Kontaktpersonen:

<table>
<thead>
<tr>
<th>Rolle</th>
<th>Name</th>
<th>Institut für Maschinelle Sprachverarbeitung</th>
<th>Tel.</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Univ.-Prof. Sebastian Pado</td>
<td></td>
<td></td>
<td>sebastian.pado@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Stefanie Anstein</td>
<td></td>
<td>6858-1387</td>
<td>stefanie.anstein@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Apl. Prof. Uwe Reyle</td>
<td></td>
<td>6858-1361</td>
<td>uwe.reyle@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>Stefanie Anstein</td>
<td></td>
<td>6858-1387</td>
<td>stefanie.anstein@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Stundenplanverantwortliche/r</td>
<td>Roman Klinger</td>
<td></td>
<td></td>
<td>roman.klinger@ims.uni-stuttgart.de</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Präambel ... 5

Qualifikationsziele .. 6

100 Basismodule ... 7

10260 Programmierkurs .. 8
10280 Programmierung und Software-Entwicklung ... 10
10940 Theoretische Grundlagen der Informatik .. 12
12060 Datenstrukturen und Algorithmen .. 14
13160 Grundlagen der Maschinellen Sprachverarbeitung .. 16
13170 Grundlagen der Syntax ... 18
15260 Einführung in die Maschinelle Sprachverarbeitung ... 20

200 Kernmodule ... 21

10180 Information Retrieval and Text Mining ... 22
13270 Parsing .. 23
13870 Semantik .. 24
13960 Algorithmisches Sprachverstehen .. 25
14000 Phonetik und Phonologie ... 26
14040 Sprachsynthese und Spracherkennung .. 27
40660 Statistische Sprachverarbeitung .. 29

300 Ergänzungsmodule ... 30

14270 Projekt Maschinelle Sprachverarbeitung .. 31
14290 Seminar Maschinelle Sprachverarbeitung .. 32

400 Schlüsselqualifikationen fachaffin ... 33

14300 Mathematik für die Maschinelle Sprachverarbeitung .. 34

610 Wahlbereich E/I ... 36

10020 Algorithmik .. 37
10060 Computergraphik ... 39
10110 Grundlagen der Künstlichen Intelligenz ... 41
10210 Mensch-Computer-Interaktion .. 43
10220 Modellierung .. 45
10240 Numerische und Stochastische Grundlagen .. 47
10330 Systemkonzepte und -programmierung ... 49
11490 Nachrichtentechnik ... 51
11640 Digitale Signalverarbeitung ... 53
11670 Grundlagen integrierter Schaltungen ... 55
11680 Kommunikationsnetze I ... 56
17130 Entwurf digitaler Filter .. 58
25610 Grundlagen des Software Engineering ... 60
29470 Machine Learning ... 62
31600 Machine Learning for NLP .. 64
39040 Rechnernetze ... 65
40090 Systemkonzepte und -programmierung .. 67
46340 Signale und Systeme ... 69
56210 Medieninformatik ... 70
56230 Empirische Methoden für Medieninformatik .. 71
78640 Grundlagen der Informationssicherheit ... 73

620 Wahlbereich F .. 75
 41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung ... 76
 55960 Korpus-orientierte Ansätze in der Computerlinguistik ... 77
 68430 Grundlagentechnologien für die Sprachverarbeitung ... 78
 68460 Bedeutung im Kontext ... 79
 73560 Experimentelle Methoden in der Phonetik .. 80

630 Wahlbereich W .. 81
 14330 Sprache und Geist (Vertiefung Theoretische Philosophie) ... 82
 14340 Grundlagen der Praktischen Philosophie ... 84
 14350 Mensch und Technik ... 86
 16700 Typologie .. 88
 17240 Sprachwandel ... 89
 20050 Einführung in die Theoretische Philosophie - Nebenfach ... 90
 21570 Einführung in die Praktische Philosophie - Nebenfach ... 92
 46580 Varietäten des Deutschen .. 94

81380 Bachelorarbeit Maschinelle Sprachverarbeitung ... 95
Präambel

Der Studiengang MSV unterscheidet sich von rein computerlinguistischen Studiengängen dadurch, dass die sprachlichen und technischen Aspekte des Studiums gleichen Stellenwert haben. Ein tiefes Verständnis der linguistischen Grundlagen ist in der Maschinellen Sprachverarbeitung unabdingbar, gleichzeitig wird aber genau so viel Wert auf die mathematische und technische Grundausbildung gelegt, die sowohl in der Praxis als auch in der Forschung der Maschinellen Sprachverarbeitung gebraucht wird.

Wer den Bachelor MSV erworben hat, kann in allen Bereichen eingesetzt werden, in denen Sprachtechnologie erforderlich ist, in denen Kommunikationsprozesse mit mindestens einem menschlichen Partner automatisiert oder teilautomatisiert werden sollen, in denen Texte generiert, übersetzt oder analysiert werden, in denen klassische Systeme durch sprachbezogene Schnittstellen ergänzt oder ersetzt werden und in denen ganz allgemein sprachbezogene Benutzeroberflächen erforderlich sind. Weiterhin kann er oder sie in vielen Bereichen der Informationsverarbeitung zum Einsatz kommen: bei Suchmaschinen, im Bereich des Text Mining, in Software-Unternehmen, die Textdatenbanken bauen, und in anderen Bereichen, in denen große Mengen von wissenschaftlichen oder geschäftlichen Daten in Textform gespeichert und verarbeitet werden.
Qualifikationsziele

Die Absolventinnen und Absolventen des Bachelorstudienganges Maschinelle Sprachverarbeitung

- haben linguistisches, mathematisches und informatisches Grundwissen erworben, das sie befähigt, Probleme der maschinellen Sprachverarbeitung zu lösen.
- verfügen über Fachwissen auf dem Gebiet der Maschinellen Sprachverarbeitung und können typische Aufgabenstellungen der Sprachverarbeitung beschreiben und lösen, analysieren und bewerten.
- haben ein Verständnis zu Forschungs- und Entwicklungsmethoden der Computerlinguistik und ihrer Anwendungsmöglichkeiten und verfügen über die Fertigkeit, Lösungen für Sprachverarbeitungssysteme zu erarbeiten.
- besitzen Verständnis zu in verschiedenen Aufgabenfeldern anwendbaren Methoden und Algorithmen der Maschinellen Sprachverarbeitung.
- können mit SpezialistInnen verschiedener Disziplinen kommunizieren und zusammenarbeiten.

100 Basismodule

Zugeordnete Module:
10260 Programmierkurs
10280 Programmierung und Software-Entwicklung
10940 Theoretische Grundlagen der Informatik
12060 Datenstrukturen und Algorithmen
13160 Grundlagen der Maschinellen Sprachverarbeitung
13170 Grundlagen der Syntax
15260 Einführung in die Maschinelle Sprachverarbeitung
Modul: 10260 Programmierkurs

2. Modulkürzel: 051520010
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn
9. Dozenten: Jason Utt
11. Empfohlene Voraussetzungen:
12. Lernziele:
Selbstständiges Erstellen von Programmen und Lösung von Programmieraufgaben in der Programmiersprache Python, mit einem Schwerpunkt auf Konzepten, die für die maschinelle Sprachverarbeitung und Computerlinguistik wichtig sind.

Independently writing programs and solving programming tasks in the programming language Python, with emphasis on concepts relevant for Natural Language Processing and Computational Linguistics.

13. Inhalt:

Die Modulveranstaltung und die Materialien sind in der Regel überwiegend englischsprachig, es werden jedoch deutschsprachige Hilfestellungen angeboten.

Typically, the lectures of the module course as well as the materials are in English, however, students not fluent in English in the programming context will receive support in German.

15. Lehrveranstaltungen und -formen: • 102601 Übung Programmierkurs
Nachbearbeitungszeit: 69 Stunden
17. Prüfungsnummer/n und -name: 10261 Programmierkurs (USL), Sonstige, Gewichtung: 1 Übungsschein - Scheinkriterien werden zu Beginn der Veranstaltung angekündigt.
Criteria for credits are announced at the beginning of the course.

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Grundlagen der Computerlinguistik
Modul: 10280 Programmierung und Software-Entwicklung

2. Modulkürzel: 051520005
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Modul: Programmierung und Software-Entwicklung
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Steffen Becker
9. Dozenten: Steffen Becker, André van Hoorn
10. Zuordnung zum Curriculum in diesem Studiengang:
12. Lernziele:
 Die Teilnehmer haben einen Überblick über das Gebiet der Informatik. Sie haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren, selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.
13. Inhalt:
 • Die Programmiersprache Java und die virtuelle Maschine
 • Objekte, Klassen, Schnittstellen, Kontrakte, Vererbung, Polymorphie
 • Klassenmodellierung mit der UML
 • Objekterzeugung und -ausführung
 • Boolische Logik
 • Blöcke, Programmstrukturen, Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen
 • Rechner, Hardware
 • Syntaxdarstellungen
 • Übersicht über Programmiersprachen und -werkzeuge
 • Grundlegende Datenstrukturen und Algorithmen
 • Semantik
 • Programmierung graphischer Oberflächen
 • Übergang zum Software Engineering
14. Literatur:
 • Meyer, Bertrand, Touch of Class, Springer-Verlag, 2009
 • Ullenboom, Christian, Java ist auch eine Insel, 13. Auflage
 • Harrer, Lenhard, Dietz, Java by Comparison, 2018
 • Boles &; Boles, Objektorientierte Programmierung spielend gelernt mit dem Java-Hamster-Modell, 3. Auflage
15. Lehrveranstaltungen und -formen:
 • 102801 Vorlesung Programmierung und Softwareentwicklung
• 102802 Übung Programmierung und Softwareentwicklung

16. Abschätzung Arbeitsaufwand:
• Programmierung nach dem Objects-First-Prinzip
• Hoher Anteil praktischer Übungen

17. Prüfungsnummer/n und -name:
• 10281 Programmierung und Software-Entwicklung (PL), Schriftlich, 90 Min., Gewichtung: 1
• Vorleistung (USL-V), Schriftlich oder Mündlich
[10281] Programmierung und Software-Entwicklung (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0. [Prüfungsvorleistung]

18. Grundlage für ... : Datenstrukturen und Algorithmen

19. Medienform:
• Folien über Beamer
• Tafelanschrieb
• Videoaufzeichnung

20. Angeboten von: Zuverlässige Software-Systeme
Modul: 10940 Theoretische Grundlagen der Informatik

2. Modulkürzel: 050420005
3. Leistungspunkte: 12 LP
4. SWS: 8
5. Modulduauer: Zweisemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf
9. Dozenten: Volker Diekert, Ulrich Hertrampf
11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
• Logik und Diskrete Strukturen: Die Studierenden haben die grundsätzlichen Kenntnisse in Logik und Diskreter Mathematik erworben, wie sie in den weiteren Grundvorlesungen der Informatik in verschiedenen Bereichen benötigt werden.
• Automaten und Formale Sprachen: Die Studierenden beherrschen wichtige theoretische Grundlagen der Informatik, insbesondere die Theorie und Algorithmik endlicher Automaten. Hierzu gehört das Kennenlernen, Einordnung und Trennung der Chomskyschen Sprachklassen.

13. Inhalt:
Logik und Diskrete Strukturen:
• Einführung in die Aussagenlogik: Semantik (Wahrheitswerte), Syntax (Axiome und Schlussregeln), Normalformen, Hornformeln, Endlichkeitssatz, aussagenlogische Resolution,
• Einführung in die Prädikatenlogik 1. Stufe: Semantik und Syntax, Normalformen, Unifikatoren, Herbrand-Theorie, prädikatenlogische Resolution,

Automaten und Formale Sprachen:

14. Literatur:
• Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999.

15. Lehrveranstaltungen und -formen:
• 109401 Vorlesung Logik und Diskrete Strukturen
• 109403 Vorlesung Automaten und Formale Sprachen
• 109404 Übung Automaten und Formale Sprachen
• 109402 Übung Logik und Diskrete Strukturen
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td>• 109405 Zusatztutorium Theoretische Grundlagen der Informatik für MSV (freiwillig)</td>
</tr>
<tr>
<td>• 10941 Theoretische Grundlagen der Informatik (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>• Vorleistung (USL-V), Schriftlich oder Mündlich, 30 Min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Informatik</td>
</tr>
</tbody>
</table>
Modul: 12060 Datenstrukturen und Algorithmen

2. Modulkürzel: 051510005
5. Modulsdauer: Einsemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester
4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andrés Bruhn
9. Dozenten: Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, 2. Semester ➞ Basismodule
B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017, 2. Semester ➞ Basismodule

11. Empfohlene Voraussetzungen:
Modul 10280 Programmierung und Software-Entwicklung

12. Lernziele:
Die Studierenden kennen nach engagierter Mitarbeit in dieser Veranstaltung diverse zentrale Algorithmen auf geeigneten Datenstrukturen, die für eine effiziente Nutzung von Computern unverzichtbar sind. Sie können am Ende zu gängigen Problemen geeignete programmiersprachliche Lösungen angeben und diese in einer konkreten Programmiersprache formulieren.

Die Lernziele lassen sich wie folgt zusammenfassen:

- Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen
- Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität
- Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen
- Erste Begegnung mit nebenläufigen Algorithmen

13. Inhalt:
Es werden die folgenden Themen behandelt:

- Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen
- Komplexität und Effizienz von Algorithmen, O-Notation
- Listen (Stack, Queue, doppelt verkettete Listen)
- Sortierverfahren (Selection-, Insertion-, Bubble-, Merge-, Quick-Sort)
- Bäume (Binär-, AVL-, 2-3-4-, Rot-Schwarz-, B-Bäume, Suchbäume, Traversierung, Heap)
- Räumliche Datenstrukturen (uniforme Gitter, Oktal-, BSP-, kD-, CSG-Bäume, Bounding-Volumes)
- Graphen (Datenstrukturen, DFS, BFS, topologische Traversierung, Dijkstra-, A*- Bellman-Ford-Algorithmen, minimale Spannbäume, maximaler Fluss)
- Räumliche Graphen (Triangulierung, Voronoi, Delaunay, Graph-Layout)
- Textalgorithmen (String-Matching, Knuth-Morris-Pratt, Boyer-Moore, reguläre Ausdrücke, Levenshtein-Distanz)
- Hashing (Hashfunktionen, Kollisionen)
- Verteilte Algorithmen (Petri-Netze, Programmieren nebenläufiger Abläufe, einige parallele und parallelisierte Algorithmen)
• Algorithmenentwurf und -muster (inkrementell, greedy, divide-and-conquer, dynamische Programmierung, Backtracking, randomisierte Algorithmen)
• Maschinelles Lernen (überwachtes Lernen, Entscheidungsbäume, SVM, neuronale Netze, unüberwachtes Lernen, k-Means)

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 120601 Vorlesung Datenstrukturen und Algorithmen
• 120602 Übung Datenstrukturen und Algorithmen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 12061 Datenstrukturen und Algorithmen (PL), Schriftlich, 120 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Intelligente Systeme
Modul: 13160 Grundlagen der Maschinellen Sprachverarbeitung

2. Modulkürzel: 052400002
5. Modulduer: Einsemestrig
3. Leistungspunkte: 9 LP
6. Turnus: Sommersemester
4. SWS: 6
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Sebastian Pado
9. Dozenten: Antje Schweitzer
Sebastian Pado
Uwe Reyle
11. Empfohlene Voraussetzungen: 052400001
Einführung in die Maschinelle Sprachverarbeitung
12. Lernziele:
• Die Studierenden sind mit den Grundlagen, zentralen Fragestellungen, Methoden und Anwendungsbereichen der Computerlinguistik und Sprachtechnologie vertraut. Sie kennen grundlegende Methoden der Signalauswertung.
• Sie kennen formale Beschreibungsmodelle für einige Ebenen der Sprachbeschreibung sowie grundlegende algorithmische Verfahren zur Prozessierung dieser Modelle.
• Die Studierenden sind mit Grundbegriffen und Grundproblemen der deskriptiven wie theoretischen Syntax vertraut.
13. Inhalt:
Das Modul setzt sich aus zwei Teilveranstaltungen zusammen:
1) Vorlesung mit Übungen Grundlagen der Maschinellen Sprachverarbeitung (4 SWS)
2) Vorlesung Einführung in die Syntax (2 SWS)
(1.) Schall/Schwingungen, Eigenschaften von Schwingungen, Resonatoren, Quelle-Filter-Modell der Sprachproduktion, kurze Einführung in die Signalanalyse (Digitalisierung, Fensterung, RMS, Autokorrelationsmethode, Fouriertransformation). Beschreibung der Strukturen natürlicher Sprache (Syntax, Semantik) aus korpusbasiertem Blick mit Fokus auf Methodologie (Datenanalyse, Evaluation) und praktischer Erfahrung mit Modellierungsansätzen.
14. Literatur:
Folien, Skripte.
15. Lehrveranstaltungen und -formen:
• 131602 Vorlesung Einführung in die Syntax
• 131601 Vorlesung mit Übung Grundlagen der Maschinellen Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 63 h, Selbststudium 207 h

17. Prüfungsnummer/n und -name:
• 13161 Grundlagen der Maschinellen Sprachverarbeitung (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• 13162 Grundlagen der Maschinellen Sprachverarbeitung - Hausübungen (USL), Sonstige, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Theoretische Computerlinguistik
Modul: 13170 Grundlagen der Syntax

2. Modulkürzel: 052400003
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn
9. Dozenten: Jonas Kuhn
Özlem Cetinoglu

11. Empfohlene Voraussetzungen:
- Modul 15260 Einführung in die Maschinelle Sprachverarbeitung
- Modul 13160 Grundlagen der Maschinellen Sprachverarbeitung
- Modul 13870 Semantik
- Modul 10280 Programmierung und Software-Entwicklung
- Modul 12060 Datenstrukturen und Algorithmen
- Modul 10260 Programmierkurs

12. Lernziele:
- Die Studierenden kennen die Problemstellungen der syntaktischen Theoriebildung und die Kategorien, strukturellen Repräsentationen und Relationsbeschreibungen, die eingesetzt werden.
- Sie sind in der Lage, die wichtigsten sprachlichen Konstruktionen in einem theoretisch fundierten Grammatikformalismus zu modellieren.
- Sie können theoretische Beschreibungsansätze zur Syntax für die Maschinelle Sprachverarbeitung auf dem Computer umsetzen.
- Sie sind mit grundlegenden Überlegungen zum Grammar Engineering vertraut und haben praktische Erfahrungen mit der Spezifikation von linguistischen Ressourcen gesammelt.

13. Inhalt:

14. Literatur:
- Folien, Fachartikel

15. Lehrveranstaltungen und -formen:
• 131701 Vorlesung mit Übung Grundlagen der Syntax

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 13171 Grundlagen der Syntax (LBP), Schriftlich oder Mündlich, Gewichtung: 1
• 13172 Grundlagen der Syntax - Hausübungen (USL), Sonstige, Gewichtung: 1
Grundlagen der Syntax (LBP), schriftlich, eventuell mündlich, Gewicht: 1.0, Prüfungsleistung im Regelfall: lehrveranstaltungsbegleitende benotete Tests; die Modulnote ergibt sich aus dem Mittel der Testnoten. Die erfolgreiche Bearbeitung der Hausübungen ist Zulassungsvoraussetzung.

Grundlagen der Syntax
- Hausübungen (USL), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Grundlagen der Computerlinguistik
Modul: 15260 Einführung in die Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>15260</td>
</tr>
<tr>
<td>5. Modulname:</td>
<td>Einführung in die Maschinelle Sprachverarbeitung</td>
</tr>
<tr>
<td>5. Modulkürzel:</td>
<td>052400001</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Uwe Reyle</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Reyle, Antje Schweitzer</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Sprachlaute, Artikulation von Sprachlauten</td>
</tr>
<tr>
<td></td>
<td>• phonologische und phonetische Merkmale von Sprachlauten</td>
</tr>
<tr>
<td></td>
<td>• phonologische Regeln</td>
</tr>
<tr>
<td></td>
<td>• Morphologie, endliche Automaten und Transducer</td>
</tr>
<tr>
<td></td>
<td>• Tokenisierung, Tagging, Chunking</td>
</tr>
<tr>
<td></td>
<td>• Syntax und Parsing</td>
</tr>
<tr>
<td></td>
<td>• Bedeutungsbegriff, Korrespondenztheorie, Modelle, Extension vs. Intension</td>
</tr>
<tr>
<td></td>
<td>• Distributionelle Semantik</td>
</tr>
<tr>
<td></td>
<td>• Sprechakttheorie, Implikaturen, Informationsstruktur</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 152601 Vorlesung Einführung in die Maschinelle Sprachverarbeitung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td></td>
<td>Nachbearbeitungszeit: 69 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>15261 Einführung in die Maschinelle Sprachverarbeitung (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>Mehrere lehrveranstaltungsbegleitende Kurztests. Die Modulnote ergibt sich aus dem Mittel der Testnoten.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Grundlagen der Computerlinguistik</td>
</tr>
</tbody>
</table>
200 Kernmodule

Zugeordnete Module:
10180 Information Retrieval and Text Mining
13270 Parsing
13870 Semantik
13960 Algorithmisches Sprachverstehen
14000 Phonetik und Phonologie
14040 Sprachsynthese und Spracherkennung
40660 Statistische Sprachverarbeitung
Modul: 10180 Information Retrieval and Text Mining

2. Modulkürzel: 052401010
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulcode: 052401010
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Roman Klinger
9. Dozenten: Sebastian Pado
10. Zuordnung zum Curriculum in diesem Studiengang:
 Kernmodule
 Pflichtmodule --> Kernmodule
11. Empfohlene Voraussetzungen:
 Erfahrung mit Programmierung und Unix, erster Kontakt mit
 Verfahren des Maschinellen Lernens
12. Lernziele:
 Die Studierenden haben ein grundlegendes Verständnis der
 Konzepte und Algorithmen des Information Retrieval und Text
 Mining entwickelt.
13. Inhalt:
 • Textpräprozessierung
 • invertierte Indizes
 • IR-Modelle (z.B. Vektorraum-basiertes IR)
 • Linkanalyse
 • Clustering
 • Frage-Antwort-Systeme
 • korpusbasierter Erwerb von lexikalischem und Weltwissen
14. Literatur:
 - Chris Manning, Prabhakar Raghavan, Hinrich Schütze,
 Introduction to Information Retrieval, 2008 Cambridge University
 Press.
15. Lehrveranstaltungen und -formen:
 • 101801 Vorlesung Information Retrieval and Text Mining
 • 101802 Übung Information Retrieval and Text Mining
16. Abschätzung Arbeitsaufwand:
 Präsenzstunden: 42 h
 Eigenstudiumstunden: 138 h
 Gesamtstunden: 180 h
17. Prüfungsnummer/n und -name:
 • 10181 Information Retrieval and Text Mining (PL), Schriftlich,
 Gewichtung: 1
 • 10182 Information Retrieval und Text Mining - Hausübungen (USL),
 Sonstige, Gewichtung: 1
 [10181] Information Retrieval und Text Mining (PL), schriftliche
 Prüfung, 60 Min., Gewicht: 1.0 [10182] Information Retrieval und
 Text Mining
 - Hausübungen (USL), Sonstiges
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Theoretische Computerlinguistik
Modul: 13270 Parsing

2. Modulkürzel: 052400004
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Weitere Sprachen
8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn
9. Dozenten: Dieu Thu Le
10. Zuordnung zum Curriculum in diesem Studiengang:
 ➞ Pflichtmodule → Kernmodule
 ➔ Kernmodule
11. Empfohlene Voraussetzungen: Modul Syntax
12. Lernziele:
 • Die Studierenden beherrschen beherrschenden Techniken zur Segmentierung von Texten in einzelne Wörter (Tokenisierung). Sie haben die gängigen Verfahren für die automatische syntaktische Analyse (Parsing) natürlicher Sprache mit kontextfreien Grammatiken verstanden und einen Einblick in das Parsing mit merkmalsbasierten Grammatiken gewonnen.
 • Die Studierenden sind in der Lage, einen kontextfreien Parser selbständig zu programmieren.
 • Die Studierenden haben das nötige Grundwissen erworben, um wissenschaftliche Arbeiten auf dem Gebiet des Parsings verstehen und beurteilen zu können.
14. Literatur:
 Skript
15. Lehrveranstaltungen und -formen: • 132701 Vorlesung mit Übung Parsing
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Nachbearbeitungszeit 138 h
17. Prüfungsnummer/n und -name: • 13271 Parsing (PL), Schriftlich oder Mündlich, Gewichtung: 1
 • 13272 Parsing - Hausübungen (USL), Sonstige, Gewichtung: 1
18. Grundlage für ...:
19. Medienform:
20. Angeboten von: Grundlagen der Computerlinguistik
Modul: 13870 Semantik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Uwe Reyle</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Reyle</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die MSV, Empirische Methoden MSV</td>
</tr>
</tbody>
</table>
• Die Studierenden sind zur Semantikkonstruktion im Rahmen der modelltheoretischen Semantik in der Lage. |
| 13. Inhalt: | Extensionale Semantik, Bedeutungsbegriff, Mögliche-Welten-Semantik, Intensionen, Proposition, Typentheorie, Funktionalabstraktion, Montaguegrammatik, dynamische Semantik (Diskursrepräsentationstheorie) |
| 15. Lehrveranstaltungen und -formen: | • 138701 Vorlesung mit Übung Semantik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 42 h, Selbststudium 138 h |
| 17. Prüfungsnummer/n und -name: | 13871 Semantik (PL), Schriftlich, 60 Min., Gewichtung: 1
Vorleistung: regelmäßige Hausübungen |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Grundlagen der Computerlinguistik |
Modul: 13960 Algorithmisches Sprachverstehen

2. Modulkürzel: 052400006
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Sebastian Pado

9. Dozenten: Roman Klinger
Diego Frassinelli

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Modul Semantik

12. Lernziele:

13. Inhalt:
- Überblick Algorithmisches Sprachverstehen
- Lexikalische Semantik
- Korpusbasierte Akquisition von lexikalischen Relationen
- Word sense disambiguation
- Informationsextraktion
- Semantic role labelling
- Koreferenz-Resolution
- Diskursrepräsentationstheorie (DRT)

14. Literatur:
- Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python, Analyzing Text with the Natural Language Toolkit, 2009, O'Reilly Media (http://www.nltk.org/book)

15. Lehrveranstaltungen und -formen:
- 139601 Vorlesung mit Übung Algorithmisches Sprachverstehen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name:
13961 Algorithmisches Sprachverstehen (PL), Schriftlich, 60 Min., Gewichtung: 1
Vorleistung: regelmäßige Übungen

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Theoretische Computerlinguistik
Modul: 14000 Phonetik und Phonologie

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Ngoc Thang Vu
9. Dozenten: Jörg Mayer

11. Empfohlene Voraussetzungen: Einführung in die MSV, Empirische Methoden in der MSV

12. Lernziele:
• Die Studierenden haben ein grundlegendes Verständnis für die segmentale und die suprasegmentale Struktur der Sprache. Sie sind mit der akustischen Theorie der Sprachproduktion und mit Theorien der Sprachperzeption vertraut.
• Die Studierenden sind in der Lage, gesprochene Sprache phonetisch zu transkribieren. Sie können aus der Spektrogrammdarstellung die gesprochenen Laute ableiten. Sie können selbstständig phonologische Regelmäßigkeiten in vorgegebenen Sprachdaten erkennen bzw. verifizieren.
• Die Studierenden sind in der Lage, wissenschaftliche Arbeiten auf dem Gebiet der Phonetik und Phonologie zu verstehen und zu beurteilen.

15. Lehrveranstaltungen und -formen: • 140001 Vorlesung mit Übung Phonetik und Phonologie

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 14001 Phonetik und Phonologie (LBP), Schriftlich und Mündlich, Gewichtung: 1
Übungsabgabe (Gewicht 0,5) und Klausur (Gewicht 0,5)

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Computerlinguistik
Modul: 14040 Sprachsynthese und Spracherkennung

3. Leistungspunkte: 9 LP 6. Turnus: Sommersemester
4. SWS: 6 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Ngoc Thang Vu

11. Empfohlene Voraussetzungen: Phonetik und Phonologie, Mathematik für Maschinelle Sprachverarbeitung

12. Lernziele:
 • Die Studierenden können Werkzeuge für automatische Spracherkennung und Sprachsynthese selbständig anwenden.

13. Inhalt:
 Die Übungen behandeln im Wechsel Themen aus dem Synthese- und aus dem Erkennungsteil.

14. Literatur:
 S. Euler, 2006, Grundkurs Spracherkennung, Vieweg.
 P. Taylor, Text-to-Speech Synthesis, Manuskript

15. Lehrveranstaltungen und -formen:
 • 140401 Vorlesung mit Übung Sprachsynthese und Spracherkennung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 63 h, Selbststudium 207 h

17. Prüfungsnummer/n und -name:
 • 14041 Sprachsynthese und Spracherkennung (LBP), Schriftlich und Mündlich, Gewichtung: 1
 • 14042 Sprachsynthese und Spracherkennung - Projekte (USL), Schriftlich oder Mündlich, Gewichtung: 1
 3 lehrveranstaltungsbegleitende Prüfungen: 2 Kurztests (Gewicht je 1/3), eine mündliche Leistungspräsentation (Gewicht 1/3)

18. Grundlage für...

19. Medienform:
20. Angeboten von: Computerlinguistik
Modul: 40660 Statistische Sprachverarbeitung

2. Modulkürzel: 052400009
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr. Sabine Schulte im Walde
9. Dozenten: Sabine Schulte im Walde

10. Zuordnung zum Curriculum in diesem Studiengang:
 → Pflichtmodule → Kernmodule
 - B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, 4. Semester
 → Kernmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 • Die Studierenden sind mit den grundlegenden probabilistischen Methoden der Sprachverarbeitung vertraut und haben in den Übungen Erfahrung mit ihrer Anwendung und der datenorientierten Methodik der modernen Sprachverarbeitung gesammelt.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 406601 Vorlesung mit Übung Statistische Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name:
 • 40661 Statistische Sprachverarbeitung (PL), Schriftlich oder Mündlich, Gewichtung: 1
 • V Vorleistung (USL-V), Schriftlich
 Im Regelfall wird das Modul aufgrund einer schriftlichen Klausur über 90 Minuten über den Inhalt des Moduls bewertet. Die erfolgreicheBearbeitung der Hausübungen ist Voraussetzung für die Zulassung zur Prüfung.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
 Grundlagen der Computerlinguistik
300 Ergänzungsmodule

Zugeordnete Module:
14270 Projekt Maschinelle Sprachverarbeitung
14290 Seminar Maschinelle Sprachverarbeitung
Modul: 14270 Projekt Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jonas Kuhn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400002, 052400003, 052400005, 052400007, 052400009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Erfolgreiche Anwendung einer oder mehrerer der zentralen Methoden und formalen Beschreibungsmodelle der Computerlinguistik und Sprachtechnologie auf eine größere Aufgabe, die wesentliche experimentelle oder datenanalytische Komponenten enthält. Aufgabenstellungen werden sich in der Regel auf Text- oder Lautsprachkorpora beziehen und die programmatische Bearbeitung eines Korpus als Teilaufgabe einschließen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 142701 Projekt Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h, Selbststudium 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14271 Projekt Maschinelle Sprachverarbeitung (USL), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Umfang und Inhalt der unbenoteten Studienleistungen, die zum erfolgreichen Abschluss des Projektes erforderlich sind, werden zu Beginn der Veranstaltung von den Dozierenden bekanntgegeben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Grundlagen der Computerlinguistik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14290 Seminar Maschinelle Sprachverarbeitung

3. Leistungspunkte: 3 LP | 6. Turnus: Wintersemester
4. SWS: 2 |

8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn

10. Zuordnung zum Curriculum in diesem Studiengang:
 → Ergänzungsmodule
 → Ergänzungsmodule

11. Empfohlene Voraussetzungen: 052400002, 052400003, 052400005, 052400007, 052400009

12. Lernziele:
 • Die Studierenden können Projektarbeiten in Präsentationen darstellen, ihre Herangehensweise in Diskussionen kritisch hinterfragen und das Ergebnis ihrer Arbeit in einer kurzen schriftlichen Arbeit wissenschaftlich darstellen.

13. Inhalt:
 Methoden des wissenschaftlichen Arbeitens werden besprochen und praktisch eingeübt (Literaturrecherche und -diskussion, Dokumentation und fachgerechte Darstellung von Untersuchungsergebnissen etc.)
 In der Regel werden zwei alternative Ausprägungen des Moduls zur Auswahl angeboten:
 • Phonetik - Ausrichtung auf die Methodik der experimentellen Phonetik
 • NLP - Ausrichtung auf die textorientierte Sprachtechnologie/Computerlinguistik

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 142901 Projektseminar Maschinelle Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 21 h + Selbststudium: 69 h, Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 14291 Seminar Maschinelle Sprachverarbeitung (PL), Sonstige, Gewichtung: 1
 Hausarbeit, 15 bis 20 Seiten

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Grundlagen der Computerlinguistik
400 Schlüsselqualifikationen fachaffin

Zugeordnete Module: 14300 Mathematik für die Maschinelle Sprachverarbeitung
Modul: 14300 Mathematik für die Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>15</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Andreas Markus Kollross</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, 1. Semester → Schlüsselqualifikationen fachaffin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>1. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen(Aussagenlogik, Mengen, Relationen, Abbildungen, Zahlenmengen, Grundbegriffe der Algebra)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lineare Algebra (Vektorräume, lineare Abbildungen, Matrizen, Determinanten lineare Gleichungssysteme, Eigenwerte, Normalformen, Hauptachsentransformation, Skalarprodukte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Analysis (Konvergenz, Zahlenfolgen und Zahlenreihen, stetige Abbildungen, Folgen und Reihen von Funktionen, spezielle Funktionen).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Semester (verkürzt um ein Drittel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Differential- und Integralrechnung (Funktionen einer und mehrerer Variablen, Ableitungen, Taylorentwicklungen, Extremwerte, Integration, Anwendungen).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>M. Brill: Mathematik für Informatiker, Hanser-Verlag 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Hachenberger: Mathematik für Informatiker, Pearson Studium 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Hartmann: Mathematik für Informatiker, Vieweg 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.-M. Sändig: Vorlesungsskripte 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 143001 Vorlesung Mathematik 1 für die Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 143002 Übung Mathematik 1 für die Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 143003 Tutorium Mathematik 1 für die Maschinelle Sprachverarbeitung (freiwillig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 143004 Vorlesung Mathematik 2 für die Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 143005 Übung Mathematik 2 für die Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 143006 Tutorium Mathematik 2 für die Maschinelle Sprachverarbeitung (freiwillig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>140 Präsenz + 310 Nacharbeit, Hausaufgaben =450 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14301 Mathematik für die Maschinelle Sprachverarbeitung (USL), Schriftlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frage</td>
<td>Antwort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 unbenotete Übungsscheine, jeweils im 1. und 2. Fachsemester zu erwerben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, Visualizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Geometrie und Topologie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
610 Wahlbereich E/I

Zugeordnete Module:
10020 Algorithmik
10060 Computergraphik
10110 Grundlagen der Künstlichen Intelligenz
10210 Mensch-Computer-Interaktion
10220 Modellierung
10240 Numerische und Stochastische Grundlagen
10330 Systemkonzepte und -programmierung
11490 Nachrichtentechnik
11640 Digitale Signalverarbeitung
11670 Grundlagen integrierter Schaltungen
11680 Kommunikationsnetze I
17130 Entwurf digitaler Filter
25610 Grundlagen des Software Engineerings
29470 Machine Learning
31600 Machine Learning for NLP
39040 Rechnernetze
40090 Systemkonzepte und -programmierung
46340 Signale und Systeme
56210 Medieninformatik
56230 Empirische Methoden für Medieninformatik
78640 Grundlagen der Informationssicherheit
Modul: 10020 Algorithmik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>050420015</td>
<td>Einsemestrig</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Leistungspunkte:</th>
<th>6. Turnus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 LP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. SWS:</th>
<th>7. Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
</tr>
</thead>
<tbody>
<tr>
<td>apl. Prof. Dr. rer. nat. habil. Ulrich Hertrampf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volker Diekert</td>
</tr>
<tr>
<td>Stefan Funke</td>
</tr>
<tr>
<td>Ulrich Hertrampf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundvorlesungen in theoretischer und praktischer Informatik.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kennenlernen und beherrschen wichtiger Programmierparadigmen und Entwurfsstrategien</td>
</tr>
<tr>
<td>• Selbstständiges Erarbeiten von Laufzeitabschätzungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Entwurfsstrategien für Algorithmen (Teile und Beherrschte, Gierige Methode, Dynamische Programmierung, Backtracking, heuristische Algorithmen)</td>
</tr>
<tr>
<td>• Analyse und Komplexität von Algorithmen</td>
</tr>
<tr>
<td>• Mustererkennung</td>
</tr>
<tr>
<td>• Sortierverfahren und ihre Komplexität</td>
</tr>
<tr>
<td>• Verwaltung von Mengen</td>
</tr>
<tr>
<td>• Union-Find-Algorithmen</td>
</tr>
<tr>
<td>• Konvexe Hülle</td>
</tr>
<tr>
<td>• optimale (Teil-) Bäume</td>
</tr>
<tr>
<td>• Minimale Schnitte</td>
</tr>
<tr>
<td>• Randomisierte Algorithmen und weitere Themen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The Design and Analysis of Computer Algorithms, 1974</td>
</tr>
<tr>
<td>• Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullmann: Data Structures and Algorithms, 1987</td>
</tr>
<tr>
<td>• T. Ottmann und P. Widmayer, Algorithmen 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 100201 Vorlesung Algorithmik</td>
</tr>
<tr>
<td>• 100202 Übung Algorithmik</td>
</tr>
</tbody>
</table>

| 16. Abschätzung Arbeitsaufwand: |

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10021 Algorithmik (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Theoretische Informatik
Modul: 10060 Computergraphik

2. Modulkürzel: 051900002
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Thomas Ertl

9. Dozenten: Thomas Ertl
Daniel Weiskopf
Michael Krone
Guido Reina

10. Zuordnung zum Curriculum in diesem Studiengang:
 → Wahlbereich E/I
 → Wahlbereich Informatik → Kernmodule

11. Empfohlene Voraussetzungen:
• Modul 10210 Mensch-Computer-Interaktion
• Modul 41590 Einführung in die Numerik und Stochastik

12. Lernziele:
Die Studierenden haben Wissen über die Grundlagen der Computergraphik sowie praktische Fähigkeiten in der Graphikprogrammierung erworben.

13. Inhalt:
Folgende Themen werden in der Vorlesung behandelt:
• Überblick über den Prozess der Bildsynthese
• Graphische Geräte, visuelle Wahrnehmung, Farbsysteme
• Grundlegende Rastergraphik und Bildverarbeitung
• Raytracing und Beleuchtungsmodelle
• 2D und 3D Geometrietransformationen, 3D Projektion
• Graphikprogrammierung in OpenGL 3
• Texturen
• Polygonale und hierarchische Modelle
• Rasterisierung und Verdeckungsberechnung
• Grundlagen der geometrischen Modellierung (Kurven, Flächen)
• Räumliche Datenstrukturen

14. Literatur:
• J. Encarnacao, W. Strasser, R. Klein: Graphische Datenverarbeitung (Band1 und 2), 1997

15. Lehrveranstaltungen und -formen:
• 100601 Vorlesung Computergraphik
• 100602 Übung Computergraphik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 10061 Computergraphik (PL), Schriftlich, 60 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: Übungsschein.

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Praktische Informatik (Dialogsysteme)
Modul: 10110 Grundlagen der Künstlichen Intelligenz

2. Modulkürzel: 051900205
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulldauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint
9. Dozenten: Daniel Hennes
 Marc Toussaint
 Andrés Bruhn

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017,
 → Wahlbereich Informatik --> Kernmodule
 → Wahlbereich E/I

11. Empfohlene Voraussetzungen:
 - Modul 10190 Mathematik für Informatiker und Softwaretechniker

12. Lernziele:
 Der Student / die Studentin beherrscht die Grundlagen der Künstlichen Intelligenz, kann Probleme der KI selbständig einordnen und mit den erlernten Methoden und Algorithmen bearbeiten.

13. Inhalt:
 • Intelligenz
 • Agentenbegriff
 • Problemlösen durch Suchen, Suchverfahren
 • Probleme mit Rand- und Nebenbedingungen
 • Spiele
 • Aussagen- und Prädikatenlogik
 • Logikbasierte Agenten, Wissensrepräsentation
 • Inferenz
 • Planen
 • Unsicherheit, probabilistisches Schließen
 • Probabilistisches Schließen über die Zeit
 • Entscheidungstheorie

14. Literatur:
 • S. Russell, P. Norvig, Künstliche Intelligenz: Ein Moderner Ansatz, 3. Aufl., 2012

15. Lehrveranstaltungen und -formen:
 • 101101 Vorlesung Grundlagen der Künstlichen Intelligenz
 • 101102 Übung Grundlagen der Künstlichen Intelligenz

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 • 10111 Grundlagen der Künstlichen Intelligenz (PL), Schriftlich, 90 Min., Gewichtung: 1
 • [V Vorlesung (USL-V), Schriftlich oder Mündlich]
 • [10111] Grundlagen der Künstlichen Intelligenz (PL), schriftliche Prüfung, 90 Min., Gewicht: 1.0 Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben
 • [Prüfungsvorleistung] Vorlesung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Maschinelles Lernen und Robotik
Modul: 10210 Mensch-Computer-Interaktion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Andreas Bulling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Bulling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 10280 Programmierung und Software-Entwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Grundlagen der Mensch-Computer Interaktion, historische Entwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Entwurfsprinzipien und Modelle für moderne Benutzungsschnittstellen und interaktive Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Informationsverarbeitung des Menschen, Wahrnehmung, Motorik, Eigenschaften und Fähigkeiten des Benutzers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Interaktionskonzepte und -stile, Metaphern, Normen, Regeln und Style Guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein- und Ausgabegeräte, Entwurfsraum für interaktive Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Analyse-, Entwurfs- und Entwicklungsmethoden und -werkzeuge für Benutzungsschnittstellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prototypische Realisierung und Implementierung von interaktiven Systemen, Werkzeuge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Architekturen für interaktive Systeme, User Interface Toolkits und Komponenten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Akzeptanz, Evaluationsmethoden und Qualitätssicherung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alan Dix, Janet Finley, Gregory Abowd, Russell Beale, Human-Computer Interaction, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ben Shneiderman, Catherine Plaisant, Designing the User Interfaces, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 102101 Vorlesung Mensch-Computer-Interaktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 102102 Übung Mensch-Computer-Interaktion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- 10211 Mensch-Computer-Interaktion (PL), Schriftlich, 90 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: Übungsschein

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Mensch-Computer-Interaktion
Modul: 10220 Modellierung

2. Modulkürzel: 052010001
5. Moduldaumer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Frank Leymann

9. Dozenten: Bernhard Mitschang
Frank Leymann
Uwe Breitenbücher

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, → Zusatzmodule

11. Empfohlene Voraussetzungen:
- Modul 10280 Programmierung und Software-Entwicklung
- Modul 12060 Datenstrukturen und Algorithmen
- Modul 40090 Systemkonzepte und - programmierung

12. Lernziele:

13. Inhalt:
- Entity-Relationship Modell und komplexe Objekte
- Relationenmodell und Relationenalgebra, Überblick SQL - Transformationen von ER nach Relationen, Normalisierung
- XML, DTD, XML-Schema, Info-Set, Namensräume
- Metamodelle und Repository - RDF, RDF-S und Ontologien
- UML
- Petri Netze, Workflownetze
- BPMN

14. Literatur:
- M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, UML @ Work

15. Lehrveranstaltungen und -formen:
- 102201 Vorlesung Modellierung
- 102202 Übung Modellierung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 10221 Modellierung (PL), Schriftlich, 90 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
18. Grundlage für ...: Architektur von Anwendungssystemen Datenbanken und Informationssysteme

19. Medienform:

20. Angeboten von: Architektur von Anwendungssystemen
Modul: 10240 Numerische und Stochastische Grundlagen

2. Modulkürzel: 051240005
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Modulbzw.: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Dirk Pflüger
9. Dozenten: Miriam Mehl
 Stefan Zimmer
 Dirk Pflüger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017,
 → Wahlbereich Informatik --> Kernmodule
 → Wahlbereich E/I
11. Empfohlene Voraussetzungen:
 • Modul 10190 Mathematik für Informatiker und Softwaretechniker
12. Lernziele:
13. Inhalt:
 Methoden der angewandten Mathematik, insbesondere der Numerik, Stochastik und Statistik, sind für viele Bereiche der Informatik wie Simulation, Grafik oder Bildverarbeitung von zentraler Bedeutung. In Ergänzung der Mathematik-Grundausbildung vermittelt diese Vorlesung folgende Grundkenntnisse:
 • numerische Algorithmen
 • Gleitpunktzahlen und Gleitpunktarithmetik
 • Interpolation und Approximation
 • Integration
 • lineare Gleichungssysteme
 • Iterative Lösung linearer und nichtlinearer Gleichungen
 • gewöhnliche Differentialgleichungen
 • Stochastik
 • Zufall und Unsicherheit
 • diskrete und kontinuierliche Wahrscheinlichkeitsräume
 • Asymptotik
 • Elementare induktive Statistik
 Dabei wird ein konstruktiv-algorithmischer Zugang gewählt, der sich an konkreten Aufgabenstellungen aus der Informatik orientiert.
14. Literatur:
 • Dahmen, Reusken, Numerik für Ingenieure
 • Schwarz, Köckler, Numerische Mathematik
 • Huckle, Schneider, Numerik für Informatiker
 • Henze, Stochastik für Einsteiger
 • Schickinger, Steger, Diskrete Strukturen, Band 2
15. Lehrveranstaltungen und -formen:
 • 102401 Vorlesung Numerische und Stochastische Grundlagen der Informatik
 • 102402 Übung Numerische und Stochastische Grundlagen der Informatik
16. Abschätzung Arbeitsaufwand:
| 17. Prüfungsnummer/n und -name: | • 10241 Numerische und Stochastische Grundlagen (PL), Schriftlich, 90 Min., Gewichtung: 1
| | • V Vorleistung (USL-V), Schriftlich oder Mündlich
| | Prüfungsvorleistung: Übungsschein |

| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: | Simulation Software Engineering |
Modul: 10330 Systemkonzepte und -programmierung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Kurt Rothermel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kurt Rothermel, Frank Dürr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Modul 051520005 Programmierung und Software-Entwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modul 051510005 Datenstrukturen und Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verstehen systemnaher Konzepte und Mechanismen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kann systemnahe Software entwerfen und implementieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kann nebenläufige Programme entwickeln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundlegende Systemstrukturen und organisationen Multiitaskingsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiprozessorsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verteiltes System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modellierung und Analyse nebenläufiger Programme Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korrektheit- und Leitungskriterien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betriebssystemkonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organisation von Betriebssystemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prozesse und Threads</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eingabe/Ausgabe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scheduling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konzepte zur Synchronisation über gemeinsamen Speicher</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronisationsprobleme und Lösungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronisationswerkzeuge: Semaphore, Monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konzepte zur Kommunikation und Synchronisation mittels Nachrichtenübertragung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nachrichtenkonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Höhere Kommunikationskonzepte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basisalgorithmen für Verteilte Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erkennung globaler Eigenschaften</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schnappschussproblem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Konsistenter globaler Zustand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verteilte Terminierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praktische nebenläufige Programmierung in Java Threads und Synchronisation Socketschnittstelle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RMI Programmierung

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>• Literatur, siehe Webseite zur Veranstaltung</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 103301 Vorlesung Systemkonzepte und -programmierung
• 103302 Übung Systemkonzepte und -programmierung |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | • 10331 Systemkonzepte und -programmierung (PL), Schriftlich, 120 Min., Gewichtung: 7
• 10332 Systemkonzepte und -programmierung - Übungsschein (LBP), Sonstige, 0 Min., Gewichtung: 3 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Verteilte Systeme |
Modul: 11490 Nachrichtentechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teil II: Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen</td>
</tr>
</tbody>
</table>
| | | | → Wahlbereich E/I
| | | | → Wahlbereich Informatik → Kernmodule |
| 14. Literatur: | | 15. Lehrveranstaltungen und -formen: |
| | | 114902 Übung Nachrichtentechnik 1 |
| | | 114903 Vorlesung Nachrichtentechnik 2 |
| | | 114901 Vorlesung Nachrichtentechnik 1 |
| | | 114904 Übung Nachrichtentechnik 2 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h
| | | Selbststudium/Nacharbeitszeit: 186 h
| | | Gesamt: 270 h |
| 17. Prüfungsnummer/n und -name: | 11491 | Nachrichtentechnik (PL), Schriftlich oder Mündlich, 180 Min., Gewichtung: 1 |

Stand: 01.10.2018
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
</tbody>
</table>
Anschrieb auf Tablet-PC mit Projektion. |
| 20. Angeboten von: | Nachrichtenübertragung |
Modul: 11640 Digitale Signalverarbeitung

2. Modulkürzel: 051610002

5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP

6. Turnus: Wintersemester

4. SWS: 4

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang

9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:

\[\rightarrow\text{ Wahlbereich Informatik \rightarrow Kernmodule}\]
\[\rightarrow\text{ Wahlbereich E/I}\]

11. Empfohlene Voraussetzungen:
Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbfilter, Kammfilter, linearpasige Filter, Allpass, minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Netzwerk- und Systemtheorie</td>
</tr>
</tbody>
</table>
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Schaltungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenntnisse in höherer Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Bauelemente der Digitaltechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Digitale Grundschatungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CMOS-Logikschaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schaltwerke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsskript,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116701 Vorlesung Grundlagen Integrerter Schaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 116702 Übung Grundlagen Integrerter Schaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für … :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische und Optische Nachrichtentechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017, ➔ Module zum Abwählen
| 11. Empfohlene Voraussetzungen: | • Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden |
| 13. Inhalt: | **Grundprinzipien von Kommunikationsnetzen und -protokollen:**
• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle
Spezifikation mit Hilfe der Specification and Description Language (SDL)
Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
Ausgewählte Dienste und Anwendungen im Internet
Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I |
| 14. Literatur: | • Skript zur Vorlesung
• Tanenbaum: Computer Networks, Prentice-Hall, 2003
• Kurose, Ross: Computer Networking, Addison-Wesley, 2009
| 15. Lehrveranstaltungen und -formen: | • 116802 Übung zu Kommunikationsnetze I
• 116801 Vorlesung Kommunikationsnetze I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
<table>
<thead>
<tr>
<th>Frages</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Notebook-Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
Modul: 17130 Entwurf digitaler Filter

2. Modulkürzel: 051610003
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: PD Dr.-Ing. Markus Gaida
9. Dozenten: Markus Gaida
13. Inhalt:
• Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalfußgraph
• Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
• Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
• Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Lader), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
• Quantisierungseffekte
• Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
• Entwurf digitaler Filter mit MATLAB
• Abtastratenumsetzung, Dezimation, Interpolation
14. Literatur:
• Skript
15. Lehrveranstaltungen und -formen:
• 171301 Vorlesung Entwurf digitaler Filter
• 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min.,
Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr
angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich
sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im
Fall einer mündlichen Prüfung kann dies auch eine mündliche
Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15
Min. pro zu prüfender Person) sein.

18. Grundlage für ...

19. Medienform:
Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von:
Institutsverbund Elektrotechnik und Informationstechnik
Modul: 25610 Grundlagen des Software Engineerings

2. Modulkürzel: 51520170
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stefan Wagner
9. Dozenten: Stefan Wagner

11. Empfohlene Voraussetzungen:
- Modul 10280 Programmierung und Software-Entwicklung
- Modul 12060 Datenstrukturen und Algorithmen
- sowie entsprechende Programmiererfahrung

12. Lernziele:
Die Teilnehmer kennen die Grundbegriffe des Software Engineerings und haben einen Überblick über die Methoden und Techniken, die dort angewandt werden. Einige ausgewählte Methoden und Techniken können angewandt werden.

13. Inhalt:
Software Engineering kann in einer Vorlesung nicht erschöpfend behandelt werden. GSE gibt einen Überblick über das Gebiet und vertieft einzelne Themen, damit diese in der Praxis verwendet werden können. Es bildet damit auch die Basis für weitere Vertiefungen in diesem Gebiet. Die Vorlesung behandelt technische und andere Aspekte der Softwarebearbeitung. Die einzelnen Themen sind:
• Geschichte und Konzepte des Software Engineerings
• Der Software-Lebenszyklus und Software-Management
• Software-Prüfung und Qualitätssicherung
• Methoden, Sprachen und Werkzeuge für die einzelnen Phasen: Spezifikation, Grobentwurf, Feinentwurf, Implementierung, Test

Viele dieser Aspekte werden speziell mit Bezug auf agile Softwareentwicklung am Beispiel Scrum diskutiert. Dieses Modul kommt, wenn die Voraussetzungen erfüllt sind, auch für andere Fachrichtungen in Frage.

14. Literatur:
• Ludewig, Lichter: Software Engineering. 2. Aufl. dpunkt-Verlag, 2010
• Pfleeger, Atlee: Software Engineering. Pearson, 2010
• Rubin: Essential Scrum. Addison-Wesley, 2013

15. Lehrveranstaltungen und -formen:
• 256101 Vorlesung Grundlagen des Software Engineerings
• 256102 Übung Grundlagen des Software Engineerings

16. Abschätzung Arbeitsaufwand:
Präsenztunden: 42 h
Eigenstudiumstunden: 138 h
Gesamtstunden: 180 h

17. Prüfungsnummer/n und -name:
25611 Grundlagen des Software Engineerings (PL), Schriftlich, 60 Min., Gewichtung: 1
[25611] Grundlagen des Software Engineerings (PL), schriftliche Prüfung, 60 Min., Gewicht: 1.0

18. Grundlage für ...
| 19. Medienform: | • Folien am Beamer unterstützt durch Tafel und Overhead
• Dokumente, Links und Diskussionsforen in ILIAS |
| 20. Angeboten von: | Software Engineering |
Modul: 29470 Machine Learning

2. Modulkürzel: 051200112
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Toussaint
9. Dozenten: Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
Solid knowledge in Linear Algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele:
Students will acquire an in depth understanding of Machine Learning methods. The concepts and formalisms of Machine Learning are understood as generic approach to a variety of disciplines, including image processing, robotics, computational linguistics and software engineering. This course will enable students to formalize problems from such disciplines in terms of probabilistic models and the derive respective learning and inference algorithms.

13. Inhalt:
Exploiting large-scale data is a central challenge of our time. Machine Learning is the core discipline to address this challenge, aiming to extract useful models and structure from data. Studying Machine Learning is motivated in multiple ways: 1) as the basis of commercial data mining (Google, Amazon, Picasa, etc), 2) a core methodological tool for data analysis in all sciences (vision, linguistics, software engineering, but also biology, physics, neuroscience, etc) and finally, 3) as a core foundation of autonomous intelligent systems (which is my personal motivation for research in Machine Learning).

This lecture introduces to modern methods in Machine Learning, including discriminative as well as probabilistic generative models. A preliminary outline of topics is:
- motivation and history
- probabilistic modeling and inference
- regression and classification methods (kernel methods, Gaussian Processes, Bayesian kernel logistic regression, relations)
- discriminative learning (logistic regression, Conditional Random Fields)
- feature selection
- boosting and ensemble learning
- representation learning and embedding (kernel PCA and derivatives, deep learning)
- graphical models
- inference in graphical models (MCMC, message passing, variational)
- learning in graphical models
- structure learning and model selection
- relational learning
14. Literatur:

- *Pattern Recognition and Machine Learning* by Bishop, C. M.. Springer 2006. Online: http://research.microsoft.com/en-us/um/people/cmbishop/prml/ (especially chapter 8, which is fully online)

15. Lehrveranstaltungen und -formen:

- 294701 Lecture Machine Learning
- 294702 Exercise Machine Learning

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), Schriftlich oder Mündlich
- 29471 Machine Learning (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Maschinelles Lernen und Robotik
Modul: 31600 Machine Learning for NLP

3. Leistungspunkte: 3 LP 6. Turnus: Wintersemester
4. SWS: 2 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Sebastian Pado
9. Dozenten: Sebastian Pado

10. Zuordnung zum Curriculum in diesem Studiengang:
 → Wahlbereich E/I
 → Wahlbereich Informatik --> Kernmodule

11. Empfohlene Voraussetzungen: Statistical natural language processing (recommended)

12. Lernziele:
 Students have acquired in-depth knowledge of several machine learning
 methods that are used in natural language processing and are familiar with the relevant literature.

13. Inhalt:
 - Maximum entropy models
 - Regression and regularized regression
 - Support vector machines
 - Sequence models
 - Generative models
 - Parameter estimation

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 316001 Seminar Course Machine Learning for NLP

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28h
 Selbststudium: 60h

17. Prüfungsnummer/n und -name:
 31601 Machine Learning for NLP (BSL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Theoretische Computerlinguistik
Modul: 39040 Rechnernetze

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051200010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Kurt Rothermel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kurt Rothermel, Frank Dürr</td>
</tr>
</tbody>
</table>
| 11. Empfohlene Voraussetzungen: | - Programmierung und Software-Entwicklung
- Datenstrukturen und Algorithmen
- Grundkenntnisse in Java |
- Versteht Schichten und deren Zusammenwirken in einem Protokollstapel
- Kann Rechnernetze aufbauen, verwalten und analysieren.
- Kann Protokolle entwickeln und in Schichtenarchitektur einbetten.
- Kann höhere Kommunikationsdienste zur Entwicklung von netzgestützten Systemen anwenden.
- Kann sich mit Experten anderer Domänen über Methoden der Rechnernetze verständigen. |
| 13. Inhalt: | - Einführung in die Rechnernetze, ISO Referenzmodell,
- Bitübertragungsschicht: Übertragungsmedien, analoge und digitale Informationskodierung und -übertragung, Vermittlungsarten,
- Sicherungsschicht: Betriebsarten, Fehlererkennung und -behandlung, Flusskontrolle,
- Lokale Netze: CSMA/CD, Token Ring, Token Bus, FDDI, Kopplung,
- Vermittlungsschicht: Verbindungsortorientierter und verbindungsloser Dienst, Leitwegbestimmung, Überlastkontrolle,
- Internetworking,
- Internet-Protokoll,
- Transportschicht: ausgewählte Realisierungsprobleme und Internet-Protokolle,
- Echtzeitkommunikation: IntServ, DiffServ, Sicherheit: Verfahren, IPsec, SSL, TLS. |
- J. F. Kurose, K. W. Ross, Computer Networks: a top-down approach featuring the Internet, 2001
15. Lehrveranstaltungen und -formen:
• 390401 VL Rechnernetze
• 390402 ÜB Rechnernetze

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
• 39041 Rechnernetze (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
• V Vorleistung (USL-V), Schriftlich oder Mündlich
 Prüfungsdauer: 90 min schriftlich oder 30 min mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Verteilte Systeme
Modul: 40090 Systemkonzepte und -programmierung

2. Modulkürzel: 051200005
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Kurt Rothermel

9. Dozenten: Kurt Rothermel
Frank Dürr

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
• Modul 10280 Programmierung und Software-Entwicklung
• Modul 12060 Datenstrukturen und Algorithmen

12. Lernziele:
• Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen
• Verstehen systemnaher Konzepte und Mechanismen
• Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.
• Kann systemnahe Software entwerfen und implementieren.
• Kann nebenläufige Programme entwickeln
• Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.

13. Inhalt:
Grundlegende Systemstrukturen - und organisationen
• Multitaskingsystem
• Multiprozessorsystem
• Verteiltes System Modellierung und Analyse nebenläufiger Programme
• Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm
• Korrektheit- und Leitungskriterien Betriebssystemkonzepte
• Organisation von Betriebssystemen
• Prozesse und Threads
• Eingabe/Ausgabe
• Scheduling Konzepte zur Synchronisation über gemeinsamen Speicher
• Synchronisationsprobleme und -lösungen
• Synchronisationswerkzeuge: Semaphor, Monitor Konzepte zur Kommunikation und Synchronisation mittels Nachrichtentransfer
• Taxonomie: Kommunikation und Synchronisation
• Nachrichten als Kommunikationskonzept
• Höhere Kommunikationskonzepte Basisalgorithmen für Verteilte Systeme
• Erkennung globaler Eigenschaften
• Schnappschussproblem
• Konsistenter globaler Zustand
• Verteilte Terminierung Praktische nebenläufige Programmierung in Java
• Threads und Synchronisation
• Socketschnittstelle
• RMI Programmierung
14. Literatur: Literatur, siehe Webseite zur Veranstaltung

15. Lehrveranstaltungen und -formen:
 • 400901 Vorlesung Systemkonzepte und -programmierung
 • 400902 Übung Systemkonzepte und -programmierung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 • 40091 Systemkonzepte und -programmierung (PL), Schriftlich, 120 Min., Gewichtung: 1
 • V Vorleistung (USL-V), Schriftlich oder Mündlich
 [40091] Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 120 Min., Gewicht: 1.0 [Prüfungsverleistung] Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Verteilte Systeme
Modul: 46340 Signale und Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051600044</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
</tr>
</tbody>
</table>
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse in höherer Mathematik
Grundkenntnisse in Elektrotechnik |
| 12. Lernziele: | Die Studierenden besitzen Grundkenntnisse der Theorie von linearen Systemen und beherrschen die elementaren Methoden für die Analyse der Signale und Systeme im Zeit- und Frequenzbereich. |
| 15. Lehrveranstaltungen und -formen: | • 463401 Vorlesung Signale und Systeme
• 463402 Übung Signale und Systeme |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 46341 Signale und Systeme (PL), Schriftlich, 90 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Laptop, Beamer, Videoaufzeichnung aller Vorlesungen |
| 20. Angeboten von: | Netzwerk- und Systemtheorie |

Stand: 01.10.2018
Modul: 56210 Medieninformatik

2. Modulkürzel: 051900002
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulduer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Bulling
9. Dozenten: Andreas Bulling
wiss. Mitarbeiter
10. Zuordnung zum Curriculum in diesem Studiengang:
 → Wahlbereich E/I
 → Zusatzmodule
 → Wahlbereich Informatik --> Kernmodule
11. Empfohlene Voraussetzungen: Keine.
13. Inhalt:
 • Konzepte und Strukturen digitaler Mediensysteme
 • Medientypen (Texte, Typografie, Grafik, Bilder, Audio, Video)
 • Digitale Kodierung und Speicherung von Medien
 • Grundlagen der Produktion digitaler Inhalte
 • Medien und Kommunikation
 • Entwicklung interaktiver Medien
 • Gesellschaftliche Bedeutung von Medien
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 562101 Vorlesung Medieninformatik
 • 562102 Übung Medieninformatik
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 56211 Medieninformatik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
 Studienleistung: Übungsschein. Vorleistung (USL-V), schriftlich, eventuell mündlich
18. Grundlage für ... :
 Programmierung für Medieninformatik
19. Medienform:
20. Angeboten von: Mensch-Computer-Interaktion
Modul: 56230 Empirische Methoden für Medieninformatik

4. SWS: 6 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Andreas Bulling

9. Dozenten: Dirk Pflüger
 Miriam Mehl
 Stefan Zimmer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, → Zusatzmodule

11. Empfohlene Voraussetzungen: Medieninformatik

12. Lernziele: Beherrschung grundlegender Begriffe der Stochastik und Statistik, Kenntnis der Anwendungsbereiche und Gültigkeitsgrenzen stochastischer Modelle, Kenntnis und Fähigkeit zur Verwendung stochastischer Fehlermodelle und Konvergenzbegriffe, Beherrschung der Modellierung einfacher Probleme und des Entwurfs von Tests mit stochastischen Methoden

13. Inhalt: In Ergänzung der Mathematik-Grundausbildung vermittelt diese Vorlesung folgende Grundkenntnisse:
 • Endliche, diskrete und allgemeine Wahrscheinlichkeitsräume
 • Beispiele für diskrete und stetige Verteilungen
 • Grenzwertsätze
 • Elementare induktive Statistik
 • Methoden und Algorithmen der Datenanalyse
 • einfache Testmethoden
 • Stochastische Prozesse

 Dabei wird ein konstruktiv-algorithmischer Zugang gewählt, der sich an konkreten Aufgabenstellungen aus der Informatik orientiert.

14. Literatur:
 • Henze, Stochastik für Einsteiger
 • Schickinger, Steger, Diskrete Strukturen, Band 2
 • Fahrmeir et.al., Statistik - der Weg zur Datenanalyse
 • Skript

15. Lehrveranstaltungen und -formen:
 • 562301 Vorlesung Empirische Methoden für Medieninformatik
 • 562302 Übung Empirische Methoden für Medieninformatik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 56231 Empirische Methoden für Medieninformatik (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1 Prüfungsleistung(PL), Schriftlich oder Mündlich
18. Grundlage für ... : Medieninformatik Projekt - TheorieMedieninformatik Projekt - Praktikum

19. Medienform:

20. Angeboten von: Mensch-Computer-Interaktion
Modul: 78640 Grundlagen der Informationssicherheit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052900001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. rer. nat. Ralf Küsters</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ralf Küsters</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Kryptographie</td>
</tr>
<tr>
<td></td>
<td>• (Un-)Sicherheit von Netzwerkprotokollen, wie TCP, DNS, BGP, einschließlich</td>
</tr>
<tr>
<td></td>
<td>• Denial-of-Service-Angriffe</td>
</tr>
<tr>
<td></td>
<td>• Firewalls</td>
</tr>
<tr>
<td></td>
<td>• Kryptographische Protokolle (TLS, SSH, WPA2, etc.)</td>
</tr>
<tr>
<td></td>
<td>• Zertifikate und Public-Key-Infrastrukturen</td>
</tr>
<tr>
<td></td>
<td>• Authentifizierung und Schlüsselaustausch</td>
</tr>
<tr>
<td></td>
<td>• Zugriffskontrolle, z.B. in Linux, SELinux und Android</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Websicherheit</td>
</tr>
<tr>
<td></td>
<td>• Ausblick Systemsicherheit</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 786401 Vorlesung/Übung zu Grundlagen der Informationssicherheit</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>• V Vorlesung (USL-V),</td>
</tr>
<tr>
<td></td>
<td>• 78641 Grundlagen der Informationssicherheit (PL), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td></td>
<td>Unbenotete Studienleistung als Vorleistung (USL-V); ausreichende Punktzahl in den Übungen sowie ggf. in einer Zwischenklausur;</td>
</tr>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Projector, blackboard</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Informationssicherheit</td>
</tr>
</tbody>
</table>
620 Wahlbereich F

Zugeordnete Module:

- 41070 Fortgeschrittene Methoden in der Maschinen Sprachverarbeitung
- 55960 Korpus-orientierte Ansätze in der Computerlinguistik
- 68430 Grundlagentechnologien für die Sprachverarbeitung
- 68460 Bedeutung im Kontext
- 73560 Experimentelle Methoden in der Phonetik
Modul: 41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jonas Kuhn</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>- Modul 40660 Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>In einer 4-stündigen Veranstaltung bzw. zwei 2-stündigen Teilveranstaltungen werden zu einem oder mehreren Bereichen der Maschinellen Sprachverarbeitung fortgeschrittene Methoden thematisiert. Verschiedene fortgeschrittene Methodenkurse -- laut C@MPUS-Modulverknüpfung -- können zu diesem Modul kombiniert werden.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Variabel nach Teilveranstaltung</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 410701 Vorlesung Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
</tbody>
</table>
| 17. Prüfungsnummer/n und -name: | • V Vorlesung (USL-V), Sonstige
• 41071 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung (PL), Schriftlich oder Mündlich, Gewichtung: 1
[41071] Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung (PL), 120 min schriftlich oder 40 min mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Grundlagen der Computerlinguistik |
Modul: 55960 Korpus-orientierte Ansätze in der Computerlinguistik

2. Modulkürzel: 052400027
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Unregelmäßig

4. SWS: 4
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jonas Kuhn
9. Dozenten: Dozent/innen des Instituts

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017,
 → Wahlbereich Maschinelle Sprachverarbeitung --
 Kernmodule
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, 4. Semester
 → Wahlbereich F

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden haben einen tieferen Einblick in mehrere
computerlinguistisch fundierte Ansätze zur Auszeichnung
bzw. Exploration von Korpusdaten und/oder zur Induktion von
Modellparametern aus Sprach- und Textkorpora gewonnen und
können einschätzen, welche Verfahren bzw. Modellklassen für
eine gegebene Problemstellung geeignet ist.

13. Inhalt:
 In einer 4-stündigen Veranstaltung bzw. zwei 2-stündigen
 Teilveranstaltungen werden korpus-orientierte
 Ansätze der Computerlinguistik thematisiert. In Absprache mit
dem Modulverantwortlichen und den KursdozentInnen können
 verschiedene Kurse zu diesem Modul kombiniert werden,
deren aktuelle Auswahl über Modulverknüpfungen in C@MPUS
dokumentiert ist.

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 559601 Vorlesung Korpus-orientierte Ansätze in der
 Computerlinguistik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 • 55961 Korpus-orientierte Ansätze in der Computerlinguistik (PL),
 Schriftlich oder Mündlich, Gewichtung: 1
 • 55962 Korpus-orientierte Ansätze in der Computerlinguistik (USL)
 (USL), Sonstige, Gewichtung: 1
 120 min schriftlich oder 40 min mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Grundlagen der Computerlinguistik
Modul: 68430 Grundlagentechnologien für die Sprachverarbeitung

2. Modulkürzel: - 5. Modulduer: -
4. SWS: 4 7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Sebastian Pado
9. Dozenten: Dozentinnen und Dozenten des IMS / Lecturers of the IMS

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, → Wahlbereich F

11. Empfohlene Voraussetzungen: Grundlagenkenntnisse CL / basic skills CL

12. Lernziele:
 Die Studierenden erwerben ein grundlegendes Verständnis für die Konzepte, Algorithmen und Repräsentationsformalismen, die in gängigen NLP-Methoden verwendet werden. Sie sind in der Lage, die entsprechenden Methoden selbständig anzuwenden, anzupassen und sprachspezifische Komponenten zu implementieren.

 Students have a basic knowledge of the concepts, algorithms and representation formalisms which are used in current NLP methods. They are able to apply and adapt the respective methods and to implement language-specific components.

13. Inhalt:
 Das Modul setzt sich aus einer vierstündigen oder aus zwei jeweils zweistündigen Veranstaltungen zusammen. Die für dieses Modul wählbaren Lehrveranstaltungen sind im Studiengangsmodulbaum in C@MPUS gelistet.

 The module consists of either one course comprising 4 SWS or of two courses comprising 2 SWS each; students can choose from the available course offerings shown in the MSV module tree in C@MPUS.

14. Literatur:
 wird in den Lehrveranstaltungen bekannt gegeben / will be announced in the respective courses

15. Lehrveranstaltungen und -formen:
 • 684301 Vorlesung Grundlagentechnologien für die Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 68431 Grundlagentechnologien für die Sprachverarbeitung (PL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform: slides

20. Angeboten von:
Modul: 68460 Bedeutung im Kontext

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Uwe Reyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Antje Roßdeutscher, Uwe Reyle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, → Wahlbereich F

Empfohlene Voraussetzungen:
Modul 13870 Semantik

Lernziele:
Die Studierenden kennen wichtige Teilgebiete und Methoden der Erklärung der Konstitution von Bedeutung in Wort, Satz, Diskurs und Äußerungskontext.

Sie können die Rolle der Syntax-Semantik-Schnittstelle, präsuppositionaler Beziehungen im Text, Verankerung der Bedeutung im Äußerungskontext, von Sprecherintention und Glaubenskontext identifizieren. Sie können den Beitrag des Kontexts im komplexen Prozess der Bedeutungskonstitution isolieren und die Reichweite dieser Komponenten beurteilen.

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:
- 684601 Vorlesung/Seminar Bedeutung im Kontext

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h

Prüfungsnummer/n und -name:
- 68461 Bedeutung im Kontext (BSL), Gewichtung: 1

Angeboten von:
Modul: 73560 Experimentelle Methoden in der Phonetik

2. Modulkürzel: 052430035
5. Moduldauler: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: -
7. Sprache: Deutsch/Englisch

8. Modulverantwortlicher: Dr. Antje Schweitzer
9. Dozenten: Jörg Mayer
Katrin Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009, → Wahlbereich F

11. Empfohlene Voraussetzungen: Phonetik/Phonologie, Grundlagen der Maschinellen Sprachverarbeitung

12. Lernziele:
Die Studierenden haben ein detailliertes Verständnis für experimentelle Methoden in verschiedenen Berichen der Phonetik entwickelt. Sie sind in der Lage, eigene kleine Experimente durchzuführen sowie aktuelle Forschungsarbeiten in den Bereichen zu verstehen und kritisch zu bewerten.

13. Inhalt:
Methoden und Grundlagen der Neurolinguistik und -phonetik, bildgebende Verfahren

14. Literatur:
• Internet-Tutorial Sprache und Gehirn, http://www.ims.unistuttgart.de/phonetik/joerg/sgtutorial/
• Ladefoged, 2005, Phonetic Data Analysis: An Introduction to Fieldwork and Instrumental Techniques, Blackwell Publishing

15. Lehrveranstaltungen und -formen:
• 735601 Sprache und Gehirn, Vorlesung
• 735602 Experimental Phonetics, Seminar

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 73561 Experimentelle Methoden in der Phonetik (BSL), Gewichtung: 1
BSL: Leistungspräsentation (schriftl. oder mündl.) zu den zugehörigen Veranstaltungen

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
630 Wahlbereich W

Zugeordnete Module:
- 14330 Sprache und Geist (Vertiefung Theoretische Philosophie)
- 14340 Grundlagen der Praktischen Philosophie
- 14350 Mensch und Technik
- 16700 Typologie
- 17240 Sprachwandel
- 20050 Einführung in die Theoretische Philosophie - Nebenfach
- 21570 Einführung in die Praktische Philosophie - Nebenfach
- 46580 Varietäten des Deutschen
Modul: 14330 Sprache und Geist (Vertiefung Theoretische Philosophie)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. habil. Catrin Misselhorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Ernst, Andreas Luckner, Tillmann Pross, Ulrike Ramming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Module 091320001- 091320004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Fähigkeit zur Identifikation, Analyse, Systematisierung und Kritik der Ansätze zu den Wechselwirkungen zwischen Sprache und Denken in folgenden Hinsichten:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | • metaphysisch unter den Dimensionen der Immaterialität, Wirksamkeit und des Selbstbewusstseins,
| | • kulturphilosophisch im Sinn der Überindividualität und Historizität von Sprache und Denken,
| | • sprachanalytisch als Frage nach der Natur mentaler Gehalte in ihren Beziehungen zu den Kognitionswissenschaften.
| | • Kenntnis der zentralen Ansätze zu Bedeutung und Referenz. |
| 14. Literatur: | Literaturauswahl (exemplarisch):
| | 1) Hegel, Georg Wilhelm Friedrich: Phänomenologie des Geistes
| | 2) Husserl, Edmund: Ideen zu einer reinen Phänomenologie
| | 3) Frege, Gottlob: Über Sinn und Bedeutung
| | 4) Wittgenstein, Ludwig: Philosophische Untersuchungen
13) Martinich, Aloysius (Hg.) (2006): The Philosophy of Language. OUP.

15. Lehrveranstaltungen und -formen:
- 143301 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes
- 143302 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
- 14331 Sprache und Geist - Referat (LBP), Sonstige, Gewichtung: 3
- 14332 Sprache und Geist - Hausarbeit (LBP), Sonstige, Gewichtung: 7
- V Vorleistung (USL-V), Schriftlich oder Mündlich

19. Medienform:
Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Wissenschaftstheorie und Technikphilosophie
Modul: 14340 Grundlagen der Praktischen Philosophie

2. Modulkürzel: 091320005
5. Moduldauser: Einsemestrig
3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester
4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. habil. Catrin Misselhorn
9. Dozenten: Gerhard Ernst
Andreas Luckner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017, ➔ Wahlbereich Linguistik --> Ergänzungsmodul

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
• Vertiefte Kenntnisse in den Disziplinen der praktischen Philosophie, weiterführende Auseinandersetzung mit den Grundproblemen, Grundbegriffen und zentralen Modellen.
• Fähigkeit zur Beurteilung und differenzierten Anwendung unterschiedlicher moralphilosophischer Begründungsstrategien.
• Erwerb von Kompetenzen, Konzepte aus dem Gebiet der praktischen Philosophie systematisch und historisch zu vergleichen und einzuordnen.
• Fähigkeit, klassische Positionen des Gebiets selbständig zu interpretieren und zu analysieren sowie neuere Diskussionen zu verstehen und ein Problembewusstsein auszubilden.

14. Literatur: Literaturnauswahl (exemplarisch):
1) Aristoteles: Nikomachische Ethik
2) Hobbes, Thomas: Leviathan
3) Kant, Immanuel: Grundlegung zur Metaphysik der Sitten
4) Mill, John Stuart: Utilitarianism

15. Lehrveranstaltungen und -formen:
• 143401 Seminar 1 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
• 143402 Seminar 2 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
• 143403 Tutorium Grundlagen der Praktischen Philosophie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 63 h
Selbststudium: 297 h
Summe: 360 h
17. Prüfungsnummer/n und -name:
 - 14341 Grundlagen der Praktischen Philosophie Referat inkl. Thesenpapier (LBP), Sonstige, Gewichtung: 3
 - 14342 Grundlagen der Praktischen Philosophie - Hausarbeit (LBP), Sonstige, Gewichtung: 7
 - V Vorleistung (USL-V), Schriftlich oder Mündlich Prüfungsvorleistung: Referat inkl. Thesenpapier.
 Die Hausarbeit ist im Seminar zu schreiben, in dem die Prüfungsvorleistung erbracht wurde, das benotete Referat ist im anderen Seminar zu halten.

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von: Wissenschaftstheorie und Technikphilosophie
Modul: 14350 Mensch und Technik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>apl. Prof. Dr. Andreas Luckner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Luckner Ulrike Ramming Tillmann Pross</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Module 091320001-091320004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>In den philosophisch-anthropologischen Fragen nach dem Wesen des Menschen (mögliche Antworten reichen vom "animal rationale (Aristoteles) über das "tool making animal (Franklin) bis hin zum "Mängelwesen (Gehlen)) sind jeweils zugleich die Grundlinien der Bestimmung dessen angelegt, was Technik ist: Von der Technik als Kompensation natürlicher Mängel bis hin zur Bestimmung von Technik als Medium.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 143502 Seminar zu einer oder mehreren klassischen Positionen der Technikphilosophie • 143501 Integrierte Veranstaltung Anthropologie und Technik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h Selbststudium: 228 h Summe: 270 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name:
 • 14351 Mensch und Technik mündliche Prüfung (LBP), Mündlich, 20 Min., Gewichtung: 3
 • 14352 Mensch und Technik Hausarbeit (LBP), Schriftlich, Gewichtung: 7
 • V Vorleistung (USL-V), Schriftlich oder Mündlich
 Prüfungsvorleistung: Referat inkl. Thesenpapier

18. Grundlage für ...

19. Medienform:
 Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
 Wissenschaftstheorie und Technikphilosophie
Modul: 16700 Typologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8</td>
</tr>
<tr>
<td>5. Modulda dauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Pafel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Karin Leonte, Timm Braun, Jessica Lüking</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Basismodul 3, Kernmodul 1</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Verständnis für den Aufbau und die Struktur von Sprachen aus unterschiedlichen Sprachfamilien
• Kenntnis der Universalienforschung und ihrer unterschiedlichen theoretischen Strömungen
• Vertiefung der Fähigkeit zur detaillierten Beschreibung einzelner Phänomene im Sprachvergleich
• Fähigkeit, fachgerecht schriftliche Arbeiten zu erstellen
• Fähigkeit, wissenschaftliche Texte zu lesen |
| 13. Inhalt: | • Einführung in Grundbegriffe und Verfahren der Typologie
• Einführung in die Methoden der sprachvergleichenden Analyse sprachlicher Daten
• Behandlung ausgewählter Aspekte aus Syntax, Morphologie und Lexikon in diversen Sprachen unterschiedlicher Sprachfamilien |
• Skripte sowie ausgewählte Aufsätze (vorwiegend auf Englisch) |
| 15. Lehrveranstaltungen und -formen: | • 167004 Tutorium Typologie II
• 167001 Proseminar Typologie I
• 167002 Hauptseminar Typologie II
• 167003 Sprachkurs |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 87 h
Selbststudiumszeit / Nacharbeitszeit: 273 h
Gesamt: 360 h |
| 17. Prüfungsnummer/n und -name: | • 16701 Typologie I (PL), Schriftlich, 90 Min., Gewichtung: 1
• 16702 Typologie II (PL), Schriftlich, Gewichtung: 1
• 16703 Sprachkurs Klausur (USL), Schriftlich, 90 Min., Gewichtung: 1
Hausaufgaben, Klausur und Hausarbeit |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Flipchart, Beamer |
| 20. Angeboten von: | Germanistische Linguistik |
Modul: 17240 Sprachwandel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>091000017</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr. Jürgen Pafel |
| 9. Dozenten: | Eleonore Brandner |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>

| 11. Empfohlene Voraussetzungen: | alle Kernmodule |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einblick in die Gesetzmäßigkeiten des Sprachwandels auf den verschiedenen Ebene der Sprache</td>
</tr>
<tr>
<td>• Grundkenntnisse der Sprachgeschichte des Deutschen, Englischen und/oder Französischen</td>
</tr>
<tr>
<td>• Theoretische und pratische Vertrautheit mit dem Phänomen der Variation bzw. dem Begriff der Varietät (Dialekt, Soziolekt etc.)</td>
</tr>
<tr>
<td>• Analyse von sprachlichem Material ausgewählter diachroner Varietäten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Das Phänomen des Sprachwandels wird auf den verschiedenen Ebene der Sprache behandelt, theoretische Ansätze zur Erklärung von Sprachwandelphänomenen vorgestellt.</td>
</tr>
<tr>
<td>• Eine ältere Sprachstufe des Deutschen, Englischen oder Französischen wird vorgestellt.</td>
</tr>
<tr>
<td>• Einführung in die Struktur von Sprachvarietäten (Standardsprache, Dialekte etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 172402 Hauptseminar Sprachwandel</td>
</tr>
<tr>
<td>• 172401 Proseminar Sprachwandel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 17241 Sprachwandel Hauptseminar (LBP), Schriftlich, Gewichtung: 1</td>
</tr>
<tr>
<td>• 17242 Sprachwandel Proseminar (USL), Schriftlich, Gewichtung: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ...:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Flipchart, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanistische Linguistik</td>
</tr>
</tbody>
</table>

Stand: 01.10.2018
Modul: 20050 Einführung in die Theoretische Philosophie - Nebenfach

2. Modulkürzel: 091320022
3. Leistungspunkte: 6 LP
4. SWS: 4

5. Modulduauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. habil. Catrin Misselhorn
9. Dozenten: Ulrike Ramming

Gerhard Ernst

10. Zuordnung zum Curriculum in diesem

Studiengang: B.Sc. Maschinelle Sprachverarbeitung, PO 160-2009,

➞ Zusatzmodule

B.Sc. Maschinelle Sprachverarbeitung, PO 160-2017,

➞ Wahlbereich Linguistik --> Ergänzungsmodule

➞ Wahlbereich W

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden verfügen über einen ersten Überblick über

die Hauptgebiete der Theoretischen Philosophie in ihren

systematisch und historisch zentralen Positionen (Metaphysik

und Metaphysikkritik, Erkenntnistheorie mit der Frage nach den

Bedingungen der Möglichkeit von Erkenntnis, Sprachphilosophie,

Wissenschaftstheorie). Sie verfügen über ein systematisches

Verständnis der Grundbegriffe (Sein, Idee, Stoff, Form, Substanz,

Anschauung, Begriff, Kategorien, Wahrheit, Überzeugung,

der Rechtfertigung des Wissens, der Wahrnehmung und der

Erinnerung), der Grundprobleme und Methoden (Induktion,

Deduktion, Abduktion) und über hermeneutische, philologische,

Reflexions- und Argumentationskompetenzen.

13. Inhalt: Behandelt werden in der Erarbeitung einschlägiger Texte die

unterschiedlichen Begründungsstrategien zur Metaphysik

unter besonderer Berücksichtigung sowohl der klassischen

aristotelischen Position als auch neuerer sprachphilosophisch

motivierter Ansätze, deren Relevanz für die Beurteilung von

Wissen und Erkenntnis wird herausgearbeitet. Geltungsansprüche

unterschiedlicher Erklärungs- und Verstehenskonzepte sowie der

methodischen Erschließung von Wissen werden erarbeitet und in

ihrer explikatorischen Reichweite diskutiert.

14. Literatur: Literatursauswahl:

Auszüge aus klassischen Texten von Aristoteles, Kant, Mill,

Dilthey, Frege, Heidegger, Strawson, Quine.

15. Lehrveranstaltungen und -formen:

• 200501 Seminar Einführung in die Theoretische Philosophie

• 200502 Tutorium Einführung in die Theoretische Philosophie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h

Selbststudium: 138 h

Summe: 180 h

17. Prüfungsnummer/n und -name:

20051 Einführung in die Theoretische Philosophie (LBP), Schriftlich

oder Mündlich, 90 Min., Gewichtung: 1 Essays und/oder schriftlich

18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Wissenschaftstheorie und Technikphilosophie</td>
</tr>
</tbody>
</table>
Modul: 21570 Einführung in die Praktische Philosophie - Nebenfach

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Dr. habil. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td>Gerhard Ernst, Andreas Luckner</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Literatursauswahl:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Auszüge aus klassischen Texten zur Ethik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 215702 Tutorium Einführung in die Praktische Philosophie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 215701 Seminar Einführung in die Praktische Philosophie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 21571 Einführung in die Praktische Philosophie - Nebenfach (LBP), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), Schriftlich oder Mündlich Essays und/oder schriftlich, 90 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von: Wissenschaftstheorie und Technikphilosophie
Modul: 46580 Varietäten des Deutschen

2. Modulkürzel: 091000018
5. Moduldaurer: Zweisemestrig
3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Pafel
9. Dozenten: Fabian Bross
11. Empfohlene Voraussetzungen: alle Kernmodule
12. Lernziele: theoretische und praktische Vertrautheit mit dem Phänomen der Variation bzw. dem Begriff der Varietät (Hochsprache, Dialekt, Soziolekt, gesprochene vs. geschriebene Sprache etc.) Kenntnis der charakteristischen Merkmale verschiedener Varietäten des Deutschen Analyse von konkretem Sprachmaterial ausgewählter Varietäten praktische Kenntnisse in Bezug auf die Aufnahme und Transkription von Gesprächen
13. Inhalt: Einführung in die Struktur von Sprachvarietäten (Standardsprache, Alltagssprache, Dialekt etc.) Darstellung der verschiedenen Aspekte und Ebenen ausgewählter Varietäten (Standard- und Umgangsvarietyt des Hochdeutschen, Schwäbisch etc.) Diskussion der Probleme der Aufnahme und Transkription von Gesprächen
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 465801 Seminar Empirische Methoden, Proseminar
 • 465802 Hauptseminar Varietäten des Deutschen
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 48 h
 Selbststudiumszeit / Nacharbeitszeit: 312 h
 Gesamt: 360 h
17. Prüfungsnummer/n und -name:
 • 46581 Varietäten des Deutschen (LBP), Schriftlich, Gewichtung: 1
 • 46582 Empirische Methoden - unbenotete Studienleistung (USL), Sonstige, Gewichtung: 1
18. Grundlage für ...
19. Medienform: Tafel, Flipchart, Beamer
20. Angeboten von: Germanistische Linguistik
Modul: 81380 Bachelorarbeit Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050525002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>-</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>120 LP aus dem Bachelorstudiengang MSV</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Der Inhalt wird jeweils mit einer/m Betreuer/in (IMS-Mitarbeiter/in) abgestimmt.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>PL</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Grundlagen der Computerlinguistik</td>
</tr>
</tbody>
</table>