT
Kenntnisse von Inhalt und Aufbau der wichtigsten Bücher im neutestamentlichen Kanon.
Grundzüge der Kanoneinteilung des NT und der historischen Kanonentwicklung.
Grundkenntnisse der urchristlichen Literaturgeschichte.
AT/NT-Proseminar: Vom Verstehen biblischer Texte:
Im Proseminar lernen die Studierenden die Überlieferungsprobleme biblischer Texte an zwei ausgewählten Textbeispielen aus dem Alten Testament und dem Neuen Testament kennen. Im Proseminar werden die Studierenden in die Methode einer wissenschaftlichen, transparenten Textauslegung

14. Literatur:
Weitere Literatur wird im Verlauf der Veranstaltung angegeben.

15. Lehrveranstaltungen und -formen:
• 205101 Übung Bibelkunde: Altes Testament
• 205102 Übung Bibelkunde: Neues Testament
• 205103 Seminar: Vom Verstehen biblischer Texte

16. Abschätzung Arbeitsaufwand:
90 Stunden Präsenzzeit, Pro SWS Lehreinheit doppelte Vor- bzw. Nachbereitungszeit.
Vorbereitung von Seminarsitzungen durch intensive Lektüre (Exzerpte), Erstellung von Arbeitspapieren, Individuell verschiedener Zeitaufwand für die Abfassung einer Hausarbeit und die Vorbereitung von Klausuren.

17. Prüfungsnummer/n und -name:
• 20511 Biblische Theologie Klausur 1 (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• 20512 Biblische Theologie Klausur 2 (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• 20513 Biblische Theologie Hausarbeit (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Universität Hohenheim
### Modul: 20530 Kirchengeschichte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Ulrich Mell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 205301 Seminar Grundthema der Neueren Kirchengeschichte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>20531 Kirchengeschichte (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Universität Hohenheim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 20540 Religionspädagogik

2. Modulkürzel: Hohenheim oder Tübingen
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Ulrich Mell
10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, ➔ Vorgezogene Master-Module
   B.Sc. Technikpädagogik, PO 199-2011, 5. Semester ➔ Wahlpflichtfach Evangelische Theologie --> Wahlpflichtfach
11. Empfohlene Voraussetzungen:
13. Inhalt:
   Übung zum Schulpraktikum:
   Proseminar:
15. Lehrveranstaltungen und -formen: • 205401 Übung Zum Schulpraktikum
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>60 Std. Präsenzzeit, 120 Std. Selbststudiumszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>20541 Religionspädagogik (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Universität Hohenheim</td>
</tr>
</tbody>
</table>
**Modul: 20550 Systematische Theologie**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Ulrich Mell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 5. Semester → Wahlpflichtfach Evangelische Theologie → Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführung in die Prinzipien einer evangelischen Ethik.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflektion einer bedeutsamen ethisch-theologischen Programmatik aus Neuzeit und Moderne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 205501 Seminar Der evangelische Glaube</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 205502 Seminar Die evangelische Ethik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 20551 Systematische Theologie Hausarbeit (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• 20552 Systematische Theologie Vorlesungsprüfung (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Universität Hohenheim
Modul: 20560 Religionswissenschaft

2. Modulkürzel: Hohenheim oder Tübingen
5. Moduldaeuer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Ulrich Mell

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester 
➞ Wahlpflichtfach Evangelische Theologie --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester 
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Religionswissenschaftliches Seminar
Vorlesung: Einführung in die Religionswissenschaft
Die Vorlesung führt anhand verschiedener Ansätze wie Religionsphänomenologie, Religionspsychologie und Religionssoziologie in religionswissenschaftliche Methodik und Grundbegriffe ein. Exemplarisch werden Fragestellungen vergleichender Religionswissenschaft wie Religion und Politik, Konversion, Synkretismus und Inkulturation behandelt.

14. Literatur:
Literatur wird zu Beginn und im Verlauf der Veranstaltungen angegeben.

15. Lehrveranstaltungen und -formen:
• 205602 Seminar Grundthema der Religionswissenschaft
• 205601 Vorlesung Einführung in die Religionswissenschaft

16. Abschätzung Arbeitsaufwand:
Präsenzeit: 42 h
Vor- und Nachbereitung: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 20561 Religionswissenschaft Hausarbeit (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• 20562 Religionswissenschaft Vorlesungsprüfung (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Universität Hohenheim
310 Wahlpflichtfach Katholische Theologie

Zugeordnete Module:  
20570 Katholische Theologie Basismodul 1  
20580 Katholische Theologie Basismodul 2  
20590 Katholische Theologie Basismodul 3  
23600 Katholische Theologie Vertiefungsmodul 1
**Modul: 20570 Katholische Theologie Basismodul 1**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Schramm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 205701 Vorlesung Der unterhaltsame Gott
- 205702 Vorlesung Die geschichtlichen Bücher des Alten Testaments
- 205703 Vorlesung Grundfragen der Religionsphilosophie

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

20571 Katholische Theologie Basismodul 1 (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Universität Hohenheim
### Modul: 20580 Katholische Theologie Basismodul 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Schramm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester → Wahlpflichtfach Katholische Theologie → Wahlpflichtfach Katholische Theologie
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:
- 205801 Vorlesung Grundlagen der Theologischen Ethik
- 205802 Vorlesung Grundfragen der Religionspädagogik
- 205803 Vorlesung Gotteslehre

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 20581 Katholische Theologie Basismodul 2 (LBP), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Universität Hohenheim
Modul: 20590 Katholische Theologie Basismodul 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Schramm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester → Wahlpflichtfach Katholische Theologie → Wahlpflichtfach | |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | • 205903 Vorlesung Die synoptischen Evangelien  
• 205901 Vorlesung Didaktik des Religionsunterrichts ODER Vom Lehrplan zum Unterricht  
• 205902 Vorlesung Theologische Wirtschafts- und Technikethik ODER Bioethik | |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnr. und -name: | 20591 Katholische Theologie Basismodul 3 (LBP), Schriftlich oder Mündlich, Gewichtung: 1 | |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Universität Hohenheim | |
Modul: 23600 Katholische Theologie Vertiefungsmodul 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Schramm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 236001 Vorlesung Offenbarung und Theologie der Weltreligionen ODER Christologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 236002 Vorlesung Exegetische Methoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 236003 Vorlesung Christentum und Weltreligionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 236004 Vorlesung Theorie und Praxis des Religionsunterrichts mit Hospitationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>23601 Katholische Theologie Vertiefungsmodul 1 (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Universität Hohenheim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
311 Wahlpflichtfach Wirtschaftswissenschaften

Zugeordnete Module:

- 12090 BWL I: Produktion, Organisation, Personal
- 13030 Rechtliche Grundlagen der BWL
- 13610 Wissenschaftliches Arbeiten
- 16490 Grundlagen der Betriebswirtschaftslehre
- 27460 Mikroökonomik
- 27470 Makroökonomik
- 38160 Grundlagen der Volkswirtschaftslehre
Modul: 12090 BWL I: Produktion, Organisation, Personal

2. Modulkürzel: 100120001
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Birgit Renzl

9. Dozenten: Andreas Größler

Birgit Renzl

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 5. Semester

➞ Wahlpflichtfach Wirtschaftswissenschaften --> Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 5. Semester

➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Grundlagen der BWL

12. Lernziele:

**Veranstaltung Produktionsmanagement:**

Die Studierenden sind am Ende der Veranstaltung in der Lage,

- Produktionssysteme mit Hilfe von Produktions- und Kostenfunktionen abzubilden,
- produktionswirtschaftliche Fragestellungen in Planungsmodellen abzubilden,
- grundlegende Planungsmethoden der Produktion anzuwenden.

**Veranstaltung Organisation und Personalführung:**


Die Studierenden sind in der Lage, ausgewählte Führungsmethoden anzuwenden.

13. Inhalt:

**Veranstaltung Produktionsmanagement:**


**Veranstaltung Organisation und Personalführung:**

Funktionelle, institutionelle, personelle und instrumentelle Zugänge zu Führungssystemen, Führungsstile und Führungsmodelle, Dezentralisierung der Personalführung, interaktionelle und infrastrukturelle Führung. Grundlagen der Qualifizierung, Rekrutierung und Motivierung (Aufbau von Anreizsystemen), Eingliederung und Aufgliederung der Organisationsgestaltung, Organisationsstrukturen,
Organisationsprozesse, Projektorganisation, Center-Konzepte, Matrixorganisation, Koordinationsorgane, Kontextfaktoren: Strategie, Personal und Technologie, Organisationsstrukturen für das internationale und das Produktgeschäft.

14. Literatur:
• Skript Produktionsmanagement
• Skript Organisation und Personalführung

Veranstaltung Produktionsmanagement:

15. Lehrveranstaltungen und -formen:
• 120904 Übung BWL I: Organisation und Personalführung
• 120901 Vorlesung BWL I: Produktionsmanagement
• 120902 Übung BWL I: Produktionsmanagement
• 120903 Vorlesung BWL I: Organisation und Personalführung

16. Abschätzung Arbeitsaufwand:
Vorlesung BWL I: Produktionsmanagement
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h
Übung BWL I: Produktionsmanagement
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h
Vorlesung BWL I: Organisation und Personalführung
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h
Übung BWL I: Organisation und Personalführung
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
12091 BWL I: Produktion, Organisation, Personal (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: ABWL und Organisation
Modul: 13030 Rechtliche Grundlagen der BWL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Henry Schäfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Lorz, Henry Schäfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Nach Abschluss des Moduls beherrschen die Studierenden folgende Grundlagen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Handelsrechtliche Grundlagen (HGB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technik zur Aufstellung eines Jahresabschlusses für Handels- und Industriebetriebe gemäß HGB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundkenntnisse des Bürgerlichen Rechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zentrale, praxisrelevante Kenntnisse im Handels- und Gesellschaftsrecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind nach Abschluss des Moduls in der Lage, Sachverhalte des täglichen Leben sowie Vorgänge/ Geschäftsvorfälle aus dem Bereich des Wirtschaftslebens in ihrer rechtlichen Bedeutung und Problemstellung zu beurteilen, ggf. handelsrechtlich für das Unternehmen abzubilden sowie mögliche Lösungswege zu erkennen und zu entwickeln.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden verfügen über ein geschärftes Problembewusstsein für die Einordnung juristisch relevanter Vorgänge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Das Modul hat die Aufgabe, die Studierenden in die rechtlichen Grundlagen der Betriebswirtschaftslehre einzuführen. Im ersten Teil des Moduls (Technik des betrieblichen Rechnungswesens) wird die Technik zur Aufstellung eines Jahresabschlusses (Bilanz und Gewinn- und Verlustrechnung) für Handels- und Industriebetriebe gemäß Handelsgesetzbuch (HGB) gelehrt. Die Veranstaltung (Vorlesung + Übung) hat dabei in erster Linie die Aufgabe, die Studierenden in das System der doppelten Buchführung einzuführen. Folglich bilden die gesetzestheoretischen Grundlagen, die buchungstechnische Behandlung der wichtigsten Geschäftsvorfälle von Handels- und Industrieunternehmen sowie Aufstellung des Jahresabschlusses den Schwerpunkt der Ausführungen. Im zweiten Teil des Moduls werden die Grundzüge des Bürgerlichen Rechts, insbesondere die Grundlagen der Rechtsordnung, Systematik des Bürgerlichen Rechts, die Entstehung von Rechtsgeschäften sowie insbesondere das...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
vertragliche und außervertragliche Schuldrecht vermittelt. Im Vorlesungsteil Handels- und Gesellschaftsrecht wird zunächst ein Überblick über beide Bereiche gegeben, sodann die Handelsgeschäfte erläutert und die wichtigsten Rechtsformen im Detail erörtert.

14. Literatur:

**Technik des betrieblichen Rechnungswesens:**
Alle Folien, Übungsaufgaben und Lösungen stehen zum Download zur Verfügung. Die Basisliteratur umfasst die folgenden Werke:
- Gesetzestext: Handelsgesetzbuch (HGB), Aktuellste Auflage.

**Grundzüge der Rechtswissenschaften:**

Lehrbücher:
- Ulrich Eisenhardt, Einführung in das Bürgerliche Recht, 5. Aufl. 2007, Verlag C. F. Müller
- Wolfgang B. Schünemann, Wirtschaftsprivatrecht, 5. Auflage Mai 2006, UTB 1584 (UTB Lucius und Lucius)
- Peter Bähr, Grundzüge des Bürgerlichen Rechts, 10. Auflage 2004, Verlag Vahlen
- Knut Werner Lange, Basiswissen Ziviles Wirtschaftsrecht, 4. Auflage 2007 Verlag Vahlen
- Jos Mehrings, Grundlagen des Wirtschaftsprivatrechts, 2006 (Pearsons Studium)
- Friedrich Schade, Wirtschaftsprivatrecht - Grundlagen des Bürgerlichen Rechts sowie des Handels- und Wirtschaftsrechts, 2006 (Kohlhammer)

Zur Vorbereitung auf die Multiple Choice-Diplom-Vorprüfungsklausur:

15. Lehrveranstaltungen und -formen:
- 130301 Vorlesung Technik des betrieblichen Rechnungswesens
- 130304 Übung Grundzüge der Rechtswissenschaften
- 130303 Vorlesung Grundzüge der Rechtswissenschaften
- 130302 Übung Technik des betrieblichen Rechnungswesens
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h  
Selbststudiumszeit / Nacharbeitszeit: 96 h  
Gesamt: 180 h |
|-----------------------------|---------------------------------|
| 17. Prüfungsnummer/n und -name: | • 13031 Technik des betrieblichen Rechnungswesens (PL), Schriftlich, 60 Min., Gewichtung: 1  
• 13032 Grundzüge der Rechtswissenschaft (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | BWL II: Rechnungswesen und Finanzierung |
| 19. Medienform: | |
| 20. Angeboten von: | ABWL und Finanzwirtschaft |
Modul: 13610 Wissenschaftliches Arbeiten

2. Modulkürzel: 100410002
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Susanne Becker
9. Dozenten: Susanne Becker

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
→ Wahlpflichtfach Wirtschaftswissenschaften --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
Die Studierenden sind nach Abschluss des Moduls in der Lage,

• eine vorgegebene wirtschaftswissenschaftliche Themenstellung
  mit Hilfe der Technik Wissenschaftlichen Arbeitens eigenständig
  zu bearbeiten

und entsprechend ihres Studiengangs

• die in den nachfolgenden Semestern zu erbringende(n)
  Seminararbeite(n) anzufertigen.

13. Inhalt:
In der Vorlesung werden einführend die Kriterien und Grundsätze
von Wissenschaftlichkeit und Wissenschaftlichem Arbeiten erörtert.
Daran anschließend werden die einzelnen Schritte der Konzeption
und Anfertigung einer wissenschaftlichen Arbeit behandelt. Dies
beinhaltet sowohl die inhaltlichen Aspekte der Texterstellung
wie Literaturrecherche und -auswertung, Strukturierung und
Aufbau der Arbeit als auch die formalen Aspekte wie Zitierweise
und Gestaltung der Arbeit. Abschließend werden im Rahmen
der Präsentation einer wissenschaftlichen Arbeit die inhaltliche
Erstellung eines Vortrags sowie dessen Visualisierung behandelt.
In der begleitenden Übung werden die einzelnen Schritte
der Anfertigung einer wissenschaftlichen Arbeit konkret
eingeübt. Die Studierenden bearbeiten selbständig eine
wirtschaftswissenschaftliche Fragestellung, sie fertigen eine
schriftliche Ausarbeitung ihres Themas an und präsentieren ihre
Ergebnisse.

14. Literatur:
Vorlesungsfolien stehen zum Download in ILIAS zur Verfügung.
Die Basisliteratur umfasst u.a. die folgenden Werke:

• N. Franck und J. Stary: Die Technik wissenschaftlichen
  Arbeitens, Schöningh, neueste Auflage
• M. Kornmeier: Wissenschaftlich schreiben leicht gemacht, Haupt
  UTB, neueste Auflage
• W.E. Rossig und J. Prätsch: Wissenschaftliche Arbeiten, Achim,
  neueste Auflage
• M.R. Theisen: Wissenschaftliches Arbeiten, Vahlen, neueste
  Auflage
15. Lehrveranstaltungen und -formen:
• 136101 Vorlesung Wissenschaftliches Arbeiten
• 136102 Übung Wissenschaftliches Arbeiten

16. Abschätzung Arbeitsaufwand:

**Vorlesung:**
Präsenzzeit: 28 h  
Selbststudiumszeit: 62 h

**Übung:**
Präsenzzeit: 28 h  
Selbststudiumszeit: 62 h

**Gesamtzeitaufwand:** 180 h

17. Prüfungsnummer/n und -name:
13611 Wissenschaftliches Arbeiten (LBP), Schriftlich oder Mündlich, Gewichtung: 1
Hausarbeit (max. 15 Seiten), Präsentation (max. 30 Minuten)
Gewichtung: Hausarbeit 60%, Präsentation 40%.

18. Grundlage für ...:
Bachelorarbeit

19. Medienform:

20. Angeboten von:
Theoretische Volkswirtschaftslehre
## Modul: 16490 Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Wolfgang Burr</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Burr</td>
</tr>
<tr>
<td></td>
<td>Manuel Bail</td>
</tr>
</tbody>
</table>

### 10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  - Wahlpflichtfach Wirtschaftswissenschaften --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  - Zusatzmodule

### 11. Empfohlene Voraussetzungen:

Keine

### 12. Lernziele:

- Die Studierenden sind mit dem betriebswirtschaftlichen Vokabular vertraut und lernen auf der Basis der zentralen betriebswirtschaftlichen Begrifflichkeiten und Konzepte zu argumentieren.
- Die Studierenden kennen nach Abschluss des Moduls die verschiedenen betriebswirtschaftlichen Teilbereiche und die dortigen Problemstellungen und eingesetzte Instrumente. Sie sind in der Lage die wichtigsten betriebswirtschaftlichen Theorien zu erklären und anzuwenden.
- Die Studierenden lernen die vielfältigen Beziehungen zwischen ausgewählten betriebswirtschaftlichen Teilbereichen kennen. Sie können die Grundlagen der thematisierten betriebswirtschaftlichen Teildisziplinen darstellen und in den betriebswirtschaftlichen Gesamtkontext einordnen.
- Die Studierenden erwerben ein Wissensfundament für nachfolgende vertiefende Veranstaltungen.

### 13. Inhalt:


Weiterhin werden entscheidungstheoretische Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik innerhalb der Betriebswirtschaftslehre begreiflich gemacht.

Anschließend werden die grundlegenden Theorien der Unternehmensführung betrachtet. Im Einzelnen werden Anwendungsbereiche, Grundannahmen, Grundelemente und Untersuchungseinheiten erläutert und innerhalb praxisorientierter Aufgaben angewendet.

Schließlich bekommen die Studierenden erste Einblicke in ausgewählte Teilbereiche der Betriebswirtschaftslehre und lernen...

14. Literatur:
- Ergänzende Folien zu Vorlesungen und Übungen
- Übungsaufgaben und Lösungen stehen zum Download zur Verfügung.

Die Basisliteratur umfasst die folgenden Werke:

15. Lehrveranstaltungen und -formen:
- 164902 Übung Grundlagen der Betriebswirtschaftslehre
- 164901 Vorlesung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:
Vorlesung
- Präsenzzeit: 28 h
- Selbststudium: 32 h
Übung
- Präsenzzeit: 14 h
- Selbststudium: 16 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
16491 Grundlagen der Betriebswirtschaftslehre (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... : 

19. Medienform:
Tafel, Beamer, Overhead-Projektor

20. Angeboten von:
ABWL, Innovations- und Dienstleistungsmanagement
Modul: 27460 Mikroökonomik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100402004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldafter:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Bernd Woeckener</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Woeckener</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Die Studierenden sind nach Abschluss des Moduls in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• die wichtigsten ökonomischen Entscheidungsprobleme der privaten Haushalte und Unternehmen strukturiert zu behandeln,</td>
</tr>
<tr>
<td></td>
<td>• den Einfluss von Marktmacht und von strategischem Verhalten auf das Marktergebnis zu erkennen und richtig einzuschätzen,</td>
</tr>
<tr>
<td></td>
<td>• staatliche Markteingriffskompetent zu beurteilen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die Studierenden sind nach Abschluss des Moduls in der Lage,</td>
</tr>
<tr>
<td></td>
<td>• R.S. Pindyck und D.L. Rubinfeld: Microeconomics, Prentice Hall, neueste Auflage</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 274601 Vorlesung Mikroökonomik</td>
</tr>
<tr>
<td></td>
<td>• 274602 Übung Mikroökonomik</td>
</tr>
<tr>
<td></td>
<td>• 274603 Methodenübung Mikroökonomik</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>27461 Mikroökonomik (PL), Schriftlich, 60 Min., Gewichtung: 1</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mikroökonomik und räumliche Ökonomik</td>
</tr>
</tbody>
</table>
Modul: 27470 Makroökonomik

2. Modulkürzel: 100410005
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Clemens Englmann
9. Dozenten: Frank Clemens Englmann
10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
   ➞ Wahlpflichtfach Wirtschaftswissenschaften
   ➞ Wahlpflichtfach
   B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
   ➞ Vorgezogene Master-Module
11. Empfohlene Voraussetzungen:
12. Lernziele: Die Studierenden sind nach Abschluss des Moduls in der Lage,
   • die Bedeutung der makroökonomischen Entwicklung für die einzelnen Unternehmen und Haushalte einzuschätzen,
   • die Auswirkungen von technischen Neuerungen und wirtschaftspolitischen Maßnahmen auf Volkseinkommen, Nettoexporte und Wechselkurs zu prognostizieren,
   • wirtschaftspolitische Maßnahmen kritisch zu diskutieren.
   Die Basisliteratur umfasst die folgenden Werke:
   • F. C. Englmann: Makroökonomik, Kohlhammer, neueste Auflage
   • N. G. Mankiw: Macroeconomics, Palgrave Macmillan, neueste Auflage
15. Lehrveranstaltungen und -formen:
   • 274703 Methodenübung Makroökonomik
   • 274701 Vorlesung Makroökonomik
   • 274702 Übung Makroökonomik
16. Abschätzung Arbeitsaufwand: Vorlesung
   Präsenzzeit: 28 h
   Selbststudiumszeit / Nacharbeitszeit: 62 h

Stand: 19. Oktober 2017
Übung
Präsenzzeit: 14 h
Selbststudiumszeit / Nacharbeitszeit: 31 h
Methodenübung
Präsenzzeit: 14 h
Selbststudiumszeit / Nacharbeitszeit: 31 h
Gesamtzeitaufwand: 180 h

17. Prüfungsnummer/n und -name: 27471 Makroökonomik (PL), Schriftlich, 60 Min., Gewichtung: 1
Lehramtsstudiengang Politikwissenschaft/Wirtschaftswissenschaft: schriftliche Abschlussprüfung von 60 Minuten Dauer
BSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer
MSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer

18. Grundlage für ...: Wirtschaftspolitik LA Umweltpolitik Standort und Verkehr

19. Medienform: 

20. Angeboten von: Theoretische Volkswirtschaftslehre
Modul: 38160 Grundlagen der Volkswirtschaftslehre

2. Modulkürzel: 100402005
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 3
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Bernd Woeckener
9. Dozenten: Bernd Woeckener
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011,
    → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → Wahlpflichtfach Wirtschaftswissenschaften -->
    Wahlpflichtfach
11. Empfohlene Voraussetzungen:
12. Lernziele:
    Die Studierenden sind nach Abschluss des Moduls in der Lage,
    • auf der Basis der zentralen ökonomischen Begrifflichkeiten und
      Konzepte zu argumentieren,
    • das Funktionieren und die Funktionsbedingungen von Märkten
      richtig einzuschätzen,
    • auf der Basis der Kenntnis der wichtigsten makroökonomischen
      Größen und ihrer Zusammenhänge gesamtwirtschaftliche
      Argumentationen und Politikansätze kompetent einzuschätzen.
13. Inhalt:
    Dieses einführende Modul behandelt die grundlegenden Begriffe,
    Konzepte und Methoden der einzel- und marktwirtschaftlichen
    (mikroökonomischen) sowie der gesamtwirtschaftlichen
    (makroökonomischen) Theorie. Aufbauend auf den grundlegenden
    Konzepten der Knappheit, der Kosten und der Arbeitsteilung steht
    im mikroökonomischen Teil das Funktionieren von Märkten als
    Orten des Aufeinandertreffens von Angebot und Nachfrage im
    Mittelpunkt. Der makroökonomische Teil erläutert die zentralen
    gesamtwirtschaftlichen Größen (Aggregate) einer offenen
    Volkswirtschaft und analysiert die Zusammenhänge zwischen
    diesen Größen.
14. Literatur:
    • B. Woeckener: Volkswirtschaftslehre, Springer, neueste Auflage
    • P. Samuelson: Economics, McGraw-Hill/ Irwin, neueste Auflage
15. Lehrveranstaltungen und -formen:
    • 381601 Vorlesung Einführung in die VWL
    • 381602 Übung Einführung in die VWL
16. Abschätzung Arbeitsaufwand:
    Vorlesung: Präsenzzeit: 28 h
    Selbststudiumszeit / Nacharbeitszeit:32 h
    Übung:
    Präsenzzeit: 14 h
    Selbststudiumszeit / Nacharbeitszeit:16 h
    Gesamt:90 h
17. Prüfungsnummer/n und -name:
    38161 Grundlagen der Volkswirtschaftslehre (PL), Schriftlich, 60
    Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Mikroökonomik und räumliche Ökonomik
312 Wahlpflichtfach Informatik, Grundlagen Informatik

Zugeordnete Module:
- 10260 Programmierkurs
- 10280 Programmierung und Software-Entwicklung
- 10290 Projekt-INF
- 10940 Theoretische Grundlagen der Informatik
- 12060 Datenstrukturen und Algorithmen
Modul: 10260 Programmierkurs

2. Modulkürzel: 051520010
5. Modulduer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Weitere Sprachen

8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn
9. Dozenten: Jason Utt

10. Zuordnung zum Curriculum in diesem Studiengang:
    - B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
      ─ Basismodule Informatik --> Hauptfach Informatik --> Hauptfach
    - B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
      ─ Wahlpflichtfach Informatik, Grundlagen Informatik --> Wahlpflichtfach
    - B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
      ─ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:
    Independently writing programs and solving programming tasks in the programming language Python, with emphasis on concepts relevant for Natural Language Processing and Computational Linguistics.

13. Inhalt:
    The module primarily targets students in Natural Language Processing (3rd semester), Computational Linguistics and Digital Humanities. It covers the key concepts of the programming language Python and provides practical experience in writing Python programs in the context of processing linguistic data and resources. Typically, the lectures of the module course as well as the materials are in English, however, students not fluent in English in the programming context will receive support in German.

14. Literatur:
    Folien.
    Slides.

15. Lehrveranstaltungen und -formen:
    • 102601 Ubung Programmierkurs

16. Abschatzung Arbeitsaufwand:
    Prasenzzeit: 21 Stunden
    Nachbearbeitungszeit: 69 Stunden

17. Prufungsnummer/n und -name:
    10261 Programmierkurs (USL), Sonstige, Gewichtung: 1
Übungsschein - Scheinkriterien werden zu Beginn der Veranstaltung angekündigt.
Criteria for credits are announced at the beginning of the course.

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grundlagen der Computerlinguistik</td>
</tr>
</tbody>
</table>
Modul: 10280 Programmierung und Software-Entwicklung

4. SWS: 6  7. Sprache: Deutsch

8. Modulverantwortlicher: Frank Leymann
9. Dozenten: Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ Wahlpflichtfach Informatik, Grundlagen Informatik
→ Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
→ Basismodule Informatik
→ Hauptfach Informatik

B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
→ Vorgezogene Master-Module


12. Lernziele:

Die Teilnehmer haben einen Überblick über das Gebiet der Informatik. Sie haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren und selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.

13. Inhalt:

• Die Programmiersprache Java und die virtuelle Maschine
• Objekte, Klassen, Schnittstellen, Blöcke, Programmstrukturen, Kontrakte
• Klassenmodellierung mit der UML
• Objekterzeugung und -ausführung
• Boolesche Logik
• Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen
• Rechner, Hardware
• Syntaxdarstellungen
• Übersicht über Programmiersprachen und -werkzeuge
• Grundlegende Datenstrukturen und Algorithmen
• Vererbung, Polymorphe
• Semantik
• Programmierung graphischer Oberflächen
• Übergang zum Software Engineering

14. Literatur:

• Meyer, Bertrand, Touch of Class, Springer-Verlag, 2009

15. Lehrveranstaltungen und -formen:

• 102801 Vorlesung Programmierung und Softwareentwicklung
• 102802 Übung Programmierung und Softwareentwicklung

16. Abschätzung Arbeitsaufwand: Präsenztunden: 63 h
Eigenstudiumstunden: 207 h
Gesamtstunden: 270 h

17. Prüfungsnummer/n und -name:
• 10281 Programmierung und Software-Entwicklung (PL), Schriftlich, 90 Min., Gewichtung: 1
• Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...:
Datenstrukturen und Algorithmen

19. Medienform:
• Folien über Beamer
• Tafelanschrieb

20. Angeboten von:
Architektur von Anwendungssystemen
# Modulkürzel: 10290 Projekt-INF

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900095</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Projekt-INF</td>
</tr>
<tr>
<td>6. Modul:</td>
<td>051900095</td>
</tr>
<tr>
<td>7. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>8. Modul:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>9. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>10. Sprache:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>11. Dozenten:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Modulverantwortlicher:</td>
<td>Jun.-Prof. Dr. Niels Henze</td>
</tr>
<tr>
<td>13. Dozenten:</td>
<td>Dozenten der Informatik</td>
</tr>
</tbody>
</table>

## 10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester Wahlpflichtfach Informatik, Grundlagen Informatik --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester Kernmodule Informatik --> Hauptfach Informatik --> Hauptfach

## 11. Empfohlene Voraussetzungen:

Basismodule der Informatik. Darüber hinaus variabel je nach Projektanforderung.

## 12. Lernziele:

Die Studierenden sollen frühzeitig und beispielhaft an Informatik-Forschung herangeführt werden ("undergraduate research").

Dazu soll in einem Team von mindestens 3 Studierenden in einem Zeitraum von höchstens 6 Monaten ein Projekt bearbeitet werden, das sich an aktuellen Forschungsfragenstellung der Abteilungen und Institute orientiert. Ein Beitrag zu laufenden Drittmittelprojekten ist möglich, ebenso eine Fortsetzung des Projekts in ausgewählten Bachelor-Arbeiten. Die Teilnehmer können ein forschungsorientiertes Projekt unter Anleitung planen, durchführen und die Ergebnisse dokumentieren und präsentieren.


## 13. Inhalt:


Um dem Forschungscharakter des Projekts gerecht zu werden, soll das Ergebnis in einer wissenschaftlichen Publikation (max. 10 Seiten in Englisch) festgehalten werden, die einer einheitlichen Formatvorlage folgt. Zu Beginn eines jeden Semesters sollen die bis zum Ende des vorangegangenen Semesters abgegebenen Projektanträge auf einem internen Präsentations-Nachmittag in Form eines Posters und ggf. eines zusätzlichen Vortrags (bei
besonders herausragender Qualität) von den Studierenden präsentiert werden.


15. Lehrveranstaltungen und -formen: • 102901 Seminar Projekt

16. Abschätzung Arbeitsaufwand: 180 Stunden pro Teammitglied


18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Formale Methoden der Informatik
Modul: 10940 Theoretische Grundlagen der Informatik

2. Modulkürzel: 050420005
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester

4. SWS: 8
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf

9. Dozenten: Volker Diekert
Ulrich Hertrampf

10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   → Kernmodule Informatik --> Hauptfach Informatik --> Hauptfach
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   → Vorgezogene Master-Module
   B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
   → Wahlpflichtfach Informatik, Grundlagen Informatik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
   • Logik und Diskrete Strukturen: Die Studierenden haben die
     grundsätzlichen Kenntnisse in Logik und Diskreter Mathematik
     erworben, wie sie in den weiteren Grundvorlesungen der
     Informatik in verschiedenen Bereichen benötigt werden.
   • Automaten und Formale Sprachen: Die Studierenden
     beherrschen wichtige theoretische Grundlagen der Informatik,
     insbesondere die Theorie und Algorithmik endlicher Automaten.
     Hierzu gehört das Kennenlernen, Einordnung und Trennung der
     Chomskyschen Sprachklassen.

13. Inhalt:
   Logik und Diskrete Strukturen:
   • Einführung in die Aussagenlogik: Semantik (Wahrheitswerte),
     Syntax (Axiome und Schlussregeln), Normalformen,
     Hornformeln, Endlichkeitssatz, aussagenlogische Resolution,
   • Einführung in die Prädikatenlogik 1. Stufe: Semantik und Syntax,
     Normalformen, Unifikatoren, Herbrand-Theorie,
     prädikatenlogische Resolution,
   • Elementare Zahlentheorie: Rechnen mit Restklassen, endliche
     Körper, Euklidischer Algorithmus, Chinesischer Restsatz,
     Primzahltests, RSA-Verfahren, Wachstumsabschätzungen,
     Grundbegriffe der Wahrscheinlichkeitsrechnung, Kombinatorik,
     Graphen.
   Automaten und Formale Sprachen:
   • Deterministische- bzw. nichtdeterministische endliche
     Automaten, reguläre Ausdrücke, Minimierung endlicher
     Automaten, Iterationslemmata für reguläre und kontextfreie
     Sprachen, Normalformen, Kellerautomaten, Lösen des
     Wortproblems kontextfreier Sprachen mit dem CYK-Algorithmus,
     linear beschränkte Automaten, kontextsensitive Grammatiken,
     Typ 0-Grammatiken und Turingmaschinen.

14. Literatur:
   • John Hopcroft, Jeffrey Ullman, Einführung in die
     Automatentheorie, formale Sprachen und Komplexitätstheorie,
   • Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999.
15. Lehrveranstaltungen und -formen:
• 109401 Vorlesung Logik und Diskrete Strukturen
• 109403 Vorlesung Automaten und Formale Sprachen
• 109404 Übung Automaten und Formale Sprachen
• 109402 Übung Logik und Diskrete Strukturen
• 109405 Zusatztutorial Theoretische Grundlagen der Informatik für MSV (freiwillig)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 10941 Theoretische Grundlagen der Informatik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich, 30 Min.

18. Grundlage für ... : 

19. Medienform: 

20. Angeboten von: Theoretische Informatik
## Modul: 12060 Datenstrukturen und Algorithmen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051510005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Daniel Weiskopf</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Daniel Weiskopf, Andrés Bruhn</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 10280 Programmierung und Software-Entwicklung</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen nach engagierter Mitarbeit in dieser Veranstaltung diverse zentrale Algorithmen auf geeigneten Datenstrukturen, die für eine effiziente Nutzung von Computern unverzichtbar sind. Sie können am Ende zu gängigen Problemen geeignete programmiersprachliche Lösungen angeben und diese in einer konkreten Programmiersprache formulieren. Die Lernziele lassen sich wie folgt zusammenfassen: &lt;br&gt;• Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen&lt;br&gt;• Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität&lt;br&gt;• Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen&lt;br&gt;• Erste Begegnung mit nebenläufigen Algorithmen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Es werden die folgenden Themen behandelt: &lt;br&gt;• Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen&lt;br&gt;• Komplexität und Effizienz von Algorithmen, O-Notation&lt;br&gt;• Listen (Stack, Queue, doppelt verkettete Listen)&lt;br&gt;• Sortierverfahren (Selection-, Insertion-, Bubble-, Merge-, Quick-Sort)&lt;br&gt;• Bäume (Binär-, AVL-, 2-3-4-, Rot-Schwarz-, B-Bäume, Suchbäume, Traversierung, Heap)&lt;br&gt;• Räumliche Datenstrukturen (uniforme Gitter, Oktal-, BSP-, kD-, CSG-Bäume, Bounding-Volumes)&lt;br&gt;• Graphen (Datenstrukturen,DFS, BFS, topologische Traversierung,Dijkstra-, A*-Algorithmus, Bellman-Ford-Algorithmen, minimale Spannbäume, maximaler Fluss)&lt;br&gt;• Räumliche Graphen (Triangulierung, Voronoi, Delaunay, Graph-Layout)&lt;br&gt;• Textalgorithmen (String-Matching, Knuth-Morris-Pratt, Boyer-Moore, reguläre Ausdrücke, Levenshtein-Distanz)&lt;br&gt;• Hashing (Hashfunktionen, Kollisionen)</td>
</tr>
</tbody>
</table>
• Verteilte Algorithmen (Petri-Netze, Programmieren nebendläufiger Abläufe, einige parallele und parallelisierte Algorithmen)
• Algorithmenentwurf und -muster (inkrementell, greedy, divide-and-conquer, dynamische Programmierung, Backtracking, randomisierte Algorithmen)
• Maschinelles Lernen (übertachtes Lernen, Entscheidungsbäume, SVM, neuronale Netze, unübertachtes Lernen, k-Means)

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 120601 Vorlesung Datenstrukturen und Algorithmen
• 120602 Übung Datenstrukturen und Algorithmen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 12061 Datenstrukturen und Algorithmen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Visualisierung
313 Wahlpflichtfach Bautechnik

Zugeordnete Module:
- 3131 Allgemeine Wahlfächer Bautechnik
- 3132 Pflichtcontainer Holzbau
- 3133 Pflichtcontainer Holztechnik
3131 Allgemeine Wahlfächer Bautechnik

Zugeordnete Module:

- 10610 Baubetriebslehre I
- 10710 Werkstoffe im Bauwesen II
- 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken
- 10950 Geologie
- 10960 Einführung in die Rechtsgrundlagen des Bauwesens
- 10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure
- 10990 Entwurf in Zusammenarbeit mit Architekturstudenten
- 11340 Zerstörungsfreie Prüfung im Bauwesen
- 20640 Betontechnologie
- 20650 Konstruktion und Material
- 34180 Statistik und Informatik
- 37150 Fertigungsverfahren in der Bauwirtschaft
- 41090 Einführung in die bauphysikalische Messtechnik
- 42380 Angewandte Bauphysik
Modul: 10610 Baubetriebslehre I

4. SWS: 5  7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner
9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
   → Bauwirtschaft --> Hauptfach Bautechnik -->
   Hauptfach
   B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
   • Bau: Einführung in das Bauingenieurwesen -
     Fertigungsverfahren in der Bauwirtschaft
   • IuI, Techn.-Päd., BWL techn.: Fertigungsverfahren in der
     Bauwirtschaft

12. Lernziele:
   Die Studierenden haben Kenntnisse über die Angebots-
   und Realisierungsphase im Bauen, mit dem Schwerpunkt
   Ausschreibung, Vergabe und Kalkulation von Baupreisen.
   Daneben haben sie Verständnis für die Zusammenhänge und
   Strukturen in der Bauwirtschaft.

13. Inhalt:
   Kalkulation von Bauleistungen
   a) Einführung in die Kalkulation
      • Grundlagen des Rechnungswesens
      • Bauauftragsrechnung und Kalkulation
      • Verfahren der Kalkulation
      • Aufbau der Kalkulation
   b) Durchführung der Kalkulation
      • Gliederung der Kalkulation
      • Kostenbestandteile einer Kalkulation
      • praktische Durchführung anhand von Beispielen
   Ausschreibung und Vergabe
   • Ausschreibung von freiberuflichen Leistungen
   • Ausschreibung von Lieferleistungen
   • Ausschreibung von Bauleistungen
   • VOB
   • HOAI
   • Aufbau von Ausschreibungssonderlagen

14. Literatur:
   • Berner, F., Kochendörfer, B. Schach, R.: Grundlagen der
     Baubetriebslehre 1, Baubetriebswirtschaft, 2. Auflage, Aus
     der Reihe: Leitfaden des Baubetriebs und der Bauwirtschaft,
     Springer Vieweg 2013
   • Drees, G., Paul, W.: Kalkulation von Baupreisen, 12. Auflage,
     Berlin: Bauwerk, 2015
   • VOB/ HOAI

15. Lehrveranstaltungen und -formen:
   • 106101 Vorlesung Baubetriebslehre I
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 48 h  
Selbststudium / Nacharbeitszeit: 132 h  
**Gesamt: 180 h** |
|-----------------------------|-------------------------|
| 17. Prüfungsnummer/n und -name: | • 10611 Baubetriebslehre I (PL), Schriftlich, 120 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Schriftlich oder Mündlich  
Prüfungsvorleistung: 1 Hausübung + 1 Kolloquium |
| 18. Grundlage für ... : | Baubetriebslehre II |
| 19. Medienform: | |
| 20. Angeboten von: | Baubetriebslehre |
Modul: 10710 Werkstoffe im Bauwesen II

2. Modulkürzel: 021500102
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modul dauer: Zweisemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Harald Garrecht
9. Dozenten: Joachim Schwarte
               Harald Garrecht
               Karim Hariri
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011,
        → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
        → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
                   Bautechnik --> Wahlpflichtfach
11. Empfohlene Voraussetzungen: Werkstoffe im Bauwesen I
12. Lernziele:
    Die Studierenden verfügen über vertiefte Kenntnisse, die über die im Fach "Werkstoffe im Bauwesen I" vermittelten Grundlagen hinausgehen, bezüglich der material- und milieugerechten Anwendung der Ingenieurbaustoffe. Sie können realen Deformations- und Schädigungsprozessen die jeweils zugehörigen verfügbaren theoretischen Modelle zuordnen und mit den entsprechenden Rechenverfahren Rückschlüsse auf die Prozesse gewinnen.
13. Inhalt:
    Inhalt der Vorlesung im Sommersemester:
    • Rheologie (mit Übungen)
    • Transportvorgänge (mit Übungen)
    • Bautenschutz (Grundlagen)
    • Instandsetzung (Grundlagen)
    Inhalt der Vorlesung im Wintersemester:
    • Betriebsschwerpunkt (mit Übungen)
    • Bruchmechanik (mit Übungen)
    • Faserbeton, Faserverbundsysteme, Kunststoffe, Holz
14. Literatur:
    Online-Materialien im Ilias-System
    Reinhardt Ingenieurbaustoffe, 2. Auflage, Wilhelm Ernst und Sohn, Berlin 2010
15. Lehrveranstaltungen und -formen:
    • 107102 Übung Werkstoffe im Bauwesen II
    • 107101 Vorlesung Werkstoffe im Bauwesen II
16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 56 h
    Selbststudium / Nacharbeitszeit: 124 h
    Gesamt: 180 h
17. Prüfungsnummer/n und -name:
    10711 Werkstoffe im Bauwesen II (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Werkstoffe im Bauwesen
Modul: 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken

4. SWS: 4  7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jan Hofmann
9. Dozenten: Jan Hofmann

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
    → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
    Bautechnik --> Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
    → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Werkstoffe I


13. Inhalt: Die Vorlesung ist unterteilt in:
    • Denkmalserhaltung
    • Schäden und Restaurierung von Naturstein
    • Schäden und Instandsetzung von Holzkonstruktionen
    • Hochbauten, Parkbauten, Brückenbauerwerken, Tief- und Wasserbauwerken, Tunnel- und Sonderbauwerken
    • Verstärken von Stahlbetonbauteilen mit angeklebten Stahl- bzw. Kohlenfaserlaschen und eingemörtelten Bewehrungsstäben

    Es werden Arbeitsblätter verteilt, die von den Studierenden bearbeitet werden müssen.

14. Literatur:
    • Folien.

15. Lehrveranstaltungen und -formen:
    • 107202 Übung Schutz, Instandsetzung und Ertüchtigung von Bauwerken
    • 107201 Vorlesung Schutz, Instandsetzung und Ertüchtigung von Bauwerken

16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 56 h
    Selbststudium: 124 h

17. Prüfungsnummer/n und -name: 10721 Schutz, Instandsetzung und Ertüchtigung von Bauwerken (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: -

20. Angeboten von: Befestigungstechnik und Verstärkungsmethoden
Modul: 10950 Geologie

2. Modulkürzel: 020600003
5. Moduldauber: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Christian Moormann

9. Dozenten: Bernd Zweschper

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Mit elementaren Grundlagen der Mineralogie und der Petrographie sind den Studierenden vertraut. Sie sind in der Lage, verschiedene Gesteine zu unterscheiden, zu klassifizieren und kennen ihre wesentlichen Eigenschaften. Grundlagen der regionalen Geologie Südwestdeutschlands sind den Studierenden geläufig.

Aus ingenieurgeologischer Sichtweise relevante Eigenschaften sowie ihre auf ihre Gesteinsgenese zurückgehenden Ausprägungen sind den Studierenden geläufig. Sie können diese Kenntnisse auf bautechnische und umweltschutztechnische Probleme anwenden.

Letztlich verstehen die Studierenden die Bedeutung der Geologie als anwendungsorientierte Naturwissenschaft und ihren Bezug zum täglichen Leben.

13. Inhalt:
• System Erde, Einführung und Überblick
• Schalenaufbau der Erde, Plattentektonik
• Seismologie, Erdbeben
• Vulkanismus, magmatische Gesteine
• Verwitterung, Erosion, Transportvorgänge
• Sedimente und Sedimentgesteine
• metamorphe Gesteine
• Gebirgsbildung
• Massenbewegungen, Kreislauf des Wassers
• Regionale Geologie von Südwestdeutschland
• Ingenieurgeologie: Festgesteine und Lockergesteine - Eigenschaften und Klassifikation
• Baugrundwissenschaften
14. Literatur:

Sripte und Übungsunterlagen werden in der Vorlesung ausgegeben, außerdem:


15. Lehrveranstaltungen und -formen:

- 109501 Vorlesung Geologie

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit (2 SWS): 28 h
- Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): 56 h
- Gesamt: 84 h

17. Prüfungsnummer/n und -name:

- 10951 Geologie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

- Geotechnik I: Bodenmechanik

19. Medienform:

- Beamer-Präsentationen, Tafelaufschriften, Film

20. Angeboten von:

- Geotechnik
Modul: 10960 Einführung in die Rechtsgrundlagen des Bauwesens

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Iris Rosenbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlbereich 2 Bautechnik → Hauptfach Bautechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Grundbegriffe des Grundstücksrechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Grundbegriffe des Grundstücksrechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Allgemeine Wahlfächer Bautechnik → Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Einführung und Überblick</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführung in die Rechtsgrundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Öffentliches Baurecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführung in die Grundbegriffe des Bürgerlichen Rechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführung in die VOB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundbegriffe des Grundstücksrechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundwerbsteuer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• BGB, Beck-Texte im dtv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VOB, Beck-Texte im dtv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BauGB, Beck-Texte im dtv</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <a href="http://www.gesetze-im-internet.de">www.gesetze-im-internet.de</a></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 109601 Vorlesung Einführung in die Rechtsgrundlagen im Bauwesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: ca. 21 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nachbereitungszeit: ca. 69 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>10961 Einführung in die Rechtsgrundlagen des Bauwesens (PL), Schriftlich, 60 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Baubetriebslehre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Modul: 10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure

| 3. Leistungspunkte: | 3 LP | 6. Turnus: | Sommersemester |
| 4. SWS: | 2 | 7. Sprache: | Deutsch |
| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Fritz Berner |
| 9. Dozenten: | Cornelius Väth |

**10. Zuordnung zum Curriculum in diesem Studiengang:**
- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
  → Bautechnik --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  → Wahlbereich 1 Bautechnik --> Hauptfach Bautechnik --> Hauptfach
- B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
  → Vorgezogene Master-Module

**11. Empfohlene Voraussetzungen:** Keine

**12. Lernziele:** Die Studierenden können mit den Grundlagen der Betriebswirtschaftslehre praxisgerecht umgehen. Sie haben ein ganzheitliches Verständnis und Kenntnis betriebswirtschaftlicher Zusammenhänge und Hintergründe.

**13. Inhalt:**
- Unternehmen und Unternehmenszusammenschlüsse
- Rechtsformen
- Handelsregister
- Organisationsformen von Unternehmen
- Produktion und Leistungserstellungsprozess
  - Fertigung
  - Produktpolitik
  - Personal
- Finanzwirtschaftlicher Prozess
  - Zahlungsmittel
  - Investitionsrechnung
- Rechnungswesen
  - Buchführung
  - Jahresabschluss (Bilanz und GuV)
  - Ausgewählte Kennzahlen

**14. Literatur:** Olfert/Rahn, Einführung in die Betriebswirtschaftslehre

**15. Lehrveranstaltungen und -formen:**
- 109701 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 109702 Übung Grundlagen der Betriebswirtschaftslehre

**16. Abschätzung Arbeitsaufwand:**
- Präsenzzeit: 21 h
- Selbststudium / Nacharbeitszeit: 44 h
- Gesamt: 65 h

**17. Prüfungsnummer/n und -name:** 10971 Grundlagen der Betriebswirtschaftslehre für Ingenieure (PL), Schriftlich, 60 Min., Gewichtung: 1

**18. Grundlage für ...:**
- BWL I: Produktion, Organisation, Personal
- BWL II: Rechnungswesen und Finanzierung
- BWL III: Marketing und Einführung in die Wirtschaftsinformatik

**19. Medienform:**

**20. Angeboten von:** Baubetriebslehre
Modul: 10990 Entwurf in Zusammenarbeit mit Architekturstudenten

4. SWS: 2  7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro
9. Dozenten: Matthias Rottner
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
    → Allgemeine Wahlfächer Bautechnik → Wahlpflichtfach
    Bautechnik → Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
    → Wahlbereich 2 Bautechnik → Hauptfach Bautechnik → Hauptfach
11. Empfohlene Voraussetzungen:
    Grundlegende Kenntnisse in Tragwerkslehre, Technischem Zeichnen - CAD, Planung und Gebäudeentwurf, Konstruktion, Gebäudetechnik inkl. erfolgreicher Abschluss Modul Grundlagen der Darstellung und Konstruktion
12. Lernziele:
13. Inhalt:
    Das Fach soll als praxisorientierte Form der Lehre die Denk-, Arbeits- und Vorgehensweisen von Planern vermitteln und die Komplexität des Bauens durch die Arbeit an einem praktischen Entwurf mit komplexen Randbedingungen verdeutlichen.
14. Literatur:  
- Vorlesungsskripte  
- Übungsskripte  
- Literaturliste

15. Lehrveranstaltungen und -formen:  
- 109901 Vorlesung Entwurf in Zusammenarbeit mit Architekturstudenten

16. Abschätzung Arbeitsaufwand:  
- Präsenzzeit: 21 h  
- Selbststudium / Nacharbeitszeit: 159 h  
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:  
- 10991 Entwurf in Zusammenarbeit mit Architekturstudenten (LBP), Mündlich, 60 Min., Gewichtung: 1  
- V Vorleistung (USL-V), Schriftlich oder Mündlich  

18. Grundlage für ... :  

19. Medienform:  
- Analog und/oder digital, Zeichnungen, Modell, Vortrag

20. Angeboten von:  
- Entwerfen und Konstruieren
Modul: 11340 Zerstörungsfreie Prüfung im Bauwesen

2. Modulkürzel: 021500631
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Frank Lehmann
9. Dozenten: Frank Lehmann
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Allgemeine Wahlfächer Bautechnik → Wahlpflichtfach
    Bautechnik → Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: Keine.
13. Inhalt: Es werden sowohl die Grundlagen der zerstörungsfreien Prüfung als auch deren Praxisanwendung an zementgebundenen und metallischen Werkstoffen vermittelt. Schwerpunkte sind die Qualitätssicherung und Inspektion von Bauwerken und Bauteilen. Einzelne Inhalte sind:
   • Messtechnikgrundlagen
   • Sichtprüfung
   • Ultraschall
   • Impakt-Echo
   • Georadar
   • Infrarotthermographie
   • Magnetische Streufeldmessung
   • Potenzialfeldmessung
   • Schallemissionsanalyse
   • Feuchtetemessung
   • ZIP an metallischen Werkstoffen
   • ZIP an Holzwerkstoffen
   • Bauwerksüberwachung
14. Literatur:
   • Vorlesungsfolien
15. Lehrveranstaltungen und -formen:
    • 113401 Vorlesung Zerstörungsfreie Prüfung im Bauwesen
16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 28 h
    Selbststudium: 62 h
17. Prüfungsnummer/n und -name: 11341 Zerstörungsfreie Prüfung im Bauwesen (BSL), Mündlich, 20 Min., Gewichtung: 1
18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Powerpoint, Übungen an Geräten</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Werkstoffe im Bauwesen</td>
</tr>
</tbody>
</table>
Modul: 20640 Betontechnologie

2. Modulkürzel: 021500133

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Modulduauer: Einsemestrig

6. Turnus: Wintersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Harald Garrecht

9. Dozenten: Harald Garrecht

10. Zuordnung zum Curriculum in diesem Studiengang:
    - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
      → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach
    - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
      → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
    Der Student kennt die wichtigsten Eigenschaften des Betons und die aktuellen Forschungsgebiete in der Betontechnologie. Durch praktische Laborarbeiten erlangt er Kenntnisse darüber, wie Versuche konzipiert, durchgeführt und ausgewertet werden.

13. Inhalt:
    Die Vorlesung umfasst Zusammensetzung, Herstellung, Verarbeitung und Anwendung aller relevanten Betonsorten. Im einzelnen gliedert sich die Vorlesung dabei in folgende Kapitel:
    1. Einführung: Geschichte des Betons, Beispiele historischer Anwendungen
    2. Zemente: Arten, Eigenschaften und Entwicklungen
    3. Zementhydratation: die chemische Reaktionen und alle Arten der Beeinflussung
    4. Gesteinskörnung und Betonzusatzmittel: Einflüsse auf die Eigenschaften des Betons
    5. Frischbeton und seine Eigenschaften
    6. Betonierverfahren
        a. für Normalbetone
        b. für Sonderbetone
    7. Junger Beton I und II
        a. Schädigungsmechanismen
        b. Eigenschaftsentwicklung
    8. Festbeton I und II
        a. Bruchmechanische Kenngrößen
        b. Eigenschaften unterschiedlicher Betone
    9. Zeitabhängiges Verhalten
        a. Verformung
        b. Reifeentwicklung
    10. Verbund Stahl/Beton
    11. Dauerhaftigkeit I und II
        a. Frost und Verschleiß
        b. Carbonatisierung und chemischer Angriff
    12. Brandbeanspruchung
    13. Modelle für Betone
        a. empirische Modelle, z.B. Powers
        b. numerische Modelle, z.B. Hymostruc, CEMHyd3d
    14. Besondere Eigenschaften von Sonderbetonen
        a. Leichtbeton und Faserbeton
        b. Hochfester und Ultrahochfester Beton
    15. Prüfverfahren für Betone

Stand: 19. Oktober 2017
16. Aktuelle Forschungsprojekte und Stand der Wissenschaften

14. Literatur:
   Pflichtlektüre:
   - H.W. Reinhardt: "Betonkalender, Sonderdruck
   - Stark: "Dauerhaftigkeit von Beton, Birkhäuser Verlag
   Skript
   Kopien der gezeigten Folien

15. Lehrveranstaltungen und -formen:
   - 206401 Vorlesung Betontechnologie
   - 206402 Übung Betontechnologie

16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: rd. 56 h
   Hausübungen: 30 h
   Laborarbeit: 14 h
   Seminararbeit (Auswertung Laborarbeit): 80 h

17. Prüfungsnummer/n und -name:
   - 20641 Betontechnologie (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
   - V Vorleistung (USL-V),

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Werkstoffe im Bauwesen
Modul: 20650 Konstruktion und Material

2. Modulkürzel: 021500131
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Harald Garrecht
9. Dozenten: Werner Sobek
Harald Garrecht

10. Zuordnung zum Curriculum in diesem Studiengang:
     B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
     → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
     Bautechnik --> Wahlpflichtfach
     B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
     → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine


13. Inhalt: Folgende Inhalte werden im Rahmen von Vorlesungen, Übungen und Exkursionen vermittelt:
   • Übernommene Funktionen von Werkstoffen in Konstruktionen, Funktionsprofile
   • Potentiale der Werkstoffe hinsichtlich der vielfältigen Funktionsanforderungen, welches Spektrum wird von welchem Werkstoff bzw. Werkstoffgruppe abgedeckt
   • Herstellungs- und Bearbeitungsverfahren
   • Werkstoffübergreifende Konstruktionsmethoden
   • Überführen eines Entwurfs in eine Konstruktion
   • Analyse ausgeführter Konstruktionen

14. Literatur: ausgewählte Veröffentlichungen zum Thema, Handouts

15. Lehrveranstaltungen und -formen: • 206501 Vorlesung Konstruktion und Material • 206502 Übung Konstruktion und Material
16. Abschätzung Arbeitsaufwand:  
Präsenzzeit: 56 h  
Selbststudium: 124 h  
Gesamt: 180 h  

17. Prüfungsnummer/n und -name:  
• 20651 Konstruktion und Material (PL), Schriftlich, 120 Min.,  
  Gewichtung: 1  
• V Vorleistung (USL-V),  

18. Grundlage für ... :  

19. Medienform:  

20. Angeboten von:  Werkstoffe im Bauwesen
Modul: 34180 Statistik und Informatik

2. Modulkürzel: 021500302
3. Leistungspunkte: 6 LP
4. SWS: 6
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr.-Ing. Joachim Schwarte
9. Dozenten: Andras Bardossy, Joachim Schwarte
10. Zuordnung zum Curriculum in diesem Studiengang:
  - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
    Bautechnik --> Wahlpflichtfach
  - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
  **Statistik:**
  Nach Abschluß der Veranstaltung Statistik werden von den Studierenden die grundlegenden statistischen Werkzeuge und Methoden beherrscht. Die Teilnehmer kennen die Möglichkeiten und Grenzen der eingesetzten Werkzeuge und sind in der Lage, Methoden kritisch zu bewerten und entsprechend den Anforderungen geeignet anzuwenden:
  - Die theoretischen Konzepte von Wahrscheinlichkeit, Zufallsvariable und Stichprobenverteilung werden verstanden und können entsprechend eingeordnet werden.
  - Die Studierenden sind mit Methoden zur Identifizierung nichtlinearer Prozesse und statistischer Artefakte vertraut. Darüber hinaus beherrschen sie die grundlegenden Methoden der Bewertung von Untersuchungsergebnissen, wie z.B. Signifikanztests.

  **Informatik:**

13. Inhalt:
  **Statistik:**
  - deskriptive Statistik
  - Darstellung und Interpretation statistischer Daten
  - lineare und nicht-lineare Regressionsrechnung
  - Grundlagen der Wahrscheinlichkeitsrechnung, theoretische Verteilungsfunktionen
  - Binomialverteilung, hypergeometrische Verteilung
• Poissonverteilung, Exponentialverteilung
• Normalverteilung und Log-Normalverteilung
• schließende Statistik, Konzept der Stichproben und unendlichen Grundgesamtheiten
• Konfidenzintervalle für die Momente von Verteilungen
• Hypothesentests
• Konfidenzintervalle und Hypothesentests in der bivariaten Statistik

Informatik:
• Algorithmen und Turing-Maschinen
• Datenstrukturen
• Computer
• Programmiersprachen
• Programmierprinzipien
• Programmierung mit MatLab
• Tabellenkalkulation
• Sicherheit und Datenschutz

14. Literatur:

Statistik:
• Vorlesungsskript Statistik
• Unterlagen von Übungen und Hausübungen (Downloadbereich der IWS Homepage)

Informatik:
• Online-Skript innerhalb der Ilias-Umgebung
• Duden Informatik

15. Lehrveranstaltungen und -formen:
• 341802 Übung Statistik
• 341803 Vorlesung Einführung in die Informatik
• 341804 Übung Einführung in die Informatik
• 341801 Vorlesung Statistik

16. Abschätzung Arbeitsaufwand:

Statistik:
Präsenzzeit: 42h
Selbststudium: 48h
Gesamt: 90 h

Informatik:
Vorlesung: 28h
Virtuell unterstützte Gruppenübungen: 14 h
Nachbereitung der Vorlesung: 14 h
Nachbereitung der Gruppenübungen: 14 h
Prüfungsvorbereitung in der vorlesungsfreien Zeit: 20 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
• 34181 Statistik und Informatik (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Werkstoffe im Bauwesen
Modul: 37150 Fertigungsverfahren in der Bauwirtschaft

2. Modulkürzel: 020200180  
5. Moduldaurer: Einsemestrig  

3. Leistungspunkte: 3 LP  
6. Turnus: Sommersemester  

4. SWS: 2  
7. Sprache: Deutsch  

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner  

9. Dozenten: Fritz Berner  

10. Zuordnung zum Curriculum in diesem Studiengang:  
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
    → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach  
    Bautechnik --> Wahlpflichtfach  
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester  
    → Wahlbereich 1 Bautechnik --> Hauptfach Bautechnik -->  
    Hauptfach  
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester  
    → Vorgezogene Master-Module  

11. Empfohlene Voraussetzungen: keine  

12. Lernziele:  
    Die Studierenden besitzen einen umfassenden Überblick  
    über die Vielfalt der im Bauwesen Anwendung findingen  
    Herstellungsverfahren. Die zeitgemäßen und technisch innovativen  
    Herstellungsvarianten sind bekannt. Die wirtschaftlichsten  
    Baumaschinen und Bauverfahren können bestimmt werden.  

13. Inhalt:  
    **Ablauf und Beteiligte beim Bauen**  
    • Am Bau Beteiligte  
    • Bauablauf  
    • HOAI  
    • Voraussetzungen zum Baubeginn  
    • Vergabe an Bauunternehmen  

    **Baustelleneinrichtung**  
    • Grundlagen  
    • Vorschriften  
    • Sozial- und Büroeinrichtungen, Lagerräume  
    • Verkehrsflächen und Transportwege  
    • Medienversorgung der Baustelle  

    **Hebezeuge**  
    • Turmkrane  
    • Autokran, Mobilkran  
    • Portalkran  
    • Kabelkran  
    • Bauaufzüge  
    • Kranwahl  

    **Beton**  
    • Grundlagen  
    • Betonmischanlagen  
    • Betontransport  
    • Betonverarbeitung  
    • Betonstahlbearbeitung  

    **Schalung und Rüstung**  
    • Aufgaben einer Schalung
• Aufbau von Schalungen
• Schalungsarten
• Spezialschalungen
• Schalungsentwurf
• Gerüste

14. Literatur:
• Manuskript: Fertigungsverfahren in der Bauwirtschaft

15. Lehrveranstaltungen und -formen:
• 371501 Vorlesung Fertigungsverfahren in der Bauwirtschaft
• 371502 Übung Fertigungsverfahren in der Bauwirtschaft
• 371503 Hausübung und Kolloquium Fertigungsverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudiumszeit / Nachbereitungszeit: 69 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
• 37151 Fertigungsverfahren in der Bauwirtschaft (BSL), Schriftlich, 60 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvoraussetzung:
Fertigungsverfahren in der Bauwirtschaft: 1 Hausübung + 1 Kolloquium

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Baubetriebslehre
Modul: 41090 Einführung in die bauphysikalische Messtechnik

2. Modulkürzel: 020800002
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Modul dauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Hon.-Prof. Dr.-Ing. Schew-Ram Mehra
9. Dozenten: Eva Veres
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
    Bautechnik --> Wahlpflichtfach
11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion
12. Lernziele:
   Die Studierenden
   • haben diverse Messapparaturen kennen gelernt und können einfache Messungen durchführen und Messgrößen bestimmen.
   • können die Größenordnung der Messwerte abschätzen.
   • können mit der Messelektronik umgehen.
   • kennen diverse Wandlerprinzipien.
   • können Bezugsgrößen festlegen (Kalibrierung).
   • kennen die Analogien aus der Elektrotechnik.
   • können statistische Analysen aus den Messreihen erstellen (Fehleranalysen).
13. Inhalt:
   **Einführende Grundlagen:**
   • Aufbau einer Messkette
   • Messgenauigkeit / Reproduzierbarkeit
   • Varieren der Randbedingungen
   • Auswerten und Darstellen der Messergebnisse
   • Interpretation der Ergebnisse
   **Gemessen wird:**
   • Lufttemperatur
   • Oberflächentemperaturen
   • Wärmestrahlung (Thermografie)
   • relative Luftfeuchte
   • Luftgeschwindigkeit
   • Schallpegel (Lärmpegel verschiedener Lärmquellen, A-Bewertung)
   • Nachhallzeit
   • Beleuchtungsstärke

Maximal 16 Personen
14. Literatur: Handouts
15. Lehrveranstaltungen und -formen: • 410901 Seminar Einführung in die bauphysikalische Messtechnik
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 22,5 h  
Selbststudiumszeit / Nacharbeitszeit: 67,5 h  
**Gesamt: 90,0 h** |
|-------------------------------|-----------------|
| 17. Prüfungsnummer/n und -name: | • 41091 Einführung in die bauphysikalische Messtechnik (BSL), Mündlich, 25 Min., Gewichtung: 1  
• V Vorleistung (USL-V), Schriftlich oder Mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | Powerpointpräsentation, Tafel, Overhead, Video, Vorortmessungen |
| 20. Angeboten von: | Akustik |
Modul: 42380 Angewandte Bauphysik

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Dr.-Ing. Schew-Ram Mehra
9. Dozenten: Eva Veres
               Susanne Urlaub
               Simone Eitele

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
        → Wahlbereich 2 Bautechnik --> Hauptfach Bautechnik --> Hauptfach
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
        → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
        → Allgemeine Wahlfächer Bautechnik --> Wahlpflichtfach
    Bautechnik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion

12. Lernziele:

Konstruktive Bauphysik

Studierende

• beherrschen die Grundlagen stationärer und instationärer bauphysikalischer Vorgänge.
• kennen das Verhalten von Bauprodukten (Gebäude, Räume, Bauteile, Werkstoffe) unter verschiedenen Einwirkungen.
• können Ausführungsbeispiele hinsichtlich ihrer bauphysikalischen Eigenschaften beurteilen.
• sind in der Lage bauphysikalisch richtig zu konstruieren, kritische Details zu erkennen und konstruktive Lösungen zu entwickeln.

Technische Bauphysik

Studierende

• beherrschen die Planungsprinzipien und Wirkungsweise haustechnischer Anlagen.
• kennen die wechselseitigen Einflüsse haustechnischer Anlagen.
• sind in der Lage bau- und haustechnische Maßnahmen aufeinander abzustimmen.
• beherrschen die Auslegung und Dimensionierung.

Bauphysikalischer Diskurs

Studierende

• lernen die methodische Vorgehensweise bei der Behandlung bauphysikalischer Problemstellungen kennen und können diese anwenden.
• bekommen Einblicke in wissenschaftliche Arbeitsweisen.
• haben einen Überblick über praxisrelevante bauphysikalische Aufgabenstellungen.

13. Inhalt:

Inhalt Lehrveranstaltung Konstruktive und Technische Bauphysik:
• stationäres und instationäres thermisches und hygrisches Verhalten von Bauteilen
• schalltechnisches Verhalten von Bauteilen
• Wechselwirkung bauphysikalischer Phänomene
• Ausführungsbeispiele für konstruktive Details im Bestand und im Neubau
• bauphysikalische Schwerpunkte bei der Konstruktion von Außenwänden, Fenstern, Dächern, erdberührten Bauteilen, Decken, Treppen und Innenwänden
• Heizungstechnik
• Nutzung erneuerbarer Energie
• Wärmerückgewinnung
• Erdwärme
• Lüftungstechnik
• Klimatechnik
• natürliche und künstliche Beleuchtung
• Installationsgeräusche

Inhalt der Lehrveranstaltung Bauphysikalischer Diskurs:
• Anwendung aus/in der Praxis,
• Innovationen und Ausblicke sowie neue Materialien/Bauteile/Ausführungen
• Schwachstellen und Fehlerquellen bei der Ausführung

14. Literatur:

Vorlesungsunterlagen Konstruktive Bauphysik
Vorlesungsunterlagen Technische Bauphysik
Unterlagen zur Vortragsreihe Bauphysikalischer Diskurs

15. Lehrveranstaltungen und -formen:
• 423801 Vorlesung Konstruktive Bauphysik
• 423802 Vorlesung Technische Bauphysik
• 423803 Vortragsreihe Bauphysikalischer Diskurs

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 42381 Konstruktive und Technische Bauphysik (PL), Mündlich, 25 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>Powerpointpräsentation, Anschauungsmaterial (Material-Muster)</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td>Akustik</td>
</tr>
</tbody>
</table>
3132 Pflichtcontainer Holzbau

Zugeordnete Module:  
12540 CAD/CAM im Stahlbau  
12550 Holzbaukonstruktionen  
12560 Ingenieurholzbau  
12570 Temporäre Bauten  
12580 Vortragsseminar Bauwerke und Bauweisen  
33520 Grundlagen der Holzbearbeitungstechnologie  
37050 Arbeitssicherheit im Baubetrieb
Modul: 12540 CAD/CAM im Stahlbau

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>20700103</th>
<th>Modul:</th>
<th>12540 CAD/CAM im Stahlbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript AutoCAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 125401 Vorlesung CAD/CAM im Stahlbau • 125402 Übung CAD/CAM im Stahlbau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 12541 CAD/CAM im Stahlbau (PL), Schriftlich, 60 Min., Gewichtung: 1 • V Vorleistung (USL-V), Schriftlich, 60 Min. Unbenotete Studienleistung als Vorleistung (USL-V): Hausübung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung und Übung am PC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Stahlbau, Holzbau und Verbundbau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Modul: 12550 Holzbaukonstruktionen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700104</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Ulrike Kuhlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Holz als Werkstoff (Materialaufbau, Anisotropie, Physikalische und Mechanische Eigenschaften, Streuung der Eigenschaften) • Hygroskopizität und Kriechen des Holzes • Bemessung von Bauteilen • Verbindungen im Holzbau (Nachgiebigkeit und Bemessung) • Zusammengesetzte Holzquerschnitte und Holz-Beton-Verbund • Bemessung von Scheiben aus HWS für die Aussteifung von Bauwerken • Auflager, Anschlüsse und Verstärkungen im Holzhausbau • Baulicher und Chemischer Holzschutz • Bauphysikalische Besonderheiten des Holzes</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 125501 Vorlesung Holzbaukonstruktion • 125502 Übung Holzbaukonstruktion</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12551 Holzbaukonstruktionen (BSL), Schriftlich, 60 Min., Gewichtung: 1 Wichtige Hinweisschreiben bezüglich der Prüfungen.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Ingenieurholzbau</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, PowerPoint, Film</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
20. Angeboten von: Stahlbau, Holzbau und Verbundbau
Modul: 12560 Ingenieurholzbau

2. Modulkürzel: 020700105
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ulrike Kuhlmann
9. Dozenten: Ulrike Kuhlmann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
➞ Pflichtcontainer Holzbau --> Wahlpflichtfach Bautechnik -->
Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Holzbaukonstruktionen

12. Lernziele:
Der Studierende kann die Grundlage der Bemessung von Haupttragelementen weitgespannter Tragwerke aus Holz anwenden. Mit den grundlegenden Methoden des Entwurfs von Konstruktionsdetails für Holzbrücken und hölzerne Sonderbauten sind die Studenten in der Lage die Tragfähigkeit solcher Bauwerke, auch im Erdbeben- und/oder Brandfall, zu beurteilen.

13. Inhalt:
- Klebtechnik und Herstellung von BS-Holz und Holzwerkstoffen: Stand der Technik und Norm.
- Weitgespannte Tragwerke aus Holz
- Fachwerkkonstruktionen
- Aussteifungen, Wind- und Stabilisierungverbände
- Spezielle Stabilitätsprobleme des Ingenieurholzbaus
- Auflager, Anschlüsse und Verstärkungen im Ingenieurholzbau
- Holzbrücken inklusive Ermüdungsnachweis
- Transport und Montage von Holzbauwerken
- Brandschutz im Holzbau
- Anwendung von Holz in Erdbebengebiete

14. Literatur:
- Skript zur Vorlesung und zur Übung,

15. Lehrveranstaltungen und -formen:
- 125601 Vorlesung Ingenieurholzbau
- 125602 Übung Ingenieurholzbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 56 h
Gesamt: 84 h

17. Prüfungsnummer/n und -name: 12561 Ingenieurholzbau (BSL), Schriftlich, 60 Min., Gewichtung: 1
Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ... :

19. Medienform:
Tafel, Overhead, PowerPoint, Film
20. Angeboten von: Stahlbau, Holzbau und Verbundbau
Modul: 12570 Temporäre Bauten

2. Modulkürzel: 020700106

5. Modulduer: Einsemestrig

3. Leistungspunkte: 3 LP

6. Turnus: Wintersemester

4. SWS: 2

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ulrike Kuhlmann

9. Dozenten: Ulrike Kuhlmann


B.Sc. Technikpädagogik, PO 199-2011, 3. Semester

➞ Pflichtcontainer Holzbau --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: Modul 10650 (Werkstoffübergreifendes Entwerfen und Konstruieren) (Pflicht)

Modul 10770 (hier: Stabilität) (Empfohlen)

12. Lernziele:


13. Inhalt:

Das Fach wird als Seminar angeboten. Die folgenden Themen stehen dabei zur Auswahl:

- Einführung und Übersicht über unterschiedliche Gerüsttypen
- Baurechtliche Situation
- Arbeits- und Schutzgerüste:
  - Komponenten, Aufbau, bauliche Durchbildung und Aussteifung
  - Lastannahmen
  - Tragfähigkeit und Bemessung inkl. Bemessungsbeispiel
- Gerüstknoten und Kupplungen:
  - Übersicht Knotentypen
  - Tragverhalten und Behandlung nichtlinearer Einzelfedern
- Traggerüste:
  - Aufbau und bauliche Durchbildung
  - Lastannahmen und Bemessung inkl. Bemessungsbeispiel
- Sonderthemen: Fahrgerüste, Hängegerüste, Gitterträger und modulare temporäre Überdachungssysteme

Weitere, eigene Themenvorschläge werden in Absprache mit dem Betreuer gerne akzeptiert.

Anmeldung zur Vorlesung per Aushang am Institut für Konstruktion und Entwurf.

14. Literatur:


15. Lehrveranstaltungen und -formen:

• 125701 Vorlesung Temporäre Bauten

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 20 h
Selbststudium: 64 h
Gesamt: 84 h

17. Prüfungsnummer/n und -name: 12571 Temporäre Bauten (BSL), Sonstige, 30 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>19. Medienform:</strong></td>
<td>Tafel, PowerPoint</td>
</tr>
<tr>
<td><strong>20. Angeboten von:</strong></td>
<td>Stahlbau, Holzbau und Verbundbau</td>
</tr>
</tbody>
</table>
# Modul: 12580 Vortragsseminar Bauwerke und Bauweisen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester  
→ Pflichtcontainer Holzbau --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | |
| 13. Inhalt: | Die begleitende Vorlesung vermittelt Grundlagen und gibt Hilfestellung bei der Vorbereitung und Ausarbeitung der schriftlichen Arbeit und des Vortrags. Sie gliedert sich in:  
• Einführung in das wissenschaftliche Arbeiten  
• Äußere Form der schriftlichen Arbeit  
• Vortrag und Rhetorik  

Durch den eigenständigen Vortrag und die Diskussion im Seminarkreis wird den Studierenden die Möglichkeit gegeben, das Präsentieren selbst einüben.  
Anmeldung zur Vorlesung per Aushang und Eintragung am Institut für Konstruktion und Entwurf |
| 15. Lehrveranstaltungen und -formen: | • 125801 Seminar Bauwerke und Bauweisen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28h  
Selbststudium: 56h  
Gesamt: 84h |
| 17. Prüfungsnummer/n und -name: | 12581 Vortragsseminar Bauwerke und Bauweisen (BSL), Sonstige, Gewichtung: 1  
Studienleistung: Abgabe Seminararbeit und Vortrag  
Wichtige Hinweisschreiben bezüglich der Prüfungen. |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Overhead, Powerpoint |
| 20. Angeboten von: | Stahlbau, Holzbau und Verbundbau |
Modul: 33520 Grundlagen der Holzbearbeitungsstechnologie

2. Modulkürzel: 073310025
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 0
7. Sprache: Deutsch

9. Dozenten: Marco Schneider
               Hans Dietz

               → Pflichtcontainer Holzbau --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach
               B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
               → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Teil 1:
Wissen-Verstehen: Die Studierenden erwerben ein Verständnis für die grundlegenden Begriffe, Werkzeuge, Maschinen und Verfahren in der Holzverarbeitung. Sie erwerben ein umfangreiches Wissen auf dem Gebiet der Holzzerspanung. Sie verstehen die Anforderungen an die Holzverarbeitungsmaschinen sowie die Qualitätsbildung und -beurteilung.

Teil 2: Wissen-Verstehen:

Die Studierenden erwerben ein Verständnis für die grundlegenden Anlagen und Produktionsprozesse in der Holzbearbeitung und Holzwerkstoffaufbereitung. Sie verstehen die Anforderungen an die Holzverarbeitung, die energetischen Zusammenhänge innerhalb der Fertigungsprozesse und die beteiligte Maschinenleistung.

13. Inhalt: Teil 1:
Grundlagen und Verfahren der Holzbearbeitung: Die Vorlesung beinhaltet die Grundzüge der Holzverarbeitung, insbesondere die Eigenschaften des Werkstoffes Holz, die Grundbegriffe und Definitionen, die Besonderheiten des Werkstoffs und seiner Bearbeitung. Kernbestandteile sind die Basisverfahren der

Stand: 19. Oktober 2017
spanenden Holzbearbeitung, die Werkzeuge und Maschinen, die
auftretenden Kräfte, der Verschleiß und die Qualitätsbildung und -
beurteilung.

Teil 2:
Maschinen und Anlagen der Holzbearbeitung: Die Vorlesung
beinhaltet die Grundzüge der Holzverarbeitung und
Holzwerkstoffaufbereitung. Kernbestandteile sind die
Rundholzgewinnung und -aufbereitung, die Verfahren der
Holztrocknung, der Sägewerkstechnik und die hieraus
entstehenden Produkte wie Furniererzeugnisse, Span- und
Faserwerkstoffe. Einen Ausblick bilden die verfahrensverwandten
Verfahren der Kunststoff-, Stein- und Glasbearbeitung.
Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

14. Literatur: Skript, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: • 335201 Vorlesung Grundlagen der Holzbearbeitungstechnologie

Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33521 Grundlagen der Holzbearbeitungstechnologie (PL), Schriftlich,
120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Medienmix, Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Werkzeugmaschinen
Modul: 37050 Arbeitssicherheit im Baubetrieb

2. Modulkürzel: 020200540
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Fritz Berner

9. Dozenten: Michael Aldinger

10. Zuordnung zum Curriculum in diesem Studiengang:
   B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
   B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   → Pflichtcontainer Holzbau --> Wahlpflichtfach Bautechnik -->
   → Wahlpflichtfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
   Die Studierenden besitzen arbeitsschutzfachliche Kenntnisse gemäß Anlage B zur RAB 30 (Regeln für den Arbeitsschutz auf Baustellen). Die arbeitsschutzfachlichen Kenntnisse sind eine wichtige Voraussetzung für die spätere Tätigkeit als Baustellenkoordinator.

13. Inhalt:

14. Literatur:
   • Aldinger, Michael: Manuskript Arbeitssicherheit (wird jährlich aktualisiert)
   • Info CD der BG BAU

15. Lehrveranstaltungen und -formen:
   • 370501 Vorlesung und Übung Arbeitssicherheit im Baubetrieb

16. Abschätzung Arbeitsaufwand:
   • Präsenzzeit: ca. 20 h
   • Selbststudium und Exkursion: ca. 40 h
   • Vor-/Nachbereitung, Übungen: ca. 30 h

17. Prüfungsnummer/n und -name:
   37051 Arbeitssicherheit im Baubetrieb (BSL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Baubetriebslehre
3133 Pflichtcontainer Holztechnik

Zugeordnete Module:
- 34200 Möbel und Raum (Möbel/Innenraum und Projekt)
- 34210 Innenraum (Raumbildender Ausbau+ Projekt + Werkstoffe 1)
- 34260 Projekt Innenraum + Projekt Möbel und Raum (Wahlpflichtfach)
### Modul: 34200 Möbel und Raum (Möbel/Innenraum und Projekt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>10</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 342001 Vorlesung Möbel und Raum&lt;br&gt;• 342004 Entwurfspunkt - Möbel&lt;br&gt;• 342003 Referatsreihe Möbel und Raum&lt;br&gt;• 342002 Übung Möbel und Raum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>34201 Möbel und Raum (Möbel/Innenraum und Projekt) (PL), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Staatliche Akademie der Bildenden Künste Stuttgart</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 34210 Innenraum (Raumbildender Ausbau+ Projekt + Werkstoffe 1)

2. Modulkürzel: KunstAkademie
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester

4. SWS: 11
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Reinhold Nickolaus

9. Dozenten: Peter Litzlbauer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
→ Pflichtcontainer Holztechnik --> Wahlpflichtfach Bautechnik -->
> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Detail. Das Experiment steht im Vordergrund. Die Sensibilisierung im Umgang mit Material, Konstruktion, Funktion in einem Gestaltungsprozess wird vertieft.

14. Literatur:
Literaturliste wird zu Beginn der Lehrveranstaltung bekannt gegeben Z.B. Atlasreihe/ Edition DETAIL Vom Sinn des Details/ Arcus/Rudolf Müller Die Zukunft des Raumes/Bernd Meurer/ Campus

15. Lehrveranstaltungen und -formen:
- 342101 Vorlesung Innenraum
- 342102 Referatsreihe Innenraum
- 342103 Vorlesung Werkstoffe
- 342104 Entwurfsprojekt - Innenraum

16. Abschätzung Arbeitsaufwand:

**Teil A**
Präsenzzeit: 31,5 Stunden
Selbststudium: 28,5 Stunden
Summe: 60 Stunden

**Teil B**
Präsenzzeit: 21 Stunden
Selbststudium: 9 Stunden
Summe: 30 Stunden

**Teil C**
Präsenzzeit: 63 Stunden
Selbststudium: 117 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 34211 Innenraum (Raumbildender Ausbau+ Projekt + Werkstoffe 1) (PL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Berufs-, Wirtschafts- und Technikpädagogik
### Modul: 34260 Projekt Innenraum + Projekt Möbel und Raum  
(Wahlpflichtfach)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>9</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>KunstAkademie</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
→ Pflichtcontainer Holztechnik --> Wahlpflichtfach Bautechnik --> Wahlpflichtfach  
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester  
→ Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: |  • 342601 Entwurfsprojekt - Innenraum  
• 342602 Entwurfsprojekt - Möbel / Möbelsystem |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | 34261 Projekt Innenraum + Projekt Möbel und Raum  
(Wahlpflichtfach) (PL), Schriftlich oder Mündlich, Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Staatliche Akademie der Bildenden Künste Stuttgart |
314 Wahlpflichtfach Elektrotechnik

Zugeordnete Module:

3141  a) Schwerpunkt Energie- und Automatisierungstechnik
3144  b) Schwerpunkt System- und Informationstechnik
3141 a) Schwerpunkt Energie- und Automatisierungstechnik

Zugeordnete Module:

- 3142 Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
- 3143 Wahlcontainer Energie- und Automatisierungstechnik
3142 Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik

Zugeordnete Module:
11500 Elektrische Energietechnik
11540 Regelungstechnik I
11550 Leistungselektronik I
Modul: 11500 Elektrische Energietechnik

2. Modulkürzel: 051010001
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Modulauer: Zweisemestrig
6. Turnus: Sommersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Stefan Tenbohlen (Elektrische Energietechnik I)
               Jörg Roth-Stielow (Elektrische Energietechnik II)
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
    → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik → Ergänzungsmodulle → Hauptfach Elektrotechnik → Hauptfach

B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
    → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik → a) Schwerpunkt Energie- und Automatisierungstechnik → Wahlpflichtfach Elektrotechnik → Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 2. Semester
    → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

   Studierende...

   • ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
   • ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
   • ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
   • ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.

13. Inhalt:

   • Aufgabe und Bedeutung der elektrischen Energieversorgung,
   • Energieumwandlung in Kraftwerken,
   • Elektrizitätswirtschaft und Investitionstheorie,
   • Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
   • Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
   • Sicherheitstechnik,
   • elektrischer Unfall,
   • Elektrischer Energiefluss als Informations- und Arbeitsmedium,
   • Leistungselektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
   • Gleichstrommaschine,
   • Transformator,
   • Asynchronmaschine, Synchronmaschine

14. Literatur:

   • Vorlesungsskripte
   • Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
   • Schwab: Elektroenergiesysteme, Springer, 2009/2015
15. Lehrveranstaltungen und -formen:
- 115001 Vorlesung Elektrische Energietechnik I
- 115002 Übung Elektrische Energietechnik I
- 115003 Vorlesung Elektrische Energietechnik II
- 115004 Übung Elektrische Energietechnik II

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
- 11501 Elektrische Energietechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1
- 11502 Elektrische Energietechnik II (PL), Schriftlich, 90 Min., Gewichtung: 1
  Klausur Elektrische Energietechnik I (90 min., 2x pro Jahr)
  Klausur Elektrische Energietechnik II (90 min., 2x pro Jahr)

18. Grundlage für ...

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11540 Regelungstechnik I

4. SWS: 4  7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow
10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
    → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik → Ergänzungsmodule → Hauptfach Elektrotechnik → Hauptfach
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
    → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
    → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik → a) Schwerpunkt Energie- und Automatisierungstechnik → Wahlpflichtfach Elektrotechnik → Wahlpflichtfach

11. Empfohlene Voraussetzungen:

12. Lernziele:

   Studierende...
   
   • ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
   • ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:

   • Beschreibung von Übertragungsstrecken
   • Stabilität von Regelsystemen
   • Herkömmliche Regelsysteme
   • Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
   • Echtes Integralverhalten
   • Beobachter
   • Systemführung nach dem Prinzip unterlagerter Schleifen
   • Systeme mit einem Wechsel der Regelgröße

14. Literatur:

   • Lunze, Jan: Regelungstechnik 1 Springer, Berlin, 1999-
   • Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
   • Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:

   • 115401 Vorlesung Regelungstechnik I
   • 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:

   Präsenzzeit: 56 h
   Selbststudium: 124 h
   Gesamt: 180 h

17. Prüfungsnummer/n und -name:

   11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Folien, Beamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 11550 Leistungselektronik I

2. Modulkürzel: 051010011
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulcode: 5
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
  → Ergänzungsmodul
  → Hauptfach Elektrotechnik
  → Hauptfach
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
  → a) Schwerpunkt Energie- und Automatisierungstechnik
  → Wahlpflichtfach Elektrotechnik
  → Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
  → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
- Kenntnisse vergleichbar Elektrische Energietechnik I
- Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
- Studierende... 
  • ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
  • ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
  • ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:
- Abschaltbare Leistungshalbleiter
- Schaltungstypologien potentialverbindender Stellglieder
- Schaltungstypologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
- 11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...

19. Medienform:
- Tafel, Folien, Beamer

20. Angeboten von:
- Leistungselektronik und Regelungstechnik
3143 Wahlcontainer Energie- und Automatisierungstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
</tbody>
</table>
### Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
→ Wahlcontainer Energie- und Automatisierungstechnik  
  → a) Schwerpunkt Energie- und Automatisierungstechnik  
  → Wahlpflichtfach Elektrotechnik  
  → Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | • Elektrische Energietechnik |
| 13. Inhalt: | • Aufgaben des elektrischen Energienetzes, Smart Grids  
• Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise  
• Berechnung von Energieübertragungsanlagen und -netzen  
• Betrieb elektrischer Energieversorgungsnetze  
• Kurzschlussströme bei symmetrischem Kurzschluss  
• Symmetrische Komponenten |
• Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005  
• Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006 |
| 15. Lehrveranstaltungen und -formen: | • 115601 Vorlesung Elektrische Energienetze 1  
• 115602 Übung Elektrische Energienetze 1 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h  
Selbststudium/Nacharbeitszeit: 124 h  
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ...: | Elektrische Energienetze II |
| 19. Medienform: | PowerPoint, Tafelanschrieb |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
### Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Elektrische Energietechnik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Auftreten und Anwendung hoher Spannungen bzw. Ströme • Einführung in die Hochspannungsversuchstechnik • Berechnung elektrischer Felder • Grundlagen der Hochspannungsisoliertechnik • Isolierstoffsysteme in Hochspannungsgeräten</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 115702 Übung Hochspannungstechnik 1 • 115701 Vorlesung Hochspannungstechnik 1</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
**Modul: 11580 Elektrische Maschinen I**

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
</tr>
</tbody>
</table>

**10. Zuordnung zum Curriculum in diesem Studiengang:**

B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 199-2011, 5. Semester → Wahlcontainer Energie- und Automatisierungstechnik -->

a) Schwerpunkt Energie- und Automatisierungstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach

**11. Empfohlene Voraussetzungen:**

**12. Lernziele:**

Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

**13. Inhalt:**

- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:

**14. Literatur:**


**15. Lehrveranstaltungen und -formen:**

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

**16. Abschätzung Arbeitsaufwand:**

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Summe: 180 h

**17. Prüfungsnummer/n und -name:**

- 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1

**18. Grundlage für ... :**

Elektrische Maschinen II

**19. Medienform:**

Beamer, Tafel, ILIAS

**20. Angeboten von:**

Elektrische Energiewandlung
### Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>
  ➞ Wahlcontainer Energie- und Automatisierungstechnik --> a) Schwerpunkt Energie- und Automatisierungstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach
  B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
  ➞ Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I |
| 12. Lernziele:                | Die Studierenden kennen
  - das Potential der Sonnenstrahlung
  - die Funktionsweise von Solarzellen
  - die wichtigsten Technologien der Herstellung von Solarmodulen
  - die Grundprinzipien von Wechselrichtern
  - die Energieerträge verschiedener Photovoltaik-Technologien
  - den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom |
| 13. Inhalt:                   | - Der Photovoltaische Effekt (Zelle, Modul, Anlage)
  - Solarstrahlung und Energieumsatz in Deutschland
  - Grundprinzip und Kenngrößen von Solarzellen
  - Ersatzschaltbilder von Solarzellen
  - Maximaler Wirkungsgrad
  - Photovoltaik-Materialien und -Technologien
  - Modultechnik
  - Photovoltaische Systemtechnik
  - (Jahres-) Energieerträge von Photovoltaiksystemen |
  • P. Würfel, Physik der Solarzellen, Spektrum, 1995
  • M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
  • F. Staß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996 |
| 15. Lehrveranstaltungen und -formen: | • 115901 Vorlesung Photovoltaik I
  • 115902 Übungen Photovoltaik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 56 h
  Selbststudium/Nacharbeitszeit: 142 h
  Gesamt: 180 h |
<p>| 17. Prüfungsnummer/n und -name: | 11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ... :        | Photovoltaik II |</p>
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Powerpoint, Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Physikalische Elektronik</td>
</tr>
</tbody>
</table>
Modul: 11620 Automatisierungstechnik I

2. Modulkürzel: 050501003
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich

11. Empfohlene Voraussetzungen: • Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele: Die Studierenden
• besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
• setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausseinernder
• wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
• lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:
• Grundlegende Begriffe der Prozessautomatisierung
• Automatisierungs-Gerätesysteme und -strukturen
• Prozessperipherie - Schnittstellen zwischen dem Automatisierungssystems und dem technischen Prozess
• Kommunikationssysteme
• Echtzeitprogrammierung (synchron und asynchron Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
• Echtzeitbetriebssysteme, Entwicklung eines Mini-Echtzeit-Betriebssystems
• Programmiersprachen für die Prozessautomatisierung (SPS-Programmierung)

14. Literatur:
• Vorlesungsskript
• Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
• Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
• Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
• Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at1/

15. Lehrveranstaltungen und -formen:
• 116201 Vorlesung Automatisierungstechnik I
• 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 56 h
• Selbststudium: 124 h
• Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11621  Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Automatisierungstechnik II</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
3144 b) Schwerpunkt System- und Informationstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Name</th>
<th>Modultyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>3145</td>
<td>Pflichtcontainer Schwerpunkt System- und Informationstechnik</td>
<td>Pflichtcontainer</td>
</tr>
<tr>
<td>3146</td>
<td>Wahlcontainer System- und Informationstechnik</td>
<td>Wahlcontainer</td>
</tr>
</tbody>
</table>
### 3145 Pflichtcontainer Schwerpunkt System- und Informationstechnik

Zugeordnete Module:
- 11490 Nachrichtentechnik
- 11610 Technische Informatik I
- 11670 Grundlagen integrierter Schaltungen
Modul: 11490 Nachrichtentechnik

2. Modulkürzel: 050600003  
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 9 LP  
6. Turnus: Wintersemester

4. SWS: 6  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stephan ten Brink

9. Dozenten: Stephan Brink  
Jan Hesselbarth

10. Zuordnung zum Curriculum in diesem Studiengang:  
B.Sc. Technikpädagogik, PO 199-2011,  
→ Vorgezogene Master-Module  
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik → Ergänzungsmodul → Hauptfach Elektrotechnik → Hauptfach  
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester  
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik → b) Schwerpunkt System- und Informationstechnik → Wahlpflichtfach Elektrotechnik → Wahlpflichtfach

11. Empfohlene Voraussetzungen:


13. Inhalt:  
Teil I: Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfangerrauschen, Übersicht wichtiger Funksysteme  
Teil II: Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen

14. Literatur:  
• Vorlesungsskripte,  
• Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,  
• Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-Verlag, 2002,  
• Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,  

15. Lehrveranstaltungen und -formen:  
• 114902 Übung Nachrichtentechnik 1  
• 114903 Vorlesung Nachrichtentechnik 2  
• 114901 Vorlesung Nachrichtentechnik 1  
• 114904 Übung Nachrichtentechnik 2
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h  
Selbststudium/Nacharbeitszeit: 186 h  
Gesamt: 270 h |
| 17. Prüfungsnummer/n und -name: | 11491 Nachrichtentechnik (PL), Schriftlich oder Mündlich, 180 Min., Gewichtung: 1 |
| 18. Grundlage für ... : |  |
| 20. Angeboten von: | Nachrichtenübertragung |
Modul: 11610 Technische Informatik I

2. Modulkürzel: 050901004
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter
Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik
→ a) Schwerpunkt System- und Informationstechnik -> Wahlpflichtfach Elektrotechnik
→ Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Pflichtcontainer Schwerpunkt System- und Informationstechnik
→ Ergänzungsmodul --> Hauptfach Elektrotechnik

11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden.

12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, kennt Konzepte und Mechanismen von Betriebssystemen und versteht den Aufbau von Rechnersystemen einschließlich der Ein- und Ausgabemechanismen.

13. Inhalt:
• Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
• Prozessorbaugruppen und Mikroprogrammierung, Grundkonzepte von RISC-Prozessoren
• Grundkonzepte und Mechanismen von Betriebssystemen
• Aufbau von Rechnersystemen einsch. Ein-/Ausgabe

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_I

14. Literatur:
• Vorlesungsskript
• Hennessy, J. L., Patterson, D. A.: Computer Architecture: A Quantitative Approach, Morgan Kaufmann

15. Lehrveranstaltungen und -formen:
• 116102 Übung zu Technische Informatik I
• 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ...: Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform:
- Notebook-Präsentationen
- Overhead-Projektor
- Tafelanschriebe

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
  → Pflichtcontainer Schwerpunkt System- und Informationstechnik --> b) Schwerpunkt System- und Informationstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
  → Pflichtcontainer Schwerpunkt System- und Informationstechnik --> Ergänzungsmodule --> Hauptfach Elektrotechnik --> Hauptfach
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
  → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
- Kenntnisse in Schaltungstechnik
- Kenntnisse in höherer Mathematik

12. Lernziele:
- Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- • Bauelemente der Digitaltechnik
- • Digitale Grundschaltungen
- • CMOS-Logikschaltungen
- • Schaltwerke

14. Literatur:
- • Vorlesungsskript,
- • Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- • 116701 Vorlesung Grundlagen Integrierter Schaltungen
- • 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

Stand: 19. Oktober 2017
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische und Optische Nachrichtentechnik</td>
</tr>
</tbody>
</table>
3146 Wahlcontainer System- und Informationstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
</tr>
</tbody>
</table>

Stand: 19. Oktober 2017
**Modul: 11640 Digitale Signalverarbeitung**

2. Modulkürzel: 051610002  
5. Moduldauer: Einsemestrig  
3. Leistungspunkte: 6 LP  
6. Turnus: Wintersemester  
4. SWS: 4  
7. Sprache: Deutsch  

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang  
9. Dozenten: Bin Yang  

10. Zuordnung zum Curriculum in diesem Studiengang:  
B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module  
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
→ Wahlcontainer System- und Informationstechnik -->  
b) Schwerpunkt System- und Informationstechnik --> Wahlpflichtfach Elektrotechnik --> Wahlpflichtfach  

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik  
Grundkenntnisse über Signale und Systeme  

12. Lernziele: Die Studierenden  
• beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,  
• besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,  
• können einfache Signale und Systeme selbstständig analysieren,  
• können einfache Signalverarbeitungsaufgaben selbstständig lösen.  

13. Inhalt:  
• A/D- und D/A-Umwandlung, Abtastung, Quantisierung  
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung  
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen  
• Analyse von Signalen und LTI-Systemen im Frequenzbereich  
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter  
• Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion  
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung  
• Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:  
• Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung  
• A. V. Oppenheim und R. W. Schafer, "Zeitdiskrete Signalverarbeitung", Oldenburg, 1999  
• J. Proakis and D. G. Manolakis: Digital signal processing, Prentice-Hall, 1996  
• M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:  
• 116401 Vorlesung Digitale Signalverarbeitung  
• 116402 Übung Digitale Signalverarbeitung
| 16. Abschätzung Arbeitsaufwand: | **Präsenzzeit:** 56 h  
**Selbststudium:** 124 h  
**Gesamt:** 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Netzwerk- und Systemtheorie</td>
</tr>
</tbody>
</table>
**Modul: 11650 Hochfrequenztechnik I**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>116501 Vorlesung Hochfrequenztechnik I 116502 Übung Hochfrequenztechnik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Hochfrequenztechnik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer, Projektor, ILIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Hochfrequenztechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 4. Semester → Wahlcontainer System- und Informationstechnik --&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Schwerpunkt System- und Informationstechnik --&gt; Wahlpflichtfach Elektrotechnik --&gt; Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsbegleitendes Material, Übungsaufgaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weitere Literaturangaben im vorlesungsbegleitenden Material.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116602 Übungen Übertragungstechnik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 116601 Vorlesung Übertragungstechnik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Nachrichtenübertragung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005

3. Leistungspunkte: 6 LP

4. SWS: 4

5. Modul dauer: Einsemestrig

6. Turnus: Wintersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
    • Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
    Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
    Grund prinzipien von Kommunikationsnetzen und -protokollen:
    • Übertragung und Multiplextechniken
    • Fehlersicherung
    • Medienzugriff
    • Vermittlung
    • Wegesuche
    • Transportprotokolle

    Spezifikation mit Hilfe der Specification and Description Language (SDL)
    Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
    Ausgewählte Dienste und Anwendungen im Internet
    Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
    • Skript zur Vorlesung
    • Tanenbaum: Computer Networks, Prentice-Hall, 2003
    • Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
    • 116802 Übung zu Kommunikationsnetze I
    • 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 56 h
    Selbststudium: 124 h
    Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11681  Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...:</td>
<td>Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Notebook-Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
## Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011,
  - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011,
  - Wahlcontainer System- und Informationstechnik -->
    - b) Schwerpunkt System- und Informationstechnik -->
      - Wahlpflichtfach Elektrotechnik -->
      - Wahlpflichtfach

### 11. Empfohlene Voraussetzungen:
Grundlagen der Softwaretechnik

### 12. Lernziele:

### 13. Inhalt:
Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung, Softwareprüfung, Projektmanagement, Softwaretechnik-Werkzeuge, Dokumentation

### 14. Literatur:
- Vorlesungsskript,
- Wiegers, K.: Software-Requirements, Microsoft Press, 2005
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/

### 15. Lehrveranstaltungen und -formen:
- 690501 Vorlesung Technologien und Methoden der Softwaresysteme I
- 690502 Übung Technologien und Methoden der Softwaresysteme I

### 16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: ca. 124 h

### 17. Prüfungsnummer/n und -name:
- 69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1
- 69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1
- Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters

Stand: 19. Oktober 2017

Seite 347 von 444
18. Grundlage für ...

19. Medienform:

20. Angeboten von: Automatisierungs- und Softwaretechnik
315 Wahlpflichtfach Maschinenbau

Zugeordnete Module:

- 3151 a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
- 3152 b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
- 3153 c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs- Lüftungs- Klimatechnik
- 3154 Modulcontainer Wahlpflichtbereich (Mach-TP)
3151 a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik

Zugeordnete Module:

- 11150 Experimentalphysik mit Praktikum
- 12320 Technische Thermodynamik I
- 13590 Kraftfahrzeuge I + II
- 13750 Technische Strömungslehre
- 78020 Grundlagen der Fahrzeugantriebe
Modul: 11150 Experimentalphysik mit Praktikum

2. Modulkürzel: 081700010
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Michael Jetter

9. Dozenten: Arthur Grupp
Michael Jetter

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ b) Fertigungstechnik Pflichtcontainer Grundlagen
Fertigungstechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer
Grundlagen Heizungs- Lüftungs- Klimatechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
→ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen:
Vorlesung: -
Praktikum: bestandene Scheinklausur der Vorlesung

12. Lernziele:
Vorlesung: Die Studierenden beherrschen Lösungsstrategien für die Bearbeitung naturwissenschaftlicher Probleme und Kenntnisse in den Grundlagen der Physik.
Praktikum: Anwendung physikalischer Grundgesetze auf einfache experimentelle Problemstellungen

13. Inhalt:
Vorlesung
• Mechanik: Newtonsche Mechanik, Bezugssysteme, Erhaltungssätze, Dynamik starrer Körper, Strömungsmechanik
• Schwingungen und Wellen: Frei, gekoppelte, gedämpfte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
• Elektrodynamik: Grundbegriffe der Elektro- und Magnetostatik, Elektrischer Strom, Induktion, Kräfte und Momente in elektrischen und magnetischen Feldern
• Optik: Strahlenoptik und Grundzüge der WellenoptikPraktikum-Kinematik von Massepunkten

Praktikum
• Newton'sche Mechanik: Grundbegriffe, translatorische Dynamik starrer Körper, Erhaltungssätze, Bezugssysteme
• Elektrodynamik: Grundbegriffe der Elektrik, Kräfte und Drehmomente in elektrischen und magnetischen Feldern, Induktion, Gleich- und Wechselströme und deren Beschreibung in Schaltkreisen
• Schwingungen und Wellen: Freie, gekoppelte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
• Wellenoptik: Lichtwellen und deren Wechselwirkung mit Materie
• Strahlenoptik: Bauelemente und optische Geräte

14. Literatur:
• Dobrinski, Krakau, Vogel, Physik für Ingenieure, Teubner Verlag
15. Lehrveranstaltungen und -formen:
- 111501 Vorlesung Experimentalphysik mit Physikpraktikum (Mach. FMT, TechPäd, Tema)
- 111503 Praktikum Experimentalphysik mit Physikpraktikum
- 111502 Vorlesung Experimentalphysik mit Physikpraktikum (EE)

16. Abschätzung Arbeitsaufwand:
**Vorlesung:**
Präsenzzeit: 2 h x 14 Wochen 28 h
Abschlussklausur inkl. Vorbereitung: 32 h
**Praktikum:**
Präsenzzeit: 3 Versuche x 3 h 9 h
Vor- und Nachbereitung: 21 h
**Gesamt:** 90 h

17. Prüfungsnummer/n und -name:
- 11151 Experimentalphysik (Klausur) (USL), Schriftlich, 60 Min., Gewichtung: 1
- 11152 Experimentalphysik (Praktikum) (USL), Sonstige, Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich bestandene Klausur ist Zulassungsvoraussetzung

18. Grundlage für ...

19. Medienform:
Vorlesung: Tablet-PC, Beamer,
Praktikum: -

20. Angeboten von:
Experimentalphysik
Modul: 12320 Technische Thermodynamik I

2. Modulkürzel: 042100011
5. Moduldoauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   ➞ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
      Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau -->
      Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   ➞ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer
      Grundlagen Heizungs- Lüftungs- Klimatechnik -->
      Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
   ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Mathematische Grundkenntnisse in Differential- und Integralrechnung

12. Lernziele:
Die Studierenden
• beherrschen die thermodynamischen Grundbegriffe und
haben die Fähigkeit, praktische Problemstellungen in den
thermodynamischen Grundgrößen eigenständig zu formulieren.
• sind in der Lage, Energieumwandlungen in technischen
Prozessen thermodynamisch zu beurteilen. Diese Beurteilung
cönnen die Studierenden auf Grundlage einer Systemabstraktion
durch die Anwendung verschiedener Werkzeuge der
thermodynamischen Modellbildung wie Bilanzierungen,
Zustandsgleichungen und Stoffmodellen durchführen.
• sind in der Lage, die Effizienz unterschiedlicher
Prozessführungen zu berechnen und den zweiten Hauptsatz für
thermodynamische Prozesse eigenständig anzuwenden.
• Die Studierenden sind durch das erworbene Verständnis
der grundlegenden thermodynamischen Modellierung zu
eigenständiger Vertiefung in weiterführende Lösungsansätze
befähigt.

13. Inhalt:
Thermodynamik ist die allgemeine Theorie energie- und
stoffumwandelter Prozesse. Diese Veranstaltung vermittelt die
Inhalte der systemanalytischen Wissenschaft Thermodynamik im
Hinblick auf technische Anwendungsfelder. Im Einzelnen:
• Grundgesetze der Energie- und Stoffumwandlung
• Prinzip der thermodynamischen Modellbildung
• Prozesse und Zustandsänderungen
• Thermische und kalorische Zustandsgrößen
• Zustandsgleichungen und Stoffmodelle
• Bilanzierung der Materie, Energie und Entropie von offenen,
geschlossenen, stationären und instationären Systemen
• Dissipation
• Ausgewählte Modellprozesse: Reversible Prozesse, einfache
Kreisprozesse, Gasturbine, Verbrennungsmotoren etc.
14. Literatur:


15. Lehrveranstaltungen und -formen:

- 123201 Vorlesung Technische Thermodynamik I
- 123202 Vortragsübung Technische Thermodynamik I
- 123203 Gruppenübung Technische Thermodynamik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 12321 Technische Thermodynamik I (PL), Schriftlich, 120 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvoraussetzung: USL-V (Details hierunten, Punkt V, Vorleistung).

18. Grundlage für ...

19. Medienform:

Der Veranstaltungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.

20. Angeboten von:

Thermodynamik und Thermische Verfahrenstechnik
### Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Nils Widdecke

9. Dozenten: Jochen Wiedemann
Nils Widdecke

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Vorgezogene Master-Modul
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen:
Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:
Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrleistungen - und widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte
Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I-II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen

Stand: 19. Oktober 2017
Modul: 13750 Technische Strömungslehre

2. Modulkürzel: 042010001
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch
9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ b) Fertigungstechnik Pflichtcontainer Grundlagen
Fertigungstechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
Fahrzeugtechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen
Heizungs- Lüftungs- Klimatechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik


13. Inhalt:
• Stoffeigenschaften von Fluiden
• Kennzahlen und Ähnlichkeit
• Statik der Fluide (Hydrostatik und Aerostatik)
• Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
• Elementare Anwendungen der Erhaltungsgleichungen
• Rohrhydraulik
• Differentialgleichungen für ein Fluidelement

14. Literatur:
Vorlesungsmanuskript "Technische Strömungslehre
E. Truckenbrodt, Fluidmechanik, Springer Verlag
F.M. White, Fluid Mechanics, McGraw - Hill
E. Becker, Technische Strömungslehre, B.G. Teubner
Studienbücher

15. Lehrveranstaltungen und -formen:
• 137501 Vorlesung Technische Strömungslehre
• 137502 Übung Technische Strömungslehre
• 137503 Seminar Technische Strömungslehre

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13751 Technische Strömungslehre (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Hydraulische Strömungsmaschinen in der Wasserkraft</th>
</tr>
</thead>
</table>
| 19. Medienform:         | • Tafelanschrieb, Tablet-PC  
                          | • PPT-Präsentationen  
                          | • Skript zur Vorlesung |
| 20. Angeboten von:     | Strömungsmechanik und Hydraulische Strömungsmaschinen |
# Modul: 78020 Grundlagen der Fahrzeugantriebe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

## 8. Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Michael Bargende

## 9. Dozenten:
Prof. Bargende

## 10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module

## 11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1. bis 4.

## 12. Lernziele:
Die Studenten kennen die Unterschiedlichen Konzepte für Fahrzeugantriebe. Sie können geeignete Konzepte festlegen.


## 13. Inhalt:

## 14. Literatur:
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>• 780201 Vorlesung Grundlagen der Fahrzeugantriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>78021 Grundlagen der Fahrzeugantriebe (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
3152 b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik

Zugeordnete Module:

- 11150 Experimentalphysik mit Praktikum
- 13570 Werkzeugmaschinen und Produktionssysteme
- 13750 Technische Strömungslehre
- 13840 Fabrikbetriebslehre
- 16260 Maschinendynamik
Modul: 11150 Experimentalphysik mit Praktikum

2. Modulkürzel: 081700010

5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 3 LP

6. Turnus: Wintersemester

4. SWS: 4

7. Sprache: Deutsch

8. Modulverantwortlicher: Dr. Michael Jetter

9. Dozenten: Arthur Grupp
                                          Michael Jetter

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → b) Fertigungstechnik Pflichtcontainer Grundlagen
        → Fertigungstechnik --> Wahlpflichtfach Maschinenbau -->
        Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer
        Grundlagen Heizungs- Lüftungs- Klimatechnik -->
        Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 1. Semester
    → a) Fahrzeugtechnik Pflichtcontainer Grundlagen
        Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau -->
        Wahlpflichtfach

11. Empfohlene Voraussetzungen:

    Vorlesung: -
    Praktikum: bestandene Scheinklausur der Vorlesung

12. Lernziele:

    Vorlesung: Die Studierenden beherrschen Lösungsstrategien für
    die Bearbeitung naturwissenschaftlicher Probleme und Kenntnisse
    in den Grundlagen der Physik.
    Praktikum: Anwendung physikalischer Grundgesetze auf einfache
    experimentelle Problemstellungen

13. Inhalt:

    Vorlesung
      • Mechanik: Newtonsche Mechanik, Bezugssysteme,
        Erhaltungssätze, Dynamik starrer Körper, Strömungsmechanik
      • Schwingungen und Wellen: Frei, gekoppelte, gedämpfte und
        erzwungene Schwingungen, mechanische, akustische und
        elektromagnetische Wellen
      • Elektrodynamik: Grundbegriffe der Elektro- und Magnetostatik,
        Elektrischer Strom, Induktion, Kräfte und Momente in
        elektrischen und magnetischen Feldern
      • Optik: Strahlenoptik und Grundzüge der Wellenoptik

    Praktikum
      • Newton'sche Mechanik: Grundbegriffe, translatorische Dynamik
        starrer Körper, Erhaltungssätze, Bezugssysteme
      • Elektrodynamik: Grundbegriffe der Elektrik, Kräfte und
        Drehmomente in elektrischen und magnetischen Feldern,
        Induktion, Gleich- und Wechselströme und deren Beschreibung
        in Schaltkreisen
      • Schwingungen und Wellen: Freie, gekoppelte und
        erzwungene Schwingungen, mechanische, akustische und
        elektromagnetische Wellen
      • Wellenoptik: Lichtwellen und deren Wechselwirkung mit Materie
      • Strahlenoptik: Bauelemente und optische Geräte

14. Literatur:

    • Dobrinski, Krakau, Vogel, Physik für Ingenieure, Teubner Verlag
15. Lehrveranstaltungen und -formen:
   • 111501 Vorlesung Experimentalphysik mit Physikpraktikum (Mach. FMT, TechPäd, Tema)
   • 111503 Praktikum Experimentalphysik mit Physikpraktikum
   • 111502 Vorlesung Experimentalphysik mit Physikpraktikum (EE)

16. Abschätzung Arbeitsaufwand:
   Vorlesung:
   Präsenzzeit: 2 h x 14 Wochen 28 h
   Abschlussklausur inkl. Vorbereitung: 32 h
   Praktikum:
   Präsenzzeit: 3 Versuche x 3 h 9 h
   Vor- und Nachbereitung: 21 h
   Gesamt: 90 h

17. Prüfungsnummer/n und -name:
   • 11151 Experimentalphysik (Klausur) (USL), Schriftlich, 60 Min., Gewichtung: 1
   • 11152 Experimentalphysik (Praktikum) (USL), Sonstige, Gewichtung: 1
   • V Vorleistung (USL-V), Schriftlich oder Mündlich
     bestandene Klausur ist Zulassungsvoraussetzung

18. Grundlage für ... :

19. Medienform:
   Vorlesung: Tablet-PC, Beamer,
   Praktikum: -

20. Angeboten von:
   Experimentalphysik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|---|---|


| 12. Lernziele: | Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden |


<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben</th>
</tr>
</thead>
</table>

15. Lehrveranstaltungen und -formen:
- 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13571 Werkzeugmaschinen und Produktionssysteme (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Werkzeugmaschinen
Modul: 13750 Technische Strömungslehre

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch
9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ b) Fertigungstechnik Pflichtcontainer Grundlagen
   Fertigungstechnik --> Wahlpflichtfach Maschinenbau -->
   Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
   Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau -->
   Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer
   Grundlagen Heizungs- Lüftungs- Klimatechnik -->
   Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik


13. Inhalt:
• Stoffeigenschaften von Fluiden
• Kennzahlen und Ähnlichkeit
• Statik der Fluide (Hydrostatik und Aerostatik)
• Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
• Elementare Anwendungen der Erhaltungsgleichungen
• Rohrhydraulik
• Differentialgleichungen für ein Fluidlement

14. Literatur:
Vorlesungsmanuskript "Technische Strömungslehre
E. Truckenbrodt, Fluidmechanik, Springer Verlag
F.M. White, Fluid Mechanics, McGraw - Hill
E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen:
• 137501 Vorlesung Technische Strömungslehre
• 137502 Übung Technische Strömungslehre
• 137503 Seminar Technische Strömungslehre

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13751 Technische Strömungslehre (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Hydraulische Strömungsmaschinen in der Wasserkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>• Tafelanschrieb, Tablet-PC</td>
</tr>
<tr>
<td></td>
<td>• PPT-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>• Skript zur Vorlesung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Strömungsmechanik und Hydraulische Strömungsmaschinen</td>
</tr>
</tbody>
</table>
# Modul: 13840 Fabrikbetriebslehre

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Thomas Bauernhansl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Bauernhansl</td>
</tr>
</tbody>
</table>

**10. Zuordnung zum Curriculum in diesem Studiengang:**

- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 4. Semester
  - a) Fertigungslehre Pflichtcontainer Grundlagen
  - Fertigungstechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

**11. Empfohlene Voraussetzungen:**

- Kernmodul “Fertigungslehre mit Einführung in die Fabrikorganisation”

**12. Lernziele:**

**Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I):** Der Studierende kennt die einzelnen Unternehmensbereiche und beherrscht Methodenwissen in den einzelnen Bereichen um diese von der Produktentwicklung bis zum Fabrikbetrieb optimal zu gestalten.

**Fabrikbetriebslehre - Kosten- und Leistungsrechnung (Fabrikbetriebslehre II):** Der Studierende hat nach diesem Modul detaillierte Kenntnisse über das Thema Kosten- und Leistungsrechnung, LifeCycle Management und Optimierung der Produktion. Er beherrscht Methodenwissen, um die Inhalte in die Praxis umzusetzen.

**13. Inhalt:**

**Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I):** Ausgehend von der Bedeutung, den Treibern und den Optimierungsphilosophien der Produktion werden im Verlauf der Vorlesung die einzelnen Elemente von produzierenden Unternehmen erläutert, wobei der Schwerpunkt auf den eingesetzten Methoden liegt. Nach der Produktentwicklung (Innovation und Entwicklung) werden die Arbeitsplanung, die Fertigungs- und Montagesystemplanung, die Fabrikplanung, das Auftragsmanagement sowie das Supply Chain Management betrachtet. Abschließend werden zum Thema Produktionsmanagement die Grundlagen von ganzheitlichen Produktionssystemen, die Wertstrommethode sowie Methoden zur Prozessoptimierung und Führungsinstrumente erläutert.

14. Literatur:

- Vorlesungsskript als PDF-Dokument online bereitgestellt,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007,

15. Lehrveranstaltungen und -formen:

- 138404 Übung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)
- 138403 Vorlesung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)
- 138401 Vorlesung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
- 138402 Übung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 63 Stunden
- Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:

- 13841 Fabrikbetriebslehre (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- PowerPoint, Folien (Overhead), Video, Animation

20. Angeboten von:

- Industrielle Fertigung und Fabrikbetrieb
**Modul: 16260 Maschinendynamik**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
|                  |                    |                | B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
|                  |                    |                | → b) Fertigungstechnik Pflichtcontainer Grundlagen  
|                  |                    |                | Fertigungstechnik → Wahlpflichtfach Maschinenbau → Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Technischer Mechanik-I/III |
| 14. Literatur:   | • Vorlesungsmitschrieb  
|                  | • Vorlesungsunterlagen des ITM  
|                  | • Schiehlen, W. und Eberhard, P.: Technische Dynamik. 2. Aufl., Teubner, Wiesbaden  
| 15. Lehrveranstaltungen und -formen: | 162602 Übung Maschinendynamik  
|                  | 162601 Vorlesung Maschinendynamik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h  
|                  | Selbststudium / Nacharbeitszeit: 138 h  
|                  | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 16261 Maschinendynamik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1 |

Stand: 19. Oktober 2017
18. Grundlage für ... :

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Technische Mechanik</td>
</tr>
</tbody>
</table>
3153 c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs- Lüftungs- Klimatechnik

Zugeordnete Module:  
11150 Experimentalphysik mit Praktikum  
12320 Technische Thermodynamik I  
13060 Grundlagen der Heiz- und Raumlufttechnik  
13750 Technische Strömungslehre  
13950 Grundlagen der Energiewirtschaft und -versorgung
## Modul: 11150 Experimentalphysik mit Praktikum

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Dr. Michael Jetter |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester</td>
</tr>
<tr>
<td>→ b) Fertigungstechnik Pflichtcontainer Grundlagen</td>
</tr>
<tr>
<td>Fertigungstechnik --&gt; Wahlpflichtfach Maschinenbau --&gt;</td>
</tr>
<tr>
<td>Wahlpflichtfach</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester</td>
</tr>
<tr>
<td>→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer</td>
</tr>
<tr>
<td>Grundlagen Heizungs- Lüftungs- Klimatechnik --&gt;</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester</td>
</tr>
<tr>
<td>→ a) Fahrzeugtechnik Pflichtcontainer Grundlagen</td>
</tr>
<tr>
<td>Fahrzeugtechnik --&gt; Wahlpflichtfach Maschinenbau --&gt;</td>
</tr>
<tr>
<td>Wahlpflichtfach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: - Praktikum: bestandene Scheinklausur der Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: Die Studierenden beherrschen Lösungsstrategien für</td>
</tr>
<tr>
<td>die Bearbeitung naturwissenschaftlicher Probleme und Kenntnisse</td>
</tr>
<tr>
<td>in den Grundlagen der Physik.</td>
</tr>
<tr>
<td>Praktikum: Anwendung physikalischer Grundgesetze auf einfache</td>
</tr>
<tr>
<td>experimentelle Problemstellungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>• Mechanik: Newtonsche Mechanik, Bezugssysteme,</td>
</tr>
<tr>
<td>Erhaltungssätze, Dynamik starrer Körper, Strömungsmechanik</td>
</tr>
<tr>
<td>• Schwingungen und Wellen: Frei, gekoppelte, gedämpfte und</td>
</tr>
<tr>
<td>erzwungene Schwingungen, mechanische, akustische und</td>
</tr>
<tr>
<td>elektromagnetische Wellen</td>
</tr>
<tr>
<td>• Elektrodynamik: Grundbegriffe der Elektro- und Magnetostatik,</td>
</tr>
<tr>
<td>Elektrischer Strom, Induktion, Kräfte und Momente in</td>
</tr>
<tr>
<td>elektrischen und magnetischen Feldern</td>
</tr>
<tr>
<td>• Optik: Strahlenoptik und Grundzüge der WellenoptikPraktikum-</td>
</tr>
<tr>
<td>Kinematik von Massepunkten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton'sche Mechanik: Grundbegriffe, translatorische Dynamik</td>
</tr>
<tr>
<td>starrer Körper, Erhaltungssätze, Bezugssysteme</td>
</tr>
<tr>
<td>• Elektrodynamik: Grundbegriffe der Elektrik, Kräfte und</td>
</tr>
<tr>
<td>Drehmomente in elektrischen und magnetischen Feldern,</td>
</tr>
<tr>
<td>Induktion, Gleich- und Wechselströme und deren Beschreibung</td>
</tr>
<tr>
<td>in Schaltkreisen</td>
</tr>
<tr>
<td>• Schwingungen und Wellen: Frei, gekoppelte und</td>
</tr>
<tr>
<td>erzwungene Schwingungen, mechanische, akustische und</td>
</tr>
<tr>
<td>elektromagnetische Wellen</td>
</tr>
<tr>
<td>• Wellenoptik: Lichtwellen und deren Wechselwirkung mit Materie</td>
</tr>
<tr>
<td>• Strahlenoptik: Bauelemente und optische Geräte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dobrinski, Krakau, Vogel, Physik für Ingenieure, Teubner Verlag</td>
</tr>
</tbody>
</table>
• Demtröder, Wolfgang, Experimentalphysik Bände 1 und 2, Springer Verlag
• Paus, Hans J., Physik in Experimenten und Beispielen, Hanser Verlag
• Halliday, Resnick, Walker, Physik, Wiley-VCH
• Bergmann-Schaefer, Lehrbuch der Experimentalphysik, De Gruyter
• Paul A. Tipler: Physik, Spektrum Verlag
• Cutnell und Johnson, Physics, Wiley-VCH
• Linder, Physik für Ingenieure, Hanser Verlag
• Kuypers, Physik für Ingenieure und Naturwissenschaftler, Wiley-VHC

15. Lehrveranstaltungen und -formen:
• 111501 Vorlesung Experimentalphysik mit Physikpraktikum (Mach. FMT, TechPäd, Tema)
• 111503 Praktikum Experimentalphysik mit Physikpraktikum
• 111502 Vorlesung Experimentalphysik mit Physikpraktikum (EE)

16. Abschätzung Arbeitsaufwand:
**Vorlesung:**
Präsenzzeit: 2 h x 14 Wochen 28 h
Abschlussklausur inkl. Vorbereitung: 32 h

**Praktikum:**
Präsenzzeit: 3 Versuche x 3 h 9 h
Vor- und Nachbereitung: 21 h

**Gesamt:** 90 h

17. Prüfungsnummer/n und -name:
• 11151 Experimentalphysik (Klausur) (USL), Schriftlich, 60 Min., Gewichtung: 1
• 11152 Experimentalphysik (Praktikum) (USL), Sonstige, Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich bestandene Klausur ist Zulassungsvoraussetzung

18. Grundlage für ... :

19. Medienform:
Vorlesung: Tablet-PC, Beamer, Praktikum: -

20. Angeboten von: 
Experimentalphysik
Modul: 12320 Technische Thermodynamik I

2. Modulkürzel: 042100011
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldarer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
    ➔ a) Fahrzeugtechnik Pflichtcontainer Grundlagen
        Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau
    B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
    ➔ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen
        Heizungs- Lüftungs- Klimatechnik --> Wahlpflichtfach Maschinenbau
    B.Sc. Technikpädagogik, PO 199-2011, 3. Semester
    ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Mathematische Grundkenntnisse in Differential- und Integralrechnung

12. Lernziele:
    Die Studierenden
    • beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.
    • sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraktion durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.
    • sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.
    • Die Studierenden sind durch das erworbe Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:
    Thermodynamik ist die allgemeine Theorie energie- und stoffumwandelter Prozesse. Diese Veranstaltung vermittelt die Inhalte der systemanalytischen Wissenschaft Thermodynamik im Hinblick auf technische Anwendungsfelder. Im Einzelnen:
    • Grundgesetze der Energie- und Stoffumwandlung
    • Prinzip der thermodynamischen Modellbildung
    • Prozesse und Zustandsänderungen
    • Thermische und kalorische Zustandsgrößen
    • Zustandsgleichungen und Stoffmodelle
    • Bilanzierung der Materie, Energie und Entropie von offenen, geschlossenen, stationären und instationären Systemen
    • Dissipation
    • Ausgewählte Modellprozesse: Reversible Prozesse, einfache Kreisprozesse, Gasturbine, Verbrennungsmotoren etc.
14. Literatur:

15. Lehrveranstaltungen und -formen:
   • 123201 Vorlesung Technische Thermodynamik I
   • 123202 Vortragsübung Technische Thermodynamik I
   • 123203 Gruppenübung Technische Thermodynamik I

16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 56 h
   Selbststudiumszeit / Nacharbeitszeit: 124 h
   Gesamt: 180 h

17. Prüfungsnummer/n und -name:
   • 12321 Technische Thermodynamik I (PL), Schriftlich, 120 Min., Gewichtung: 1
   • V Vorleistung (USL-V), Schriftlich oder Mündlich
   Prüfungsvoraussetzung: USL-V (Details hierunter, Punkt V, Vorleistung).

18. Grundlage für ... :

19. Medienform:
   Der Veranstaltungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.

20. Angeboten von:
   Thermodynamik und Thermische Verfahrenstechnik
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310001
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Konstantinos Stergiaropoulos
9. Dozenten: Konstantinos Stergiaropoulos

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs- Lüftungs- Klimatechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
• Höhere Mathematik I + II
• Technische Mechanik I + II

12. Lernziele:
Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:
Die Studenten
• sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
• kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
• verstehen den Zusammenhang zwischen Anlagenauslegung und Funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:
• Systematik der heiz- und rumlufttechnischen Anlagen
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13061 Grundlagen der Heiz- und Raumlufttechnik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesungsskript

20. Angeboten von:
Heiz- und Raumlufttechnik
# Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

### 10. Zuordnung zum Curriculum in diesem Studiengang:
- **B.Sc. Technikpädagogik, PO 199-2011, 4. Semester**
  - → b) Fertigungstechnik Pflichtcontainer Grundlagen
  - Fertigungstechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
- **B.Sc. Technikpädagogik, PO 199-2011, 4. Semester**
  - → a) Fahrzeugtechnik Pflichtcontainer Grundlagen
  - Fahrzeugtechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
- **B.Sc. Technikpädagogik, PO 199-2011, 4. Semester**
  - → c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen
  - Heizungs- Lüftungs- Klimatechnik --&gt; Wahlpflichtfach Maschinenbau --&gt; Wahlpflichtfach
- **B.Sc. Technikpädagogik, PO 199-2011, 4. Semester**
  - → Vorgezogene Master-Module

### 11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik

### 12. Lernziele:

### 13. Inhalt:
- Stoffeigenschaften von Fluiden
- Kennzahlen und Ähnlichkeit
- Statik der Fluide (Hydrostatik und Aerostatik)
- Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
- Elementare Anwendungen der Erhaltungsgleichungen
- Rohrrhydraulik
- Differentialgleichungen für ein Fluidelement

### 14. Literatur:
- Vorlesungsmanuskript "Technische Strömungslehre"
- E. Truckenbrodt, Fluidmechanik, Springer Verlag
- F.M. White, Fluid Mechanics, McGraw - Hill
- E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

### 15. Lehrveranstaltungen und -formen:
- 137501 Vorlesung Technische Strömungslehre
- 137502 Übung Technische Strömungslehre
- 137503 Seminar Technische Strömungslehre

### 16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

### 17. Prüfungsnummer/n und -name:
- 13751 Technische Strömungslehre (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ...:
   Hydraulische Strömungsmaschinen in der Wasserkraft

19. Medienform:
   - Tafelanschrieb, Tablet-PC
   - PPT-Präsentationen
   - Skript zur Vorlesung

20. Angeboten von:
   Strömungsmechanik und Hydraulische Strömungsmaschinen
Modul: 13950 Grundlagen der Energiewirtschaft und -versorgung

2. Modulkürzel: 041210001  
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP  
6. Turnus: Wintersemester

4. SWS: 4  
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Kai Hufendiek

9. Dozenten: Kai Hufendiek

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
      → c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer
      Grundlagen Heizungs- Lüftungs- Klimatechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen:
    • Grundlagen der Thermodynamik (Zustandsänderungen, Kreisprozesse, 1. und 2. Hauptsatz)
    • Kenntnisse in Physik und Chemie

12. Lernziele:
    Die Studierenden kennen die fundamentalen Zusammenhänge in Energiesystemen/der Energiewirtschaft:


    Die Studierenden verstehen die Grundlagen der Kosten und Wirtschaftlichkeitsrechnung als eine wesentliche Planungsgrundlage für Entscheidungen in der Energiewirtschaft.

    Die Studierenden lernen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energieträgern und die Energienutzung anwenden. Dabei werden die einzelnen Energieträger, die für unsere Energiewirtschaft bedeutsam sind betrachtet.

    Darüber hinaus verstehen Sie die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimension und können diese analyseren.

13. Inhalt:
    • Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung
    • Energienachfrage und die Entwicklung der Energiewirtschaftsverhältnisse
    • Bilanzierung technischer Systeme und Energiebilanzen von Volkswirtschaften
    • Einführung in die betriebliche Kosten- und Wirtschaftlichkeitsrechnung, um Energiekosten ökonomisch bewerten zu können
    • Herkunft, Ressourcensituation und Techniken zur Umwandlung und Nutzung der einzelnen Energieträger: Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbare Energiequellen
• Technische Grundlagen, Organisation und Struktur der Elektrizitäts- und Fernwärmeversorgung
• Umwelteffekte und -wirkungen der Energiennutzung, Möglichkeiten der Bewertung und Technologien zur Reduktion energiebedingter Umweltbelastungen

14. Literatur:
Online-Manuskript
Schiffer, Hans-Wilhelm
Energiemarkt Deutschland, Praxiswissen Energie und Umwelt. TÜV Media, 10. überarbeitete Auflage 2008
Zahoransky, Richard A.
Kugeler, Kurt, Philippen, Peter-W.
Energietechnik: technische, ökonomische und ökologische Grundlagen. Springer - Berlin, Heidelberg [u.a.], 2010

15. Lehrveranstaltungen und -formen:
• 139501 Vorlesung: Grundlagen der Energiewirtschaft und -versorgung
• 139502 Übung: Grundlagen der Energiewirtschaft und -versorgung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13951 Grundlagen der Energiewirtschaft und -versorgung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Energiemärkte und Energiepolitik Planungsmethoden in der Energiewirtschaft Energiesysteme und effiziente Energieanwendung Kraft-Wärme-Kopplung und Versorgungskonzepte

19. Medienform:
• Beamergestützte Vorlesung
• teilweise Anschrift
• begleitendes Manuskript bzw. Unterlagen
• Vortrags-Übungen

20. Angeboten von:
Energiewirtschaft Energiesysteme
**3154 Modulcontainer Wahlpflichtbereich (Mach-TP)**

Zugeordnete Module:
- 12250  Numerische Methoden der Dynamik
- 12270  Simulationstechnik
- 13040  Fertigungsverfahren Faser- und Schichtverbundwerkstoffe
- 13060  Grundlagen der Heiz- und Raumlufttechnik
- 13330  Technologiemanagement
- 13540  Grundlagen der Mikrotechnik
- 13560  Technologien der Nano- und Mikrosystemtechnik I
- 13570  Werkzeugmaschinen und Produktionssysteme
- 13580  Wissens- und Informationsmanagement in der Produktion
- 13590  Kraftfahrzeuge I + II
- 13910  Chemische Reaktionstechnik I
- 13920  Dichtungstechnik
- 13940  Energie- und Umwelttechnik
- 13970  Gerätekonstruktion und -fertigung in der Feinwerktechnik
- 13980  Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau
- 14010  Kunststofftechnik - Grundlagen und Einführung
- 14020  Grundlagen der Mechanischen Verfahrenstechnik
- 14030  Fundamentals of Microelectronics
- 14060  Grundlagen der Technischen Optik
- 14070  Grundlagen der Thermischen Strömungsmaschinen
- 14090  Grundlagen Technischer Verbrennungsvorgänge I + II
- 14100  Hydraulische Strömungsmaschinen in der Wasserkraft
- 14110  Kerntechnische Anlagen zur Energieerzeugung
- 14160  Methodische Produktentwicklung
- 14180  Numerische Strömungssimulation
- 14190  Regelungstechnik
- 14240  Technisches Design
- 14310  Zuverlässigkeitstechnik
- 15600  Schwingungen und Modalanalyse
- 15860  Thermische Verfahrenstechnik I
- 78020  Grundlagen der Fahrzeugantriebe
### Modul: 12250 Numerische Methoden der Dynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 199-2011, 1. Semester → Modulcontainer Wahlpflichtbereich (Mach-TP) → Wahlpflichtfach Maschinenbau → Wahlpflichtfach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen in Mathematik und Mechanik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 12. Lernziele:

#### 13. Inhalt:
- Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme
- Grundlagen der numerischen Mathematik: Numerische Prinzipien, Maschinenzahlen, Fehleranalyse
- Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, lineares Ausgleichsproblem
- Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
- Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren)
- Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich
- 2 Versuche aus dem Angebot des Instituts (u.a. Virtual Reality, Hardware-in-the-loop, Schwingungsmessung), Pflicht falls als Kompetenzfeld gewählt, ansonsten freiwillige Teilnahme

#### 14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungsunterlagen des ITM

#### 15. Lehrveranstaltungen und -formen:
- 122501 Vorlesung Numerische Methoden der Dynamik
- 122502 Übung Numerische Methoden der Dynamik
16. Abschätzung Arbeitsaufwand:  
   | Präsenzzeit: 42 h  
   | Selbstituumszeit / Nacharbeitszeit bzw. Versuche: 138 h  
   | Gesamt: 180 h  

17. Prüfungsnummer/n und -name:  
   | 12251 Numerische Methoden der Dynamik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1  

18. Grundlage für ...:  
19. Medienform:  
   | Beamer, Tablet-PC, Computervorführungen  
20. Angeboten von:  
   | Technische Mechanik
Modul: 12270 Simulationstechnik

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Modulcontainer Wahlpflichtbereich (Mach-TP) -->
    Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
    → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
    - Pflichtmodule Mathematik
    - Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik

12. Lernziele:
    Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen Systemen und beherrschen deren Anwendung. Sie setzen geeignete numerische Integrationsverfahren ein und können das Simulationsprogramm in Abstimmung mit der ihnen gegebenen Simulationsaufgabe parametrisieren.

13. Inhalt:

14. Literatur:
    - Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:
    • 122701 Vorlesung mit integrierter Übung Simulationstechnik
    • 122702 Praktikum Simulationstechnik

16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 53 h Selbststudiumszeit / Nacharbeitszeit: 127 h Gesamt: 180 h

17. Prüfungsnummer/n und -name:
    • 12271 Simulationstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
    • 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum (USL), Schriftlich oder Mündlich, Gewichtung: 1
    Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht elektronischen Hilfsmittel

18. Grundlage für ... :
    Systemanalyse I

19. Medienform:
20. Angeboten von: Systemdynamik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

2. Modulkürzel: 072210001
5. Moduldauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Dr. h. c. Rainer Gadow
9. Dozenten: Rainer Gadow, Andreas Killinger
10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technikpädagogik, PO 199-2011, → | Vorzeitige Master-Module |
| B.Sc. Technikpädagogik, PO 199-2011, 5. Semester → | Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach |

11. Empfohlene Voraussetzungen: abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I+II mit Einführung in die Festigkeitslehre

12. Lernziele: Studierende können nach Besuch dieses Moduls:
- Die Systematik der Faser- und Schichtverbundwerkstoffe und charakteristische Eigenschaften der Werkstoffgruppen unterscheiden, beschreiben und beurteilen.
- Belastungsfälle und Versagensmechanismen (mech., therm., chem.) verstehen und analysieren.
- Verstärkungsmechanismen benennen, erklären und berechnen.
- Hochfeste Fasern und deren textilechnische Verarbeitung beurteilen.
- Technologien zur Verstärkung von Werkstoffen benennen, vergleichen und auswählen.
- Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und Schichtverbunden benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
- Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten.
- In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme bzw. Verbundbauweisen identifizieren, planen und auswählen.
- Prozesse abstrahieren sowie Prozessmodelle erstellen und berechnen.
- Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.


Stichpunkte:
• Grundlagen Festkörper
• Metalle, Polymere und Keramik, Verbundwerkstoffe in Natur und Technik, Trennung von Funktions- und Struktureigenschaften.
• Auswahl von Verstärkungfasern und Faserarchitekturen, metallische und keramische Matrixwerkstoffe.
• Klassische und polymerabgeleitete Herstellungsverfahren.
• Mechanische, textiltechnische und thermische Verfahrenstechnik.
• Grenzflächensysteme und Haftung.
• Füge- und Verbindungstechnik.
• Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
• Vorbehandlungsverfahren.
• Thermisches Spritzen.
• Vakuumverfahren, Dünnschichttechnologien PVD, CVD, DLC
• Konversions- und Diffusionsschichten.
• Schweiss- und Schmelztauchverfahren
• Industrielle Anwendungen (Überblick).
• Aktuelle Forschungsgebiete.
• Strukturmechanik, Bauteildimensionierung und Bauteilprüfung.
• Grundlagen der Schichtcharakterisierung.

14. Literatur:

• Skript
• Filme
• Normblätter

Literaturempfehlungen:


15. Lehrveranstaltungen und -formen:

• 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
• 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
• 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
• 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
• 130405 Praktikum Schichtverbünde durch thermokinnetische Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
Als Kern- oder Ergänzungsfach im Rahmen des Spezialisierungsfachs: mündlich, 40 min
Anmeldung zur mündlichen Modulprüfung im LSF und zusätzlich per Email am IFKB beim Ansprechpartner Lehre

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Fertigungstechnologie keramischer Bauteile
### Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulmodul:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Konstantinos Stergiaropoulos</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Konstantinos Stergiaropoulos</td>
</tr>
</tbody>
</table>
→ Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach  
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
→ c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs- Lüftungs- Klimatechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach  
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester  
→ Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | • Höhere Mathematik I + II  
• Technische Mechanik I + II |
Erworbene Kompetenzen:  
Die Studenten  
• sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,  
• kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports  
• verstehen den Zusammenhang zwischen Anlagenauslegung und  
• funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit  
| 13. Inhalt: | • Systematik der heiz- und rumlufttechnischen Anlagen  
• Strömung in Kanälen und Räumen  
• Wärmeübergang durch Konvektion und Temperaturstrahlung  
• Wärmeleitung  
• Thermodynamik feuchter Luft  
• Verbrennung  
• meteorologische Grundlagen  
• Anlagenauslegung  
• thermische und lufthygienische Behaglichkeit |
| 14. Literatur: | • Recknagel, H., Sprenger, E., Schramek, E.-R.:  
Taschenbuch für Heizung und Klimatechnik, Oldenbourg  
Industrieverlag, München, 2007  


| 15. Lehrveranstaltungen und -formen: | • 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h  
Selbststudiumszeit / Nacharbeitszeit: 138 h  
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | Vorlesungsskript |
| 19. Medienform: | Vorlesungsskript |
| 20. Angeboten von: | Heiz- und Raumlufttechnik |
Modul: 13330 Technologiemanagement

2. Modulkürzel: 072010002
5. Moduldauer: Zweisestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Dieter Spath
9. Dozenten: Dieter Spath
Betina Weber

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011,
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden haben Kenntnis von den theoretischen Ansätzen des Technologiemanagements in Unternehmen und können normatives, strategisches und operatives Technologiemanagement unterscheiden.

Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.

Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.


Erworbene Kompetenzen: Die Studierenden

• können die Bedeutung des Technologiemanagements im Unternehmen einordnen
• kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
• verstehen die Handlungsalternativen des Technologiemanagements
• kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
• sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden
13. Inhalt: Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement. Im Einzelnen werden folgende Themen behandelt: Umfeld des Technologiemanagements, Begriffsklärungen, Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement: • Technologiefrühaufklärung • Lebenszykluskonzepte • Portfoliomanagement • Erfahrungskurvenkonzept • Technologiemanagement

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement: • Innovationsmanagement • Projektmanagement • Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:
• Spath, D., Weber, B.: Skript zur Vorlesung Technologiemanagement
• Spath, D.: Technologiemanagement - Grundlagen, Konzepte, Methoden, Stuttgart: Fraunhofer Verlag, 2011
• Bullinger, H.-J. (Hrsg.): Fokus Technologie: Chancen erkennen - Leistungen entwickeln, München: Hanser, 2008
• Specht, D., Möhrle, M. (Hrsg.): Gabler-Lexikon Technologiemanagement, Wiesbaden: Gabler, 2002

15. Lehrveranstaltungen und -formen:
• 133301 Vorlesung Technologiemanagement I
• 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 13331 Technologiemanagement (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Videos, Animationen, Praktikum

20. Angeboten von: Technologiemanagement und Arbeitswissenschaften
Modul: 13540 Grundlagen der Mikrotechnik

2. Modulkürzel: 073400001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. André Zimmermann
9. Dozenten: André Zimmermann
Eugen Ermantraut

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:
- Eigenschaften der wichtigsten Werkstoffe der Mikrosystemtechnik
- Silizium-Mikromechanik
- Einführung in die Vakuumtechnik
- Herstellung und Eigenschaften dünner Schichten (PVD- und CVD-Technik, Thermische Oxidation)
- Lithographie und Maskentechnik
- Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmataätzen)
- Reinraumtechnik
- Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
- LIGA-Technik
- Mikrotechnische Bauteile aus Kunststoff (z.B. Mikrospritzguss)
- Mikrobearbeitung von Metallen (z.B. spanende Mikrobearbeitung)
- Messmethoden der Mikrotechnik
- Prozessketten der Mikrotechnik

14. Literatur:
Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
- 135401 Vorlesung Grundlagen der Mikrotechnik
- 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13541 Grundlagen der Mikrotechnik (PL), Schriftlich oder Mündlich, 40 Min., Gewichtung: 1

18. Grundlage für ...:

Stand: 19. Oktober 2017
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamerpräsentation, Overhead-Projektor, Tafel, Demonstrationsobjekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Mikrosystemtechnik</td>
</tr>
</tbody>
</table>
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier
10. Zuordnung zum Curriculum in diesem Studiengang: B.Sc. Technikpädagogik, PO 199-2011,
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Modulcontainer Wahlpflichtbereich (Mach-TP) -->
Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Im Modul Technologien der Nano- und Mikrosystemtechnik I
• haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Baeuelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
• können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden
• können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
• können die wichtigsten Verfahren der Mikroelektronik sowie derNano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
• haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
• sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
• sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.


14. Literatur:

- Menz, W., Mohr, J., Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

Lernmaterialien:

- Vorlesungsfolien und -skript auf ILIAS

15. Lehrveranstaltungen und -formen:

- 135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik I

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 h |
| Selbststudiumszeit / Nacharbeitszeit: 138 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

| 13561 Technologien der Nano- und Mikrosystemtechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 |

18. Grundlage für … :

19. Medienform:

- Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial

20. Angeboten von:

- Mikrosystemtechnik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001

5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Wintersemester

4. SWS: 4

7. Sprache: Deutsch


9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ Modulcontainer Wahlpflichtbereich (Mach-TP) → Wahlpflichtfach Maschinenbau → Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
→ b) Fertigungstechnik Pflichtcontainer Grundlagen
Fertigungstechnik → Wahlpflichtfach Maschinenbau → Wahlpflichtfach

11. Empfohlene Voraussetzungen:

TM I - III, KL I - IV, Fertigungslehre

12. Lernziele:

Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden

13. Inhalt:


14. Literatur:

Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>135701 Vorlesung Werkzeugmaschinen und Produktionssysteme</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand:     | Präsenzeit: 42 h  
Selbststudiumszeit / Nacharbeitszeit: 138 h  
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name:     | 13571 Werkzeugmaschinen und Produktionssysteme (PL),  
Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... :             |                                                          |
| 19. Medienform:                     | Medienmix: Präsentation, Tafelanschrieb, Videoclips    |
| 20. Angeboten von:                  | Werkzeugmaschinen                                      |
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
5. Moduldauber: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

   B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
   ➔ Modulcontainer Wahlpflichtbereich (Mach-TP) ➔ Wahlpflichtfach
   Maschinenbau ➔ Wahlpflichtfach
   B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
   ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

   Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehreergänzend zu belegen

12. Lernziele:


13. Inhalt:


14. Literatur:

   Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:

   • 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
- 135802 Übung Wissens- und Informationsmanagement in der Produktion I
- 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
- 135804 Übung Wissens- und Informationsmanagement in der Produktion I

Selbststudium: 117 Stunden |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13581  Wissens- und Informationsmanagement in der Produktion (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Power-Point Präsentationen, Simulationen, Animationen und Filme</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
## Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann, Nils Widdecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse aus den Fachsemestern 1 bis 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 135901 Vorlesung Kraftfahrzeuge I + II • 135902 Übung Kraftfahrzeuge I + II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Vorlesung, Selbststudium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13910 Chemische Reaktionstechnik I

2. Modulkürzel: 041110001
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ulrich Nieken
9. Dozenten: Ulrich Nieken


11. Empfohlene Voraussetzungen:
    Vorlesung:
    • Grundlagen Thermodynamik
    • Höhere Mathematik
    Übungen: keine

12. Lernziele:

13. Inhalt:
    Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur:
    Skript
    empfohlene Literatur:
    • Baerns, M., Hofmann, H.: Chemische Reaktionstechnik, Band 1, G. Thieme Verlag, Stuttgart, 1987
    • Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
    • Levenspiel, O.: Chemical Reaction Engineering, John Wiley und Sons, 1999
    • Elgasheh, S., Uhlig, F.: Numerical Techniques for Chemical and Biological Engineers Using MATLAB, Springer, 2007

15. Lehrveranstaltungen und -formen:
    • 139102 Übung Chemische Reaktionstechnik I
    • 139101 Vorlesung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:
    Präsenzzeit: 56 h
    Selbststudiumszeit / Nacharbeitszeit: 124 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13911 Chemische Reaktionstechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Chemische Reaktionstechnik II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung: Tafelanschrieb, Beamer</td>
</tr>
<tr>
<td></td>
<td>Übungen: Tafelanschrieb, Rechnerübungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Chemische Verfahrenstechnik</td>
</tr>
</tbody>
</table>
**Modul: 13920 Dichtungstechnik**

2. Modulkürzel: 072600002
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/ Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr. Werner Haas

9. Dozenten: Werner Haas

10. Zuordnung zum Curriculum in diesem Studiengang:
    - B.Sc. Technikpädagogik, PO 199-2011,
    - Vorgezogene Master-Module
    - B.Sc. Technikpädagogik, PO 199-2011, 5. Semester
      - Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach


12. Lernziele:
    • Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
    • Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
    • Komplexe tribologische Systeme ingenieurmäßig beherrschen.
    • Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
    • Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:
    • Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
    • Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
    • Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
    • Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
    • Beurteilen und untersuchen von Dichtsystemen, wie gehe ich bei der Schadensanalyse vor.
    - *Teil 1 der Vorlesung startet im WiSe, Teil 2 wird im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.*

14. Literatur:
    • Aktuelles Manuskript
    • Heinz K. Müller, Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
    • 139201 Vorlesung und Übung Dichtungstechnik
    • 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
    • 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 46 h  
Selbststudiumszeit / Nacharbeitszeit: 134 h  
Gesamt: 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13921 Dichtungstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Maschinenelemente</td>
</tr>
</tbody>
</table>
# Modul: 13940 Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>Modulkürzel: 042510001</th>
<th>5. Modulduauer: Einsemestrig</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Günter Scheffknecht

9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden des Moduls haben die Prinzipien der Energieumwandlung und Vorräte sowie Eigenschaften verschiedener Primärenergieträger als Grundlagenwissen verstanden und können beurteilen, mit welcher Anlagentechnik eine möglichst hohe Energieausnutzung mit möglichst wenig Schadstoffemissionen erreicht wird. Die Studierenden haben damit für das weitere Studium und für die praktische Anwendung im Berufsfeld Energie und Umwelt die erforderliche Kompetenz zur Anwendung und Beurteilung der relevanten Techniken erworben.

13. Inhalt:
- Vorlesung und Übung, 4 SWS
  1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
  2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
  3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
  4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
  5) Transport und Speicherung von Energie in unterschiedlichen Formen
  6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
  7) Techniken zur Begrenzung der Umweltbeeinflussungen
  8) Treibhausgasemissionen
  9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:
- 139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13941 Energie- und Umwelttechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ...

19. Medienform:
   • Skripte zu den Vorlesungen und zu den Übungen
   • Tafelanschrieb
   • ILIAS

20. Angeboten von: Thermische Kraftwerkstechnik
Modul: 13970Gerätekonstruktion und -fertigung in der Feinwerktechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Wolfgang Schinköthe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Schinköthe, Eberhard Burkard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagenausbildung in Konstruktionslehre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Meßtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertesten), 1,0 SWS (2x1,5 h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• bei Wahl als Kern- oder Ergänzungsfach: mündliche Prüfung, 40 Minuten
• bei Wahl als Pflichtfach: schriftliche Prüfung, 120 Minuten

18. Grundlage für ...

19. Medienform:
• Tafel
• OHP
• Beamer

20. Angeboten von: Konstruktion und Fertigung in der Feinwerktechnik
Modul: 13980 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Hon.-Prof. Dr. Michael Doser |
| 9. Dozenten: | Heinrich Planck |

B.Sc. Technikpädagogik, PO 199-2011, 6. Semester  
→ Modulcontainer Wahlpflichtbereich (Mach-TP)  
→ Wahlpflichtfach Maschinenbau  
→ Wahlpflichtfach |

| 11. Empfohlene Voraussetzungen: | Keine |

| 12. Lernziele: | Die Studierenden können die Grundlagen um die komplexen Prozessabläufe sowie die technologischen Zusammenhänge der Textiltechnik verstehen. Sie kennen die wichtigsten textilen Materialien in ihren Eigenschaften und Möglichkeiten, sowie die grundlegenden Prozessabläufe zur Herstellung von Textilien. Anhand dieser Abläufe kennen sie die wichtigsten textilen Produktionsprozesse, insbesondere die Möglichkeiten der Multiskalität textiler Strukturen und die zur Erzeugung notwendigen Technologien. Durch die Vorlesung integrierte praktische Demonstrationen an aktuellen Industriemaschinen beherrschen sie die behandelten technologischen Verfahren und Prozessabläufe der Textiltechnik und des Textilmaschinenbaus |

| 13. Inhalt: | • Überblick über die textilen Fertigungsverfahren sowie Vermittlung der Multiskalität textiler Strukturen und der sich daraus ergebenden Möglichkeiten der Funktionalität.  
• Textile Werkstoffkunde |

| 14. Literatur: | Aktuelle Vorlesungsmanuskripte |

| 15. Lehrveranstaltungen und -formen: | • 139803 Praktikum Einführung in die textile Prüftechnik und Statistik  
• 139802 Vorlesung Einführung Textiltechnik  
• 139801 Vorlesung Einführung Textil- und Faserstoffkunde |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 76 h  
Selbststudiumszeit / Nacharbeit: 104 h  
Gesamtzeit: 180 h |

| 17. Prüfungsnummer/n und -name: | 13981 | Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau (PL), Mündlich, 40 Min., Gewichtung: 1 |

| 18. Grundlage für ... : | |

| 19. Medienform: | Vorlesung:  
• Beamer  
• Exponate  
• aktuelle Maschinen  
• Folienausdrucke  
Praktikum: |

| 20. Angeboten von: | Deutsche Institute für Textil- und Faserforschung |
## Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Christian Bonten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Prof. Dr.-Ing. Christian Bonten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 199-2011, 4. Semester → Modulcontainer Wahlpflichtbereich (Mach-TP) → Wahlpflichtfach Maschinenbau → Wahlpflichtfach |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | • Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen, chemischer Aufbau und Struktur vom Monomer zu Polymer  
• Erstarrung und Kraftübertragung der Kunststoffe  
• Rheologie und Rheometrie der Polymerschmelze  
• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe, thermische, elektrische und weitere Eigenschaften, Methoden zur Beeinflussung der Polymereigenschaften, Alterung der Kunststoffe  
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physiskalische Grundgleichungen, rheologische und thermische Zustandsgleichungen  
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe  
• Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren  
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten, Fügetechnik  
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling |
| 14. Literatur: | Präsentation in pdf-Format  
15. Lehrveranstaltungen und -formen:

- 140101 Vorlesung Kunststofftechnik - Grundlagen und Einführung

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 54 h
- Selbststudium: 126 h
- Summe: 180 h

17. Prüfungsnummer/n und -name:

- 14011 Kunststofftechnik - Grundlagen und Einführung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

- Charakterisierung von Polymeren und Kunststoffen
- Faserkunststoffverbunde
- Fließeigenschaften von Kunststoffschmelzen - Rheologie der Kunststoffe
- Konstruieren mit Kunststoffen
- Kunststoff-Werkstofftechnik
- Kunststoffaufbereitung und Kunststoffrecycling
- Kunststoffe in der Medizintechnik
- Kunststoffverarbeitungstechnik (1 und 2)
- Simulation in der Kunststoffverarbeitung
- Technologiemanagement für Kunststoffprodukte

19. Medienform:

- Beamer-Präsentation
- Tafelanschride

20. Angeboten von:

- Kunststofftechnik
### Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Manfred Piesche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Inhaltlich: Strömungsmechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal: keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Einphasenströmungen in Leitungssystemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transportverhalten von Partikeln in Strömungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Poröse Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen der mechanischen Trenntechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beschreibung von Trennvorgängen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Einteilung von Trennprozessen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen der Mischtechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dimensionslose Kennzahlen in der Mischtechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bauformen und Funktionsweisen von Mischeinrichtungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leistungs- und Mischzeitcharakteristiken</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen der Zerteiltechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zerkleinerung von Feststoffen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen der Agglomerationstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Trocken- und Feuchtagglomeration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Haftkräfte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ähnlichkeitstheorie und Übertragungsregeln</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14. Literatur:  
- Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992  

15. Lehrveranstaltungen und -formen:  
- 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik  
- 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:  
Präsenzzeit Vorlesung: 42 h  
Präsenzzeit Übung: 14 h  
Vor- und Nachbearbeitungszeit: 124 h  
**Summe: 180 h**

17. Prüfungsnummer/n und -name:  
14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:  
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:  
Mechanische Verfahrenstechnik
### Modul: 14030 Fundamentals of Microelectronics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Studierende kennen wesentliche Grundlagen der Werkstoffe, Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren in der Silizium-Technologie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • History and Basics of IC Technology  
• Process Technology I and II  
• Process Modules  
• MOS Capacitor  
• MOS Transistor  
• Non-Ideal MOS Transistor  
• Basics of CMOS Circuit Integration  
• CMOS Device Scaling  
• Metal-Silicon Contact  
• Interconnects  
• Design Metrics  
• Special MOS Devices  
• Future Directions |
• S. Sze: Fundamentals of Semiconductor Fabrication, Wiley Interscience, 2003 |
| 15. Lehrveranstaltungen und -formen: | • 140301 Vorlesung und Übung Grundlagen der Mikroelektronikfertigung |
| 17. Prüfungsnummer/n und -name: | 14031 Fundamentals of Microelectronics (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Beamer, Tafel, persönliche Interaktion |
| 20. Angeboten von: | Mikroelektronik |
### Modul: 14060 Grundlagen der Technischen Optik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>Univ.-Prof. Dr. Wolfgang Osten</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td>Wolfgang Osten</td>
<td>Erich Steinbeißer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Christof Pruß</td>
<td>Alexander Bielke</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>HM 1 - HM 3, Experimentalphysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen die Grundzüge der Herleitung der optischen Phänomene &quot;Interferenz&quot; und &quot;Beugung&quot; aus den Maxwell-Gleichungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können die Grenzen der optischen Auflösung definieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td>• optische Grundgesetze der Reflexion, Refraktion und Dispersion,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kollineare (Gaußsche) Optik,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• optische Bauelemente und Instrumente,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wellenoptik: Grundlagen der Beugung und Auflösung,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Abbildungsfehler,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Strahlung und Lichttechnik</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Manuskript aus Powerpointfolien der Vorlesung, Übungsblätter, Formelsammlung, Sammlung von Klausuraufgaben mit ausführlichen Lösungen, Literatur:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fleisch: A Student's Guide to Waves, 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Haferkorn: Optik, Wiley, 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hecht: Optik, Oldenbourg, 2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:
• 140601 Vorlesung Grundlagen der Technischen Optik
• 140602 Übung Grundlagen der Technischen Optik
• 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:
14061 Grundlagen der Technischen Optik (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ... :

19. Medienform:
Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine "Hands-on" Versuche gehen durch die Reihen

20. Angeboten von:
Technische Optik
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004
5. Modulldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Damian Vogt
9. Dozenten: Damian Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
  ➞ Modulcontainer Wahlpflichtbereich (Mach-TP) ➔
  Wahlpflichtfach Maschinenbau ➔ Wahlpflichtfach
B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
  ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
• Ingenieurwissenschaftliche Grundlagen
• Technische Thermodynamik I + II
• Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
• verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen
• kennt und versteht die physikalischen und technischen Vorgänge und Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen, Verdichter, Ventilatoren)
• beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung, Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
• ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialen Turbomaschinen zu ziehen

13. Inhalt:
• Anwendungsgebiete und wirtschaftliche Bedeutung
• Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Maschinenkomponenten
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Phänomene

14. Literatur:
• Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001
15. Lehrveranstaltungen und -formen: • 140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14071 Grundlagen der Thermischen Strömungsmaschinen (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... : Thermische Strömungsmaschinen

19. Medienform: Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von: Thermische Strömungsmaschinen und Maschinenlaboratorium
### Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

| 4. SWS: | 5 | 7. Sprache: | Weitere Sprachen |

| 8. Modulverantwortlicher: | Univ.-Prof. Dr. Andreas Kronenburg |
| 9. Dozenten: | Andreas Kronenburg |

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik, Reaktionskinetik

12. Lernziele:
Die Studenten kennen die physikalisch-chemischen Grundlagen von Verbrennungsprozessen: Reaktionskinetik von fossilen und biogenen Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen, vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt:
**Grdlig. Technischer Verbrennungsvorgänge I und II (WiSe, Unterrichtssprache Deutsch):**
- Erhaltungsgleichungen, Thermodynamik, molekularer Transport, chemische Reaktion, Reaktionsmechanismen, laminare vorgemischte und nicht-vorgemischte Flammen.
- Gestreckte Flammenstrukturen, Zündprozesse, Flammenstabilität, turbulente vorgemischte und nicht-vorgemischte Verbrennung, Schadstoffbildung, Spray-Verbrennung

An equivalent course is taught in English:
**Combustion Fundamentals I und II (summer term only, taught in English):**
- Transport equations, thermodynamics, fluid properties, chemical reactions, reaction mechanisms, laminar premixed and non-premixed combustion.
- Effects of stretch, strain and curvature on flame characteristics, ignition, stability, turbulent reacting flows, pollutants and their formation, spray combustion

14. Literatur:
- Vorlesungsmanuskript
- Warnatz, Maas, Dibble, Verbrennung, Springer-Verlag
- Warnatz, Maas, Dibble, Combustion, Springer
- Froms, An Introduction to Combustion, Mc Graw Hill

15. Lehrveranstaltungen und -formen:
- 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II
- 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
Selbststudium / Nacharbeitszeit: 110 h

Stand: 19. Oktober 2017
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>• Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>• PPT-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>• Skripte zu den Vorlesungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Technische Verbrennung</td>
</tr>
</tbody>
</table>
Modul: **14100 Hydraulische Strömungsmaschinen in der Wasserkraft**

| 4. SWS: | 4 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Riedelbauch

9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
- Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
- Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik

12. Lernziele:
Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.

13. Inhalt:

14. Literatur:
- Skript Hydraulische Strömungsmaschinen in der Wasserkraft
- C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
- W. Bohl, W. Elmendorf, Strömungsmaschinen 1 und 2, Vogel Buchverlag
- J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
- J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:
- 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
- 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

17. Prüfungsnummer/n und -name: 14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für …: Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform: Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von: Strömungsmechanik und Hydraulische Strömungsmaschinen
### Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
</tbody>
</table>

#### 8. Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Jörg Starflinger

#### 9. Dozenten:
Jörg Starflinger

#### 10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 199-2011, 6. Semester
  - Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

#### 11. Empfohlene Voraussetzungen:
Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre

#### 12. Lernziele:
Die Studierenden
- verstehen den Kernaufbau und die Bindungsentnergie. Sie verstehen den Massendefekt und den Zusammengang mit der Einstein'schen Formel.
- können die Modellvorstellung der Kernspaltung nachvollziehen, kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind.
- kennen Wirkungsquerschnitte und die 4-Faktoren-Formel.
- können eine einfache Neutronenbilanzgleichung aufstellen. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.
- verstehen das dynamische Verhalten des Reaktors und Begriffe, wie Reaktivität und Reaktorperiode.
- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile identifizieren. Sie können DNB und Dryout als Gefahr für das Brennelement erläutern.
- können Kühlkreislauf von Druck- und Siedewasserreaktoren inkl. aller Komponenten schematisch zeichnen und benennen.
- können Hilfs- und Nebenanlagen identifizieren.
- verstehen die Gefährdungspotenziale und Schutzziele in der Kerntechnik, die Definition der zwölff Sicherheitsprinzipien.
- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos.
- können die Reaktorentwicklung nachvollziehen und die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen.
- können die Ziele und Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen angeben.
- können den Brennstoffkreislauf nachvollziehen.
- können die Relevanz verschiedener Abfallarten für Zwischen- und Endlager erläutern, das Schema der Wiederaufarbeitung
zeichnen. Sie verstehen die Rolle von Glaskokillen für hochradioaktive Abfälle.
- verstehen das tiefengeologische Konzept und das Multi barrierenkonzept zur Sicherheit von Endlagern.

13. Inhalt:
Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.
- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur:
• W. Oldekop: Druckwasserreaktoren für Kern-Kraftwerke

15. Lehrveranstaltungen und -formen:
• 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:
45 h Präsenzzeit
45 h Vor-/Nacharbeitungszeit
90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:
14111 Kerntechnische Anlagen zur Energieerzeugung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Kernenergietechnik

19. Medienform:
• ppt-Präsentation
• Manuskripte online
• Tafel + Kreide

20. Angeboten von:
Kernenergetik und Energiesysteme
Modul: 14160 Methodische Produktentwicklung

2. Modulkürzel: 072710010
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Hansgeorg Binz
9. Dozenten: Hansgeorg Binz

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 199-2011,
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 199-2011,
→ Modulcontainer Wahlpflichtbereich (Mach-TP) -->
Wahlpflichtfach Maschinenbau --> Wahlpflichtfach

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module
• Konstruktionslehre I - IV oder
• Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
• Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:
Im Modul Methodische Produktentwicklung
• haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
• können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden
• können die Stellung des Geschäftsbereichs "Entwicklung/Konstruktion" im Unternehmen ordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

13. Inhalt:
Die Vorlesung vermittelt die Grundlagen der methodischen Produktentwicklung. Im ersten Teil der Vorlesung werden zunächst die Einordnung des Konstruktionsbereichs im Unternehmen und die Notwendigkeit der methodischen

14. Literatur:
- Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 141601 Vorlesung und Übung Methodische Produktentwicklung I
- 141602 Vorlesung und Übung Methodische Produktentwicklung II
- 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudiumszeit / Nacharbeitszeit: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14161 Methodische Produktentwicklung (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
Prüfung: i.d.R. schriftlich (gesamer Stoff von beiden Semestern), nach jedem Semester angeboten, Dauer 120 min, bei weniger als 10 Kandidaten: mündlich, Dauer 40 min

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Tafel

20. Angeboten von:
Maschinenkonstruktionen und Getriebebau
Modul: 14180 Numerische Strömungssimulation

| 2. Modulkürzel: | 041610002 |
| 3. Leistungspunkte: | 6 LP |
| 4. SWS: | 4 |
| 5. Modulduer: | Einsemestrig |
| 6. Turnus: | Sommersemester |
| 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Eckart Laurien

9. Dozenten: Eckart Laurien

     → B.Sc. Technikpädagogik, PO 199-2011, Modulcontainer Wahlpflichtbereich (Mach-TP) → Wahlpflichtfach Maschinenbau → Wahlpflichtfach

11. Empfohlene Voraussetzungen: Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele: Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch/physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen

13. Inhalt:

   1. Einführung
   1.1 Beispiel: Rohrkrümmer
   1.1.1 Einführende Demonstration
   1.1.2 Modellierung und Simulation in der Strömungsmechanik
   1.1.3 Strömungsphänomene in Rohrkrümmern
   1.1.4 Vorbereitung und Durchführung
   2 Vorgehensweise
   2.1 Physikalische Beschreibung
   2.1.1 Fluid und ihre Eigenschaften
   2.1.2 Kompressibilität einer Gasströmung
   2.1.3 Turbulenz
   2.1.4 Dimensionsanalyse
   2.1.5 Ausgebildete laminare Rohrströmung
   2.2 Mathematische Formulierung
   2.2.1 Eindimensionale Grundgleichungen der Stromfadentheorie
   2.2.2 Ableitung der Navier-Stokes Gleichungen
   2.2.3 Randbedingungen
   2.2.4 Analytische Lösungen
   2.2.5 Navier-Stokes Gleichungen für kompressible Strömung
   2.3 Diskretisierung
   2.3.1 Finite-Differenzen Methode für die Poissongleichung
   2.3.2 Grundlagen der Finite-Volumen Methode
   2.4 Koordinatentransformation und Netzgenerierung
   2.4.1 Klassifizierung numerischer Netze
   2.4.2 Netze für komplexe Geometrien
   2.5 Simulationsprogramme
   2.5.1 Übersicht
   2.5.2 Das Rechenprogramm Ansys-CFX
   2.5.3 Das Rechenprogramm Open Foam
   3 Grundgleichungen und Modelle
3.1 Beschreibung auf Molekülebene
3.1.1 Gaskinetische Simulationsmethode
3.2 Laminare Strömungen
3.2.1 Hierarchie der Grundgleichungen
3.2.2 Die Euler-Gleichungen der Gasdynamik
3.2.3 Energiegleichung
3.2.4 Navier-Stokes Gleichungen für inkompressible Strömungen
3.3 Turbulente Strömungen
3.3.1 Visualisierung turbulenter Strömungen
3.3.2 Direkte Numerische Simulation
3.3.3 Reynoldsgleichungen für turbulente Strömungen
3.3.4 Prandtl'sches Mischungswege-Modell
3.3.5 Algebraische Turbulenzmodelle
3.3.6 Zweigleichungs-Transportmodelle
3.3.7 Sekundärströmungen
3.3.8 Reynolds-Strukturmodell
3.3.9 Klassifikation von Turbulenzmodellen
3.3.10 Grobstruktursimulation
4 Qualität und Genauigkeit
4.1 Anforderungen
4.1.1 Fehler und Genauigkeit
4.1.2 Anforderungen der Strömungsphysik
4.1.3 Anforderungen des Ingenieurwesens
4.2 Numerische Fehler und Verifikation
4.2.1 Rundungsfehler
4.2.2 Numerische Diffusion
4.2.3 Netzabhängigkeit einer Lösung
4.3 Modellfehler und Validierung
4.3.1 Arbeiten mit Wandfunktionen
4.3.2 Beispiel: Rohrabzweig

14. Literatur:
• alle Vorlesungsfolien in ILIAS verfügbar

15. Lehrveranstaltungen und -formen:
• 141801 Vorlesung und Übung Numerische Strömungssimulation
• 141802 Praktikum Numerische Strömungssimulation

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 45h + Nacharbeitszeit: 131h + Praktikumszeit: 4 h = 180 h

17. Prüfungsnummer/n und -name:
14181 Numerische Strömungssimulation (PL), Schriftlich, 120 Min., Gewichtung: 1
keine Hilfsmittel zugelassen

18. Grundlage für ...

19. Medienform:
  ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5 %)
Manuskripte online

20. Angeboten von:
Thermofluiddynamik
Modul: 14190 Regelungstechnik

4. SWS: 4  7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Frank Allgöwer
9. Dozenten: Frank Allgöwer
Matthias Müller
10. Zuordnung zum Curriculum in diesem Studiengang: B.Sc. Technikpädagogik, PO 199-2011,
    → Vorgezogene Master-Module
    B.Sc. Technikpädagogik, PO 199-2011,
    → Modulcontainer Wahlpflichtbereich (Mach-TP) -->
    Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
11. Empfohlene Voraussetzungen: • HM I-III
    • Systemdynamische Grundlagen der Regelungstechnik
12. Lernziele: Die Studierenden
    • haben umfassende Kenntnisse zur Analyse und Synthese
      linearer Regelkreise im Zeit- und Frequenzbereich,
    • können auf Grund theoretischer Überlegungen Regler und
      Beobachter für dynamische Systeme entwerfen und validieren,
    • kennen Methoden zur praktischen Umsetzung
      regelungstechnischer Methoden,
    • können sich mit anderen Ingenieuren über regelungstechnische
      Methoden austauschen.
13. Inhalt:
    Vorlesung: "Einführung in die Regelungstechnik":
    Systemtheoretische Konzepte der Regelungstechnik, Stabilität
    (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit,
    Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und
    Frequenzbereich (PID, Polvorgabe,Vorfilter,...), Beobachterentwurf
    Praktikum: "Einführung in die Regelungstechnik":
    Implementierung der in der Vorlesung Einführung in die
    Regelungstechnik erlernten Reglerentwurfsverfahren an
    praktischen Laborversuchen
    Projektwettbewerb:
    Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen
    Zeit in Gruppen
    Vorlesung "Mehrgrößenregelung":
    Modellierung von Mehrgrößensystemen:Zustandsraumdarstellung,
    Übertragungsmatrizen, Analyse von
    Mehrgrößensystemen:Ausgewählte mathematische Grundlagen
    aus der Funktionalanalysis und der Linearen Algebra, Pole
    und Nullstellen, Steuerbarkeit und Beobachtbarkeit, Stabilität
    von MIMO-Systeme: Small-Gain-Theorem, Nyquisttheorem,
    Singulärwertezerlegung, Regelgüte, Reglerentwurfsverfahren:
    Relative-Gain-Array-Verfahren, Polvorgabe, Eigenstruktvorgabe,
    Direct/Inverse Nyquist Array, Internal-Model-Principle
    Es muss einer der folgenden Blöcke ausgewählt werden:
    Block 1
    • Vorlesung "Einführung in die Regelungstechnik", 2 SWS, 5.
      Semester
• Projektwettbewerb zur Vorlesung "Einführung in die Regelungstechnik", 1 SWS, 5. Semester
• Praktikum "Einführung in die Regelungstechnik", 1 SWS, 6. Semester

**Block 2**

• Vorlesung "Einführung in die Regelungstechnik", 2 SWS, 5. Semester
• Vorlesung "Mehrgrößenregelung", 2 SWS, 6. Semester

**Block 3**

• Projektwettbewerb zur Vorlesung "Einführung in die Regelungstechnik", 1 SWS, 5. Semester
• Praktikum "Einführung in die Regelungstechnik", 1 SWS, 6. Semester
• Vorlesung "Mehrgrößenregelung", 2 SWS, 6. Semester

**Anmerkung:** Block 3 muss und kann nur dann gewählt werden, wenn die Vorlesung "Einführung in die Regelungstechnik" bereits in einem anderen Modul gewählt wurde.

14. Literatur:

**Vorlesung "Einführung in die Regelungstechnik"**:

• Praktikum und Projektwettbewerb
• Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004

**Vorlesung "Mehrgrößenregelung" zusätzlich**

• Lunze, J.. Regelungstechnik 2, Springer Verlag, 2004

15. Lehrveranstaltungen und -formen:

• 141901 Vorlesung Einführung in die Regelungstechnik
• 141902 Projektwettbewerb Einführung in die Regelungstechnik
• 141903 Praktikum Einführung in die Regelungstechnik
• 141904 Vorlesung Mehrgrößenregelung

16. Abschätzung Arbeitsaufwand:

• Präsenzzeit: 42h
• Selbststudiumszeit / Nacharbeitszeit: 138h
• Gesamt: 180h

17. Prüfungsnummer/n und -name:

• 14191 Einführung in die Regelungstechnik (PL), Schriftlich, 90 Min., Gewichtung: 1
• 14194 Einführung in die Regelungstechnik Projektwettbewerb (USL), Sonstige, Gewichtung: 1
• 14193 Einführung in die Regelungstechnik Praktikum (USL), Sonstige, Gewichtung: 1
• 14192 Mehrgrößenregelung (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemtheorie und Regelungstechnik
### Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Maier</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Maier, Markus Schmid</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | Im Modul Technisches Design  
  • besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,  
  • können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse. Erworbene Kompetenzen:  
  Die Studierenden  
  • erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,  
  • beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,  
  • beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,  
  • können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,  
  • beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,  
  • haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs. |
14. Literatur:

- Maier, T., Schmid, M.: Online-Skript IDeEn\textsuperscript{Kompakt} mit SelfStudy-Online-Übungen,
- Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag,
- Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:

- 142401 Vorlesung Technisches Design
- 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 42 h |
| Selbststudiumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:

14241 Technisches Design (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:

Technisches Design
### Modul: 14310 Zuverlässigkeitstechnik

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>072600003</th>
<th>Moduldauer:</th>
<th>Zweisemestrig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
<td>Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bernd Bertsche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Bernd Bertsche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | B.Sc. Technikpädagogik, PO 199-2011, Vorgezogene Master-Module
  B.Sc. Technikpädagogik, PO 199-2011, Modulecontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach |
| Voraussetzungen:       | Höhere Mathematik und abgeschlossene Grundlagenausbildung in Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung |
| Lernziele:             | Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeitstechnik. Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen. |
| Inhalt:                | - Bedeutung und Einordnung der Zuverlässigkeitstechnik  
  - Übersicht zu Methoden und Hilfsmittel  
  - Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)  
  - Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolesche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation  
  - Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)  
  - Zuverlässigkeitsnachweisverfahren  
  - Zuverlässigkeitssicherungsprogramme |
  - VDA-Band 3.2: Zuverlässigkeitsicherung bei Automobilherstellern und Lieferanten. |
| Lehrveranstaltungen und -formen: | 143101 Vorlesung und Übung Zuverlässigkeitstechnik  
  143102 Praktikumsversuch FMEA |
| Abschätzung Arbeitsaufwand | Präsenzzeit: 42 h Vorlesung und 2 h Praktikum  
  Selbststudium: 136 h  
  Gesamt: 180 h |
<p>| Prüfungsnummer/n und -name: | 14311 Zuverlässigkeitsanalyse (PL), Schriftlich, 120 Min., Gewichtung: 1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung: Laptop, Beamer, Overhead</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Maschinenelemente</td>
</tr>
</tbody>
</table>
Modul: 15600 Schwingungen und Modalanalyse

2. Modulkürzel: 074010001  
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP  
6. Turnus: Sommersemester

4. SWS: 4  
7. Sprache: Deutsch

8. Modulverantwortlicher: apl. Prof. Dr.-Ing. Michael Hanss

9. Dozenten: Michael Hanss  
Pascal Ziegler

10. Zuordnung zum Curriculum in diesem Studiengang: B.Sc. Technikpädagogik, PO 199-2011,  
→ Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach  
B.Sc. Technikpädagogik, PO 199-2011,  
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Technischer Mechanik,  
z.B. durch die Module TM I, TM II+III sowie TM IV

12. Lernziele:  
• Der Studierende ist vertraut mit den Grundlagen von linearen (freien und erzwungenen) Schwingungen mit einem und mehreren Freiheitsgraden sowie den Grundlagen von linearen Schwingungen von Kontinua.  
• Der Studierende beherrscht die mathematischen Methoden der Beschreibung von linearen Schwingungssystemen und ist in der Lage, die Schwingungsbeanspruchung von einfachen mechanischen Anordnungen und Strukturen zu berechnen.  
• Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.  
• Der Studierende ist in der Lage daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt:  
Die Veranstaltung Technische Schwingungslehre vermittelt die Grundlagen der linearen Schwingungslehre in folgender Gliederung:  
• Grundbegriffe und Darstellungsformen von Schwingungen  
• Lineare Schwingungen mit einem Freiheitsgrad: konservative und gedämpfte Eigenschwingungen, erzwungene Schwingungen mit Beispielen  
• Lineare Schwingungen mit endlich vielen Freiheitsgraden: Eigenschwingungen und erzwungene Schwingungen mit harmonischer Erregung  
• Schwingungen kontinuierlicher Systeme.

Die Veranstaltung Experimentelle Modalanalyse vermittelt den Inhalt in folgender Gliederung:  
• Grundlagen und Anwendungen der experimentellen Modalanalyse  
• Methoden zur Schwingungsanregung, Messverfahren  
• Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung  
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung  
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich
Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur:
   • Vorlesungsskripte
   Weiterführende Literatur für die Technische Schwingungslehre:
   Weiterführende Literatur für die Experimentelle Modalanalyse:

15. Lehrveranstaltungen und -formen:
   • 156001 Vorlesung Technische Schwingungslehre
   • 156002 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
   Präsenzzeit: 45h + Nacharbeitszeit: 135h = 180h

17. Prüfungsnummer/n und -name:
   • 15601 Technische Schwingungslehre (PL), Schriftlich, 60 Min., Gewichtung: 1
   • 15602 Experimentelle Modalanalyse (PL), Schriftlich oder Mündlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
   Overhead-Projektor, Tafel, Demonstrationsexperimente

20. Angeboten von:
   Technische und Numerische Mechanik
# Modul: 15860 Thermische Verfahrenstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Joachim Groß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Groß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Thermodynamik I + II Thermodynamik der Gemische (empfohlen, nicht zwingend)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden • verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik. • können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren. • sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen. • können das erworbene Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen. • können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematisken der bautechnischen Umsetzung identifizieren.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14. Literatur:
- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedecke, Fluidverfahrenstechnik, Band 1 und 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:
- 158602 Übung Thermische Verfahrenstechnik I
- 158601 Vorlesung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:
  Präsenzzeit: 56 h
  Selbstdstudiumzeit / Nacharbeitszeit: 124 h
  Gesamt: 180 h

17. Prüfungsnummer/n und -name:
  15861 Thermische Verfahrenstechnik I (USL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
  Thermische Verfahrenstechnik II

19. Medienform:
  Der Vorlesungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien. Beiblätter werden zur Unterstützung ausgeteilt.

20. Angeboten von:
  Thermodynamik und Thermische Verfahrenstechnik
Modul: 78020 Grundlagen der Fahrzeugantriebe

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Bargende
9. Dozenten: Prof. Bargende

10. Zuordnung zum Curriculum in diesem Studiengang:
    B.Sc. Technikpädagogik, PO 199-2011,
    → a) Fahrzeugtechnik Pflichtcontainer Grundlagen
        Fahrzeugtechnik --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011,
    → Modulcontainer Wahlpflichtbereich (Mach-TP) --> Wahlpflichtfach Maschinenbau --> Wahlpflichtfach
    B.Sc. Technikpädagogik, PO 199-2011,
    → Vorgezogene Master-Module


12. Lernziele:

   Die Studenten kennen
die Unterschiedlichen Konzepte für Fahrzeugantriebe. Sie können geeignete
Konzepte festlegen.

   Sie
können thermodynamische Analysen durchführen und Kennfelder interpretieren.
   Bauteilbelastung und Schadstoffbelastung bzw. deren Vermeidung
   (innermotorisch
   und durch Abgasnachbehandlung) können bestimmt werden. Sie
lassen
   unterschiedliche Hybridantriebskonzepte und können diese
   auslegen.

13. Inhalt:

    Aufbau von Fahrzeugantrieben, mögliche Antriebssysteme,
    thermodynamische Vergleichsprozesse, Kraftstoffe, Hybridantriebe
    und –konzepte, Otto- und dieselmotorische Gemischbildung,
    Zündung und Verbrennung, Ladungswechsel, Aufladung,
    Auslegung eines Verbrennungsmotors, Triebwerksdynamik,
    Konstruktionselemente, Abgas- und Geräuschemissionen,
    Gesetzgebung und Klassifizierung in Hinblick auf Hybridantriebe,
    Hybridstrukturen, ihre Komponenten und Betriebsstrategien,
ausgeführte Beispiele. Informationen zur Prüfung:
    Verständnis: keine Hilfsmittel zugelassen
    Berechnung: alle Hilfsmittel außer programmierbare
Taschenrechner, Laptops, Handy, etc.

14. Literatur:

    Vorlesungsmanuskript
    Basshuysen, R. v., Schäfer, F.: Handbuch Verbrennungsmotor,
    Vieweg, 2007
15. Lehrveranstaltungen und -formen:  

- 780201 Vorlesung Grundlagen der Fahrzeugantriebe

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:  

78021 Grundlagen der Fahrzeugantriebe (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:  

*Tafelanschrieb, PPT-Präsentationen, Overheadfolien*

20. Angeboten von:  

Verbrennungsmotoren
**Modul: 20390 Fachpraktikum**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Bernd Zinn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | Andreas Mußotter  
Frank Peglow  
Bernhard Felix Stolzenburg |
B.Sc. Technikpädagogik, PO 199-2011, 3. Semester → Hauptfach |
| 11. Empfohlene Voraussetzungen: | keine |
Erwerb fachpraktischer Kenntnisse und Fertigkeiten.  
Einblicke in Arbeitsabläufe und Arbeitsverfahren, Organisation und Führung eines Betriebes der jeweiligen Studienrichtung |
| 13. Inhalt: | Fachpraktischer Kenntnisse und Fertigkeiten.  
Fachpraktischer, berufliche Handlungsabläufe, Arbeitsverfahren und ihre Einsatzgebiete sowie der Qualitätssicherung in industriellen und handwerklichen Betrieben der jeweiligen Studienrichtungen.  
Näheres regeln die jeweiligen Praktikumsrichtlinien |
| 15. Lehrveranstaltungen und -formen: | • 203901 Fachpraktikum |
| 16. Abschätzung Arbeitsaufwand: | Ca.360h (12 Wochen Praktikum inclusive Erstellung des Praktikumsbericht) |
| 17. Prüfungsnummer/n und -name: | 20391 Fachpraktikum (USL), Schriftlich, Gewichtung: 1  
Erstellung eines Praktikumsberichts |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: | Berufspädagogik mit Schwerpunkt Technikdidaktik |

Stand: 19. Oktober 2017
### Modul: 80080 Bachelorarbeit Technikpädagogik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 9. Dozenten:

#### 11. Empfohlene Voraussetzungen:

#### 12. Lernziele:

#### 14. Literatur:

#### 15. Lehrveranstaltungen und -formen:

#### 16. Abschätzung Arbeitsaufwand:

#### 17. Prüfungsnummer/n und -name:

#### 18. Grundlage für ...

#### 19. Medienform:

#### 20. Angeboten von: Berufs-, Wirtschafts- und Technikpädagogik